Embry-Riddle Aeronautical University


This research determines improved flight-path routes that make maximum utilization of terrain-masking opportunities, and defending radar and missile system equipment performance and launch timing constraints, in order to avoid radar detection and tracking, and to mitigate subsequent missile shoot-down risks. The problem is formulated as one of constrained optimization in three dimensions. Advantageous solutions are identified using the A* Algorithm in conjunction with detailed equipment performance and constraint calculations and high-resolution digital terrain elevation maps. Topographical features in digital terrain are exploited by the algorithm to avoid radar detection and tracking. The model includes provisions for all-aspect/all-frequency radar cross section variations, radar horizon masking, and specific factors relevant to the TLAM BGM-109 cruise missile and the Russian S-400 long-range and Pantsir point-defense IADS systems. Research conclusions indicate that intelligent exploitation of modeled system technical and performance capabilities and limitations yields improved survivability in conjunction with, and supplementing, terrain masking.