OHB Human Space Flight, Exploration, Science Projects

Dr. Marco Berg
OHB System, Bremen

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-2016-44th/presentations-2016/17
OHB Human Space Flight, Exploration, Science Projects
The 44th Space Congress, Cape Canaveral, Florida

We. Create. Space.
Welcome

Lunch at Siemens Kantine

Status of CAVExplorer Upgrade

Moonwalk, technical and organizational planning

Cleanroom Tour

Next Steps

Bremen City of Space – Hometown of OHB System

Approx 2,100 employees stationed around Europe
Scope of Activities

Navigation
Galileo

Telecommunications
HISPASAT / Heinrich Hertz / Electra

Exploration / Science
ExoMars / Euclid / JUICE / PLATO / XMM-Newton / Herschel-PACS / ROSETTA

Earth Observation
MTG / EnMAP / CarbonSat

Security
SAR Lupe / SARah / Athene

Manned Spaceflight
ISS Payloads
Dream Chaser for Europe

Technology
Robotics / TET / Precision clocks / Fibre optics

Navigation

Telecommunications

Exploration / Science

Earth Observation

Security

Manned Spaceflight

Technology
Three OHB Activities in the area of Space Exploration, HSF and Science

ExoMars 2016 & 2020

ISS payload development and Utilization

European access to LEO
Two missions– one programme

Two missions are foreseen within the ExoMars programme:

- one consisting of the **Trace Gas Orbiter** (TGO) plus the **Entry, Descent and Landing Demonstrator Module** (Schiaparelli), successfully launched in March 2016

- one featuring the **Rover**, transported to Mars by the **Carrier Module**, with a planned launch is in 2020
Integral part of the ExoMars programme and the TGO Core Module is the major German contribution to ExoMars 2016.

The Trace Gas Orbiter performs various tasks in the ExoMars programme:

- Carrier to Mars for the landing module of the 2016 mission
- Communication with the landing module of the 2016 mission
- Search for trace gases, the information on the biological and geological processes
- Communication with the Rover 2020 Mission
ExoMars Mission 2016 TGO contributions by OHB

- OHB is core team partner to the Prime TAS-F
- Design, procurement and AIT of Mechanical-Thermal-Propulsion System incl. Harness
 - CFRP central tube (Airbus DS Spain)
 - CFRP & Al structure panels (Invent GmbH)
 - Bi-propellant propulsion system (Airbus DS Germany)
 - Multi-Layer-Insulation (RUAG Space Austria)
- Development philosophy for ExoMars:
 - „Design-to-cost“: Development of a robust system based on qualified components and processes
 - „Design-to-time“: Robust design, tailored model philosophy
ExoMars 2016 Mission Phases Overview

<table>
<thead>
<tr>
<th>Event</th>
<th>Date(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>14 March 2016</td>
</tr>
<tr>
<td>Schiaparelli – Trace Gas Orbiter separation</td>
<td>16 October 2016</td>
</tr>
<tr>
<td>Trace Gas Orbiter insertion into Mars orbit</td>
<td>19 October 2016</td>
</tr>
<tr>
<td>Schiaparelli enters Martian atmosphere and lands on the target site</td>
<td>19 October 2016</td>
</tr>
<tr>
<td>Schiaparelli science operations</td>
<td>19 October - 23 October 2016 (to be confirmed)</td>
</tr>
<tr>
<td>Trace Gas Orbiter changes inclination to science orbit (74°)</td>
<td>December 2016</td>
</tr>
<tr>
<td>Apocentre reduction manoeuvres (from the initial 4-sol orbit to a 1-sol orbit)</td>
<td>December 2016</td>
</tr>
<tr>
<td>Aerobraking phase (Trace Gas Orbiter lowers its altitude to 400 km orbit)</td>
<td>January 2017 - December 2017</td>
</tr>
<tr>
<td>Trace Gas Orbiter science operations begin. (In parallel, TGO will start data relay operations to support NASA landers on Mars.)</td>
<td>December 2017</td>
</tr>
<tr>
<td>Superior solar conjunction (critical operations are paused while the Sun is between Earth and Mars)</td>
<td>11 July - 11 August 2017</td>
</tr>
<tr>
<td>Start of the Trace Gas Orbiter data relay operations to support communications for the rover mission and for the surface science platform</td>
<td>2020</td>
</tr>
<tr>
<td>End of Trace Gas Orbiter mission</td>
<td>December 2022</td>
</tr>
</tbody>
</table>
ExoMars 2016 Spacecraft works flawlessly until today

First picture sent by the spacecraft (ESA/Roscosmos/CaSSIS)
OHB contributions for the Rover

OHB plays a major role in finding, processing, distribution and analysis of Mars samples:

- **Search**: **High-Resolution Camera** (HRC) for maneuver on Mars and the search for suitable sites for drilling (DLR project)

- **Sample preparation & distribution**: **Sample Preparation & Distribution System** (SPDS) and structure of the Analytical Laboratory Drawer (ESA project)

- **Analysis**: **contributions in the Raman Laser Spectrometer** (Pasteur payload) with Optical Fiber Harness and Support for Internal Optical Head (DLR project)
Carrier for the 2020 Mission

- OHB is core team partner to the Prime TAS-I
- Antwerp Space delivers the communication system for the Carrier
- OHB deliveries:
 - Structure Model
 - Avionics Test Bench
 - Proto-Flight Model
 - Spares
 - GSE
ISS: Infrastructure, Facility and Experiment Development

Melfi (Minus 80° Freezer)

EMCS & Biolab Centrifuges

European Physiology Module

Live Support System HCU / CTGU

Video Management Unit for FSL and EDR

Expose

ISS Infrastructure

ISS Experiments

ROKVISS

FlyWheel

European Physiology Module/ MEEM

ISS Experiments

COLUMBUS Facilities

Node 2

Node 3

ATV MDPS

Dream Chaser for Europe

Eye Tracking Device

Thermolab

Skin B

Plasma crystal
The OHB ISS Team provides engineering, integration & operations support for the Columbus payloads developed by OHB.

- **Engineering**
 - EPM FM, GM1, GM2, Training model
 - Sustaining Eng. for S/Ss in other facilities (Biolab, EMCS, FSL, EDR)

- **Integration**
 - Integration of new experiments in EPM
 - Analytical /physical integration, test & verification

- **Operations**
 - Support of Ops preparation & increment integration
 - on-orbit operations
 - Inputs for Crew procedure development
The EPM has been widely used since its commissioning in Columbus. It has supported more than 100 sessions of 14 different experiments and is planned to be extensively used in future. Due its high modularity & flexibility EPM could be adapted to many different experiment needs, expansion of EPM research fields to physics as well and integration of extra-large containers.

Human Physiology Experiments:
- **CARD** (8 subjects btw 2009 and 2012)
- **NEUROSPAT** (5 subjects btw 2009 and 2013)
- **PASSAGES** (10 subjects btw 2009 and 2012)
- **SOLO** (8 subjects btw 2009 and 2012)
- **ICV** (12 subjects btw 2009 and 2013)
- **BISE** (4 subjects btw 2009 and 2010)
- **ENERGY** (9 subjects btw 2011 and 2013)
- **CIRCADIAN RHYTHMS** (8 sbjcts. btw 2013 and 2017)*
- **VASCULAR ECHO** (8 subjects btw 2016 and 2018)*

Fundamental research and exercise systems
- **FLYWHEEL** (October 2009)
- **MARES** (January 2013 unit present)
- **DOSIS** (22 data D/Ls between 2009 and 2011)
- **DOSIS 3D**: (46 data D/Ls from 2012 until today)
- **PK4** (2015 to 2018, 3 sessions per year) *tbc
Dream Chaser® for ISS Cargo Missions

NASA Program for Cargo missions to ISS 2019-2024 – CRS2
- Contract Award: Jan 2016
- 3 Awards: SNC, SpaceX, Orbital ATK
- Flight Rate: 4-5 missions per year
- Minimum Award: 6 Missions/company

© 2016 Sierra Nevada Corporation
ESAs Strategic Partnership Idea: Dream Chaser® for European Utilization

- March 2015: ESA Call For Ideas (CFI) for strategic partnerships with the private sector in the field of Space Exploration
- Mai 2015: DC4EU Partnership Proposal
- Feb 2016: DC4EU selected as one of eight Partnership Topics
- May 2016 – February 2017: DC4EU Pilot Phase
Objectives of the partnership idea
The primary objective is to provide affordable, reliable, and flexible space services for autonomous European access to low Earth orbit (LEO). DC4EU delivers best value for Europe providing a full end-to-end mission concept using the unique capabilities of the Dream Chaser® Space Utility Vehicle, compatibility with European Ariane Launcher System, and landing on suitable runways in Europe for a prompt payload access.

What is this enabling and innovative partnership idea about?
• Independent European access to LEO space using Dream Chaser®
• Uncrewed autonomous European LEO service missions using European assets and infrastructure (e.g. launcher system, ground infrastructure, communication system)
• Use of the Dream Chaser® free flight platform for multiple missions: Scientific research, technology and operational demos (e.g. on-orbit assembly, repair, active debris removal)
THANK YOU FOR YOUR ATTENTION