3-2007

Nanosecond Near-Spinodal Homogeneous Boiling of Water Superheated by Pulsed CO2 Laser

Sergey I. Kudryashov
Arkansas State University - Main Campus

Kevin Lyon
Arkansas State University - Main Campus

Susan D. Allen
Arkansas State University - Main Campus, allens17@erau.edu

Follow this and additional works at: http://commons.erau.edu/db-mechanical-engineering

Part of the Mechanical Engineering Commons

Scholarly Commons Citation

Pre-print
This Article is brought to you for free and open access by the College of Engineering at Scholarly Commons. It has been accepted for inclusion in Department of Mechanical Engineering - Daytona Beach by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Nanosecond near-spinodal homogeneous boiling of water superheated by pulsed CO$_2$ laser

Sergey I. Kudryashov,* Kevin Lyon and Susan D. Allen

Department of Physics, Arkansas State University, State University, AR 72467-0419, USA

(Received 2006)

The sub-microsecond dynamics of superheated surface layers of bulk water cavitating under near-spinodal conditions during nanosecond CO$_2$ laser heating pulses was studied using contact broad-band photoacoustic spectroscopy. Characteristic nanosecond pressure-tension cycles recorded by an acoustic transducer at different incident laser fluences represent a) weak random oscillations of transient nanometer-sized near-critical bubbles-precursors and b) well-defined stimulated oscillations of micron-sized supercritical bubbles or their sub-μs coalescence products. These findings provide an important insight into basic thermodynamic parameters, spatial and temporal scales of bubble nucleation during explosive liquid/vapor transformations in absorbing liquids ablated by short laser pulses in the thermal confinement regime.

PACS: 64.70.Fx, 47.55.dd, 43.35.+d, 52.38.Mf

Explosive boiling of a free superheated liquid in the thermal confinement regime is known to take place in a transition region of the thermodynamic pressure-temperature (P,T) phase diagram

* Electronic mail: skudryashov@astate.edu, sergeikudryashov@yahoo.com
near the liquid-vapor (LV) spinode curve, where incoherent, spontaneous homogeneous nucleation (HN) of separate vapor bubbles merges with coherent spinodal decomposition (SD) of the corresponding superheated liquid correlated over a long scale [1,2]. Classical HN theory predicts metastability of the bulk superheated liquid with respect to non-interacting finite fluctuations of its local entropy S and volume V values representing bubbles of finite critical and supercritical radii ($r \geq r_{cr}$) [1,2]. At increasing degrees of superheating, the Gibbs free energy HN barrier $\Delta G(T,P,r)$ for critical bubbles and surface tension of the superheated liquid σ tend simultaneously to zero when approaching its liquid/vapor (LV) spinode curve [1], and so does r_{cr} (in practice, size-dependent $\sigma(r) \approx C_1 - C_2 r \approx C_1$ for $r \to 0$ and the numerical constants C_1 and C_2 [3], so there should be a small, but finite r_{cr} value even at the LV spinode). At the LV spinode – the ultimate stability limit of the superheated liquid with regard to infinitely small thermal and/or acoustic perturbations $\delta S, \delta V$ – a non-steady state LV transformation known as “spinodal decomposition” occurs, according to the Cahn-Hilliard model [4], as strongly-correlated large-scale fluctuations at characteristic wavelengths $\lambda \to \infty$ increasing exponentially in time (as compared to small-scale fluctuations) and setting up a large scale spatial periodic structure, while at higher temperatures – beyond the spinode – characteristic λ continuously decreases vs. increasing T to atomic or molecular dimensions in the vapor phase. However, if intense thermal fluctuations are explicitly taken into account in SD theory (Cook, Langer [5]), the sharp spinodal curve “washes out” because the probabilities of fluctuations for all λ values grow towards their asymptotic equilibrium magnitudes and, thus, HN and SD regimes merge together in the near-spinode transition region characterized by a single finite effective characteristic size of fluctuations. Despite these and other theoretical efforts [1-2,5], such combined dynamics of HN and SD in superheated liquids near their corresponding LV spinodes is not yet well understood. Recently, such initial stages of
fast LV transformation have been studied in superheated liquid argon near its LV spinode using a molecular dynamics (MD) approach [6]. In qualitative agreement with results of HN theory, these studies demonstrate shorter and shorter induction (incubation) times for nucleation of nanometer-sized density fluctuations (sub- or near-critical bubbles) in 9.5-nm MD cells vs. increasing T while approaching picosecond values at temperatures $T \approx 0.9 T_{\text{crit}}$. However, since collective (correlation) and other size effects crucial for bubble nucleation in the near-spinodal region have not been included in these small-scale simulations, their important results may require experimental verification that has not been performed to date.

In this paper we report the use of contact broadband photoacoustic (PA) spectroscopy to study sub-μs near-spinodal HN of multiple steam bubbles in a μm-thick layer on a free water surface superheated by a TEA CO$_2$ laser above its explosive boiling threshold at heating rates $\sim 10^{10}$ K/s. Multi-MHz oscillations of acoustic pressure recorded by a state-of-the-art acoustic transducer at different incident laser fluences have revealed a broad weak high-frequency spectral band and a number of strong low-frequency spectral lines interpreted, respectively, as weak random oscillations of short-living nm-sized near-critical bubbles and stimulated synchronous oscillations of μm-sized supercritical steam bubbles and sub-μs coalescence products.

In the PA experiments we used an experimental setup described elsewhere [7]. A 10.6-μm, TEA CO$_2$ laser beam (Lumonics 100-2, TEM$_{\text{00}}$, 0.1 J/pulse, the initial spike of duration $\tau_1 \approx 70$ ns (FWHM) storing about $\gamma_1 \approx 50\%$ of the pulse energy, the pulse tail of the duration $\tau_2 \approx 0.6$ μs, repetition rate of 1 Hz) was focused by a ZnSe spherical lens (focal distance $L = 10$ cm, Gaussian focal spot radius $\sigma_{1/e} \approx 0.2$ mm) at normal incidence onto a free surface of bulk de-ionized water in a cylindrical plastic container (height $H \approx 8$ mm, diameter $D \approx 14$ mm). Laser energy was varied using a number of clear polyethylene sheets (20% attenuation per piece) and measured in
each pulse by splitting off a part of the beam to a pyroelectric detector (Gentec ED-500) with
digital readout. The front quartz window (thickness \(h \approx 3 \) mm) of a fast acoustic transducer
\((\text{LiNbO}_3\) piezoelement, flat response in the 1-100 MHz range, manufactured in the Laboratory of
Laser Optoacoustics at Moscow State University) served as the bottom of the water container. A
LeCroy storage oscilloscope (Wavepro 940) was used to record voltage transients (delayed by the
7-8 \(\mu s \) needed for the corresponding acoustic pressure transients \(p(t) \) to propagate in the water
volume and the quartz window) from the transducer. The relatively small laser spot on the water
surface provided PA measurements in the acoustic far field resulting in differential shapes of re-
corded transients strongly distorted by diffraction (the diffraction parameter \((H+h)/L_D(f)\) \(\sim \)1-10,
where \(L_D(f) = \pi f \times \sigma_{1/e}^2/C_l \sim 1-10 \) mm is the diffraction length [8] for acoustic pulses with charac-
teristic frequencies \(f = 10-10^2 \) MHz and the speeds of sound in water, \(C_l \approx 1.4 \) km/s [9]). More-
over, according to the values of the non-linear attenuation coefficient for water, \(\alpha/f^2 \approx (2.42-
2.5) \times 10^{-14} \) s\(^2\)/m for \(f = 7-1.9 \times 10^2 \) MHz [9], multi-MHz components of the acoustic transients are
not subject to significant attenuation when propagated in the 8-mm thick water volume. Acoustic
reverberations in the water volume and acoustic delay line exhibiting periods of 10-11 and 2 \(\mu s \),
respectively, were not present in fast Fourier transform (FFT) spectra (Origin 7, OriginLab) of
the acoustic transients taken for the first \(\mu s \) after the beginning of the \(\text{CO}_2 \) laser pulse.

PA studies performed at various incident laser fluences \(F = 0.8-11 \) J/cm\(^2\) show characteristic
waveforms \(p(t) \) consisting of a main pulse \((t = 0-0.15 \mu s)\) and an oscillatory tail at \(t > 0.15 \mu s \n(Fig.1). The main thermoacoustic (TA) pulse increases slowly for \(F \leq F_B = 1.7\pm0.3 \) J/cm\(^2\), but
then rises rapidly at fluences exceeding this threshold value (Fig.2) (see similar thresholds for
similar TEA \(\text{CO}_2 \)-laser temporal pulse shapes in [10]). Moreover, near the threshold the main
acoustic pulse transforms from tripolar to bipolar (see transients 1-3 in Fig.1), where both the tri-
polar and bipolar waveforms are first time derivatives of the actual bipolar and unipolar waveforms generated during the laser spike (their FWHM equal that of the laser spike) via the TA or explosive boiling (EB) mechanisms [8,11], respectively, and slightly perturbed by surface vaporization [10] and cavitation in the superheated water. The differential effect results from diffraction of the acoustic transients in the far field [8] where data acquisition was performed, and explains slower increase of the compressive pressure amplitude p_{comp} (positive phases in Fig.1) at higher $F \approx 4-5$ J/cm2 after its initial rapid rise at $F \geq F_B$ by large increase of the lateral size for the explosively boiling region in the superheated interfacial water layer vs. F. Visible formation of mm-sized surface bubble and expulsion of a water jet accompanying laser ablation for $F > F_B$ strongly supports the EB character of the threshold F_B.

This conclusion is also confirmed by simple energy balance analysis. EB of water occurs during the laser pulse near its LV spinode at positive pressures P ($P_0 = 1\text{atm} < P < P_{cr}$) and temperatures $T \approx (0.9-1)T_{cr} \approx (5.9-6.5) \times 10^2$ K [1,9] (the critical pressure and temperature of water are $P_{cr} \approx 22.4$ MPa and $T_{cr} \approx 647$ K [9], respectively) in the “thermal confinement” regime [6], when the threshold volume energy density $\varepsilon_{th} \approx (1 - R) \times F_{th}/\delta \approx 1 \times 10^3$ J/cm3 [1] is supplied by the incident laser fluence $F_{th} \approx 0.9$ J/cm2 for $R \leq 0.01$ [12] and $\delta \approx 9$ µm [13] (the reflectivity and penetration depth for a flat surface of bulk water at normal incidence and 10.6-µm laser wavelength). For increasing total laser fluence F, the onset of laser-induced EB in water at the instantaneous fluence $F(t) \approx F_{th}$ can be achieved at an earlier time t during the CO$_2$-laser heating pulse and can be resolved using the nanosecond acoustic transducer. For example, for the 50:50 energy content ratio of the CO$_2$-laser spike and tail there are two reference total fluence thresholds $F_1 \approx 0.9$ J/cm2 and $F_2 \approx 1.8$ J/cm2 ($F_2 \approx F_1/\gamma_1 \approx 2F_1$), which should provide EB of water at the end of the tail and right after the spike, respectively. Therefore, at $F_1 \leq F \leq F_2$ one can see the main bipolar TA
pulse accompanied by oscillatory EB (cavitation) signal during the laser pulse tail, while at $F \geq F_2$ the EB effect and, to a minor extent, surface vaporization builds up the main unipolar EB pulse and the accompanying cavitation signal [10]. Note that, according to such energy balance analysis and the experimental data of other studies, surface vaporization of water starts at lower $F \approx 0.3 \text{ J/cm}^2$ [10], corresponding to the normal boiling temperature $T_{\text{boil}} \approx 373 \text{ K}$ at $P = P_0$ [9].

In accordance with the reference thresholds F_1 and F_2, at $F \approx 0.8 \text{ J/cm}^2 \leq F_1$ only the main symmetric tripolar TA pulse was recorded followed for $t > 0.2 \mu\text{s}$ by a few low-amplitude oscillations at a background level (transient 1 in Fig.3). In contrast, at $F \approx 1.4 \text{ J/cm}^2 > F_1$ accompanying the main asymmetric tripolar pulse is a pronounced oscillatory tail which sets up after the laser spike at $t > 0.4 \mu\text{s}$ (transient 2 in Fig.3) and represents characteristic cavitation dynamics of steam bubbles with resonant frequencies $f \approx 10-40 \text{ MHz}$ (Fig.4b), which μs-scale dynamics has been studied in our previous work [14]. The amplitude FFT spectra in Fig.4 were obtained for the first 0.7-μs ($t = 0.2-0.9 \mu\text{s}$) slices of this and other acoustic transients for $F > F_1$. At higher $F \approx 2.1 \text{ J/cm}^2 \geq F_2$ an oscillatory tail starts at the end of the laser spike at $t \geq 0.1 \mu\text{s}$ (transient 3 in Fig.3). Similar oscillations in the range 15-30 MHz were earlier detected in water at similar CO$_2$-laser fluences [10], but were interpreted as oscillations of bubbles produced around micron-sized solid dust species suspended in water of industrial districts. However, since in this work no visible oscillations were observed in the acoustic transients on sub-μs or μs timescales at $F < F_1$ (Fig.3), such multi-MHz bubbles can only be related to sub-μs explosive HN in superheated interfacial water layers at $F > F_1$. Surprisingly, the spectral amplitudes of bubble modes in Fig.4 do not change significantly at higher $F < 6 \text{ J/cm}^2$ inspite of increasing axial and radial dimensions of the superheated surface water layer, while in agreement with the abovementioned F-independent onset of EB at $F(t) \approx F_{\text{th}}$ and the virtual diffraction-limited increase of p_{comp} in Fig.2 at $F = 1.7-6$
J/cm2 at the slowly increasing actual p_{comp} amplitude. Altogether these facts demonstrate that under our experimental conditions the EB process is driven by thermodynamic (e.g., degree of superheating) rather than kinetic (e.g., heating rate) factors and exhibits a single threshold F_{th} for different laser fluences $F > F_{\text{th}}$, indicating EB at some superheating limit which could be the LV spinode (see below). Also, the main oscillation modes in Fig.4 show their damping during the laser tail with characteristic times of about 1 μs consistent with our previous measurements [14].

More complex, but noisy acoustic transients exhibiting higher-resolution FFT spectra more rich in higher f were obtained at $F \approx 2.1$ J/cm2 (Fig.5) using thinner water layers ($H \approx 1-1.5$ mm), since, in this case, the diffraction effect for the multi-MHz acoustic waves is considerably weaker. In particular, one finds in Fig.5 that the bubble oscillation mode at $f \approx 32$ MHz has much shorter lifetime (≈ 150 ns according to its FWHM parameter $\Gamma \approx 6$ MHz) than the other modes in Fig.4, while another mode at $f \approx 63$ MHz exhibits slightly longer lifetime ≈ 250 ns ($\Gamma \approx 4$ MHz in Fig.5). Potentially, the latter mode could be the second harmonic of the former one with its lifetime longer because of higher thermal agitation. Supercritical steam bubbles representing both of these modes may be the precursors of the larger bubbles coalesced on a ns timescale [15] from the smaller ones and oscillating at lower $f < 30$ MHz as shown in Figs.4 and 5.

Furthermore, FFT spectra in Fig.5 show also a weak diffuse band at $f \approx 70-250$ MHz with the central frequency $f_C \approx 1.6 \times 10^2$ MHz and FWHM $\Gamma \approx 1 \times 10^2$ MHz, which has the average amplitude at the level of RF noise from the CO$_2$-laser gas discharge. We believe that this band may represent a multitude of transient near-critical steam bubbles (rather than non-oscillating periodic spinodal structures) which are precursors of the 32- and 63-MHz supercritical bubbles and grow very slowly and randomly for $(dr/dt) = 0$ and $(d^2r/dt^2) = 0$ at $r = r_{\text{cr}}$ [16] driven presumably by a random force $\Psi(T,P,r,t)$ resulting from thermal fluctuations. Indeed, the Gibbs free energy...
\(\Delta G(T,P,r)\) for HN of bubbles has a maximum at \(r \approx r_{cr}\) and the thermodynamic driving force for bubble growth \((\partial \Delta G / \partial r)_{T,P,r_{cr}} \approx 0\), defining the critical bubble radius as \(r_{cr} = 2\sigma(P,T)/[P_S(T) - P_0]\) [1,2] where \(P_S(T)\) is the saturated vapor pressure at \(T\). Such critical and near-critical bubbles have a chance to make a few random oscillations near \(r \approx r_{cr}\) under the influence of \(\Psi(T,P,r,t)\) during their slow evolution in size and frequency domains in the near-critical region, emitting a number of short and low-amplitude acoustic wave packets with random frequencies and phases at strongly broadened linewidths, as seen in Fig.5 from the close correspondence of their \(f_C\) and \(\Gamma\).

The number of near-critical bubbles per unit volume and periods of their near-critical oscillations (random acts of growth and shrinkage) are strong (exponential) functions of \(T\) [1,2]. Therefore, one can expect to observe such random oscillations of tiny near-critical bubbles in FFT spectra in the form of a very weak and broad band with amplitudes and central frequencies rapidly changing versus \(F\), which seems to be the case in this work.

Since critical bubbles are “bottleneck species” in the HN kinetics exhibiting the minimal possible growth rates [1,2,16], their oscillation frequencies \(f \sim f_C\) characterize a bubble nucleation frequency \(f_{nucl}(P,T,r_{cr})\), the parameter used to define at a given \(P,T\) a steady-state HN rate \(J(P,T) = N_0(P,T) \times B \times \exp[-\Delta G(P,T,r_{cr})/kT]\), where \(N_0(P,T) \sim 10^{22}\) cm\(^{-3}\) is the density of molecules in a liquid and \(B \sim 10^{10-12}\) Hz is the kinetic pre-factor [1,2]. The product \(B \times \exp[-\Delta G(P,T,r_{cr})/kT] = f_{nucl}(P,T,r_{cr})\) and, as a result, for EB conditions assumed in this work – \(T^* \approx 0.9 T_{cr} \approx 5.9 \times 10^2\) K, \(P_s(T^*) \approx 8.6 \times 10^6\) Pa [9] and \(f_{nucl}(P_S(T^*), T^*, r_{cr}) \approx f_C \approx 1.6 \times 10^2\) MHz – one finds \(\Delta G(P_S(T^*), T^*, r_{cr}) \approx (4-8) \times 10^{-20}\) J. Simultaneously, one can write for \(\Delta G(P,T,r_{cr}) = \frac{1}{3} \times (4\pi r_{cr}^2) \times \sigma(P,T) = (2\pi r_{cr}^3)/3\times [P_S(T) - P_0]\) [1] which gives for the known \(\Delta G(P_S(T^*), T^*, r_{cr})\) and \([P_S(T^*) - P_0]\) the estimate \(r_{cr} \approx 1.5-2\) nm consistent with \(r_{cr} \sim 1-3\) nm in Refs. [2,6]. Moreover, for the known \(r_{cr}\) and \(\Delta G(P_S(T^*), T^*, r_{cr})\) one can estimate \(\sigma(P_S(T^*), T^*) = 3 \times \Delta G(P_S(T^*), T^*, r_{cr})/(4\pi r_{cr}^2) \approx (4-5) \times 10^{-3}\) N/m,
which corresponds, according to data for $\sigma(P_S,T_S)$ on the water binode curve [9], to the near-spinodal EB temperature $T^* \approx 6.2 \times 10^2 \text{ K} \approx 0.95T_{cr}$ in good agreement with the energy balance analysis above and typical spinodal temperatures $T_{spin}(P>0) > 0.92T_{cr}$ for real liquids [1].

When these critical steam bubbles grow to supercritical dimensions blown up by $P_S(0.95T_{cr})$, their maximum diameter D_{max} for maximal $f \approx 32 \text{ MHz}$ can approach $D_{max}(32 \text{ MHz}) \approx 6 \mu \text{m} \leq \delta_{wat} \approx 9 \mu \text{m}$ [13] calculated using the Rayleigh’s formula [16] written as $D_{max} \approx 1.1 \times [P_S(0.9T_{cr}) \times 1/\rho(0.9T_{cr})]^{1/2}/f$ and values of the water density $\rho(6.2 \times 10^2 \text{ K}) \approx 0.5 \times 10^3 \text{ kg/m}^3$ [1] and $P_S(6.2 \times 10^2 \text{ K}) \approx 1.5 \times 10^7 \text{ Pa}$ [9]. This result shows single-layer packaging of the supercritical bubbles in the superheated interfacial water layers and explains why acoustic waves emitted by the bubbles can be readily recorded in the normal direction in the acoustic farfield without significant attenuation by other bubbles or loss of coherence of their oscillations in the recorded acoustic signals. As a result, the subsequent nanosecond coalescence of these micron-sized bubbles presumably occurs along the surface of the superheated water layers.

In conclusion, we have demonstrated that transient micron-sized supercritical steam bubbles nucleate and coalesce on a nanosecond timescale in a thin surface layer of free bulk water superheated by the TEA CO$_2$ laser. We have also revealed some indications of random oscillations of nanometer-sized near-critical steam bubbles growing toward supercritical sizes, and estimated their dimensions, nucleation frequency and work of formation, as well as temperature and surface tension of the superheated water at the explosive boiling threshold. The extracted bubble nucleation parameters and energy balance analysis indicate explosive boiling of the superheated water near its liquid/vapor spinode curve. These results provide new experimental facts about near-spinodal explosive boiling of laser-superheated liquids in the thermal confinement regime.

FIG.1. Fragments \((t = -0.2-0.5 \mu s)\) of acoustic waveforms recorded in water at \(F \approx 1.4 \text{ J/cm}^2\) \(< F_B (1), 1.7 \text{ J/cm}^2 \leq F_B (2)\) and \(2.4 \text{ J/cm}^2 > F_B (3)\). The patterned region shows evolution of the main acoustic signal from the tripolar TA to the bipolar EB one at \(F \) close to \(F_B \approx F_2\).

FIG.2. Compressive pressure \(p_{\text{comp}}\) vs. \(F\). The arrow shows the explosive boiling threshold \(F_B\) of water.

FIG.3. Oscillatory tails \((t > 0.1 \mu s)\) of acoustic waveforms at \(F \approx 0.8 \text{ J/cm}^2 \leq F_1 (1), F_1 \leq 1.4 \leq F_2 (2)\) and \(2.1 \geq F_2 (3) \text{ J/cm}^2\).

FIG.4. Amplitude FFT spectra for the time interval \(t = 0.2-0.9 \mu s\) of acoustic waveforms at different \(F (\text{J/cm}^2)\): \(a - 1.4, b - 1.7, c - 3.5\) and \(d - 6.5\).

FIG.5. Acoustic waveform at \(F \approx 2.1 \text{ J/cm}^2 (a)\) and amplitude FFT spectra of its slices over the intervals \(t = 0-0.3 \mu s (b), 0.3-0.5 \mu s (c)\) and \(0.5-0.7 \mu s (d)\) showing transient abundances of different steam bubbles. The arrows show positions of 32- and 63-MHz modes and the horizontal bracket shows position of the diffuse band (see text for details).
fig. 2

fig. 3
fig. 4

fig. 5