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ABSTRACT

The effort described in this paper is an 
investigation of the possible improvement 
in performance of the Apollo Unified 
S-Band Telemetry links due to the use of 
the Hadamard transform as a means of 
source encoding. Both rapidly and slowly 
varying telemetry signals were considered 
and three sizes of the Hadamard matrix 
were used. Results indicate that as much 
as 3-db improvement in system performance 
may be obtained in systems operating at a 
2% RMS error level.

INTRODUCTION

In recent years, the practicality of 
space communications, both for manned 
space research and unmanned communications 
satellites, has become evident. The 
rapidly increasing amount of information 
to be transmitted is placing arduous 
demands on the system channel capacity. 
Also, the prospect of future manned deep 
space probes requires improved system 
signal-to-noise ratios. Data compression 
and channel encoding techniques have been 
developed to help meet; these more rigid 
requirements [1], [2].

Recent developments of "fast" orthogonal 
transforms have provided new concepts of 
source encoding as a means of reducing 
bandwidth and carrier-power requirements 
for space communication systems. Some of 
the more promising transforms include the 
Fourier, Haar, Hadamard and Karhunin-Loeve 
transforms, [3], [4], [5].

The effort described in this paper is an 
investigation of the possible improvement 
of the Apollo Unified S-Band Telemetry 
Links due to the use of the Hadamard 
transform as a means of source encoding. 
Actual command and service module-ground 
station communication equipment with a 
simulated RF link was used in the test. 
These facilities are located at the Manned 
Spacecraft Center. Both slowly changing 
and rapidly changing digital signals were

investigated. Hadamard matrices of orders 
4, 16, and 64 were used in obtaining the 
transformations .

It is realized that the resulting system 
is not "optimal" in any manner, but the 
results do reflect the advantages of 
-using the Hadamard technique without 
redesign of other system components. 
Areas where system changes could result in 
significant additional improvement in 
performance are also revealed.

Section II gives a brief summary of the 
Hadamard transform. The experimental 
study is described in Section III. The 
results of this study are shown in Section 
IV and conclusions are presented in 
Section V.

THE HADAMARD TRANSFORM

Given a one dimensional signal, f(t), its 
finite sampled transform can be represent­ 
ed as

HX (1)

where X is an N x 1 vector of signal 
samples of f(t), H is an N x N transforma­ 
tion .matrix and Y is an N x 1 vector of 
transformed samples. One element of Y is

N-l 
Y(n) = Z x (kAT) h, n

k=0 Kn (2)

For orthogonal transforms, the signal 
vector elements are recovered by

N-l 
X(kAT) = I Y(n) h,

n=0 Kn (3)

In eqs. (2) and (3), hfcn is an element of 
the matrix H. If the element h-^n is 
defined as the inner product

kn <Wal(k,5), (4)

then the resulting matrix is the Hadamard 
matrix and the transformation is known as
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the Hadamard Transform. In eq, (4), the 
Wal (k,6) represent the set of Walsh 
functions, the first eight of which are 
shown in Figure 1 [3] . These are over­ 
lapping rectangular functions which are 
orthogonal in the normalized interval 
0 < 5 < 1. Examples of three Hadamard 
matrices are shown in Figure 2. Matrices 
of higher order are easily constructed 
from lower order matrices. Each matrix 
is comprised of only the elements +1 and 
-1. Further, all rows and columns are 
mutually orthogonal and any two rows or 
any two columns may be interchanged with­ 
out affecting the orthogonality property.

Except for a constant factor equal to the 
rank of the matrix, the Hadamard matrix is 
its own inverse. Thus, to recover the 
.original vector X:

N HY

This expression is signigicant from the 
standpoint that implementation of the 
Hadamard transform technique requires 
development o"f only one piece of hardware 
for both the transform and inverse trans­ 
form processes.

The most significant advantage of the 
Hadamard matrix, however, is its ability 
to effect a transform of a signal while 
requiring only the operations of additions 
and subtractions.

EXPERIMENTAL STUDY

The system diagram for this study is shown 
in Figure 3. One-hundred ninety-six sig­ 
nal samples were generated to correspond 
to the command and service module low bit 
rate telemetry format of 200 words which 
includes four frame synchronization words. 
Two types of signal samples were generated. 
The first type consisted of 196 samples 
evenly spaced over one cycle of a sine 
wave. This signal was chosen to represent 
slowly changing telemetry data such as 
battery voltage, vehicle velocity, etc. 
The second signal type was 196 data points 
chosen by sampling a random variable uni­ 
formly distributed over the interval (0,1). 
This type of course represents rapidly or 
randomly changing telemetry signals.

The signals were processed in three phases. 
The first phase was accomplished on the 
Univac 1108 Computing System and consisted 
of signal generation, Hadamard transforma­ 
tion of the signal if applicable, and 
pulse code modulation (PCM) of the trans­ 
formed and untransformed signals. An 
eight bit uniform quantization method was 
used for the PCM. This was accomplished 
by generating 256 evenly spaced levels 
between the maximum and minimum values 
of input data and then assigning each data

point to the closest level. Hence for 
each data point, an 8-bit binary number 
between 0 and 255 is generated. The 
sequence of 196 eight-bit numbers and 
four eight-bit synch words from one 1600 
bit frame. This frame is supplied to the 
second phase of the system which is detail­ 
ed in Figure 4.

Actual spacecraft-ground station communi­ 
cation equipment was used in phase two. 
The RF path from spacecraft to ground 
station was of course simulated but is 
accurately calibrated so that the simula­ 
tion closely resembled actual mission 
conditions. Data was transmitted for 
three different system bit error rates 
(BER). Ten thousand frames (16 million 
bits) were examined for 10~4 BER; 5000 
frames for 10~3 BER; and 1000 frames for 
10-2 BER. The PCM bit synchronizer out­ 
put was recorded on magnetic tape for use 
in phase three.

The Univac 1108 computer was again util­ 
ized in the last step of the signal pro­ 
cessing. Using the reference levels from 
phase I, the PCM signal recorded in phase 
II was decoded and the inverse transforma­ 
tion performed if necessary. The result­ 
ing estimates of the original signal were 
then compared with the actual values and 
the per cent RMS error rate per word was 
calculated.

For a standard of comparison, the signals 
were processed in the normal manner 
through the system and the RMS error 
calculated. The signals were then 
Hadamard transformed and processed in the 
same manner. Three sizes of the matrix 
(N=4, N=16, N=64) were considered in each 
case. Hence, a total of eight different 
bit streams were transmitted for each of 
the three bit error rates.

RESULTS

Per cent RMS error vs bit error rate for 
slowly changing (sine wave) data is shown 
in Figure 5. Two .cases are depicted; 
untransformed data and data transformed 
by the Hadamard technique with N=4. The 
data from runs with N=16 and N=64 were so 
close to the N=4 case as to be indisting­ 
uishable on a graph. Surprisingly, the 
N=16 and N=64 data were slightly worse 
than the N=4 case.

Figure 6 depicts the RMS error comparison 
for the fast changing (random) input sig­ 
nal. Again the N=16 and N=64 cases were 
very close, but slightly worse than for 
N=4.

Curves relating bit error rate and signal- 
to-noise ratio for PSK matched filter de­ 
tection are well established [6]. Hence,
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using this known relation and the informa­ 
tion from Figures 5 and 6, one can con­ 
struct the comparison shown in Figure 7. 
Improvement of system performance in db is 
plotted as a function of % RMS error. For 
example, if the system normally operates 
at a 2% RMS error level and slowly varying 
data is considered, then the required 
system signal-to-noise ratio can be re­ 
duced 2.8 db by using the Hadamard trans­ 
form technique.

It is significant to note in Figures 5 and 
6 that at low bit error rates (- 10" 4 ) the 
conventional system outperforms the Hada­ 
mard system. This phenomenon can be 
attributed to the quantization scheme used. 
It is possible to show that the quantiza­ 
tion error for the Hadamard system is 
equal to the quantization error of the 
conventional system plus a positive quan­ 
tity that is a function of system para­ 
meters. Hence, for low bit errors when 
quantization noise becomes significant 
the performance of the Hadamard system 
should be wor-se. However, as the bit 
error rate increases and the channel 
noise becomes the major contributor to 
RMS error, the noise distributing proper­ 
ties of the Hadamard transform provides 
significant improvement and the overall 
performance of the Hadamard system as 
compared to the conventional system 
increases.

Also the RMS error of the Hadamard system 
increases as the matrix size N increases 
if there is no channel noise (s|N = «°). 
This may explain why the performance of 
the N=16 and N=64 cases were slightly 
worse than the N=4 case.

CONCLUSIONS

It has been shown experimentally that 
Hadamard transform techniques can provide 
significant improvement in Apollo Unified 
S-Band System performance, especially if 
the input data is changing slowly. How­ 
ever, for low bit error rates uniform 
quantizing, the conventional system is 
better. The study was made under the 
constraint that no changes be made in the 
existing Apollo System except the intro­ 
duction of the transform itself. It is 
felt that significant additional improve­ 
ment could be obtained using other more 
nearly optimum quantizing schemes.

As a sidelight, it was noted that a 4:1 
data compression could be accomplished by 
transmitting only transform values greater 
than zero (approximately) and the position 
of these values.
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