Location

Radisson Resort at the Port, Convention Center, Jamaica Room

Start Date

27-4-1999 2:00 PM

Description

As humans began to project themselves into the environment of interplanetary space during the early 1960s, it was clear that the opening of this new frontier would require a comprehensive understanding of the effects of near-weightlessness (microgravity) on biological organisms. After all, life on planet Earth has evolved under the stable and pervasive influence of gravity. In terrestrial ecosystems, a force of one gravitational unit represents a continuous epigenetic agent that affects living systems at levels ranging from the morphogenetic to the behavioral2. However, an unexpected, beneficial outcome of research in gravitational biology and medicine is that it not only improves the conditions and prospects for space travelers, but it also results in enhanced knowledge that could contribute to the solution of physiological and biomedical problems for humans here on Earth3.

Several Space Shuttle missions over the past decade have included experiments aimed at improving our understanding of the effect of microgravity on living organisms. For instance, the recent orbiter Columbia mission Neurolab (STS-90), proposed at the beginning of this ÒDecade of the BrainÓ, focused on basic neuroscience questions which will not only expand our understanding of how the nervous system develops and functions in space, but also increase our knowledge about how it develops and functions on Earth, thus contributing to the study and treatment of neurological diseases and disorders.

Share

COinS
 
Apr 27th, 2:00 PM

Paper Session I-B - Reverse Engineering of Biological Gravity-Sensing Organs: Neurocomputational and Biomedical Implications

Radisson Resort at the Port, Convention Center, Jamaica Room

As humans began to project themselves into the environment of interplanetary space during the early 1960s, it was clear that the opening of this new frontier would require a comprehensive understanding of the effects of near-weightlessness (microgravity) on biological organisms. After all, life on planet Earth has evolved under the stable and pervasive influence of gravity. In terrestrial ecosystems, a force of one gravitational unit represents a continuous epigenetic agent that affects living systems at levels ranging from the morphogenetic to the behavioral2. However, an unexpected, beneficial outcome of research in gravitational biology and medicine is that it not only improves the conditions and prospects for space travelers, but it also results in enhanced knowledge that could contribute to the solution of physiological and biomedical problems for humans here on Earth3.

Several Space Shuttle missions over the past decade have included experiments aimed at improving our understanding of the effect of microgravity on living organisms. For instance, the recent orbiter Columbia mission Neurolab (STS-90), proposed at the beginning of this ÒDecade of the BrainÓ, focused on basic neuroscience questions which will not only expand our understanding of how the nervous system develops and functions in space, but also increase our knowledge about how it develops and functions on Earth, thus contributing to the study and treatment of neurological diseases and disorders.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.