Submitting Campus

Prescott

Department

Physics and Astronomy

Document Type

Article

Publication/Presentation Date

8-15-2006

Abstract/Description

The pure-gravity sector of the minimal standard-model extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the 20 independent coefficients for Lorentz violation. The linearized effective equations are solved to obtain the post-Newtonian metric. The corresponding post-Newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser-ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests involving the perihelion precession and the time delay of light. For each type of experiment considered, estimates of the attainable sensitivities are provided. Numerous effects of local Lorentz violation can be studied in existing or near-future experiments at sensitivities ranging from parts in 104 down to parts in 1015.

Publication Title

Physical Review D

DOI

https://doi.org/10.1103/PhysRevD.74.045001

Publisher

American Physical Society

Additional Information

Dr. Bailey was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.

Share

COinS