Simultaneous Localization and Mapping by Cooperative Robots

BY: KEVIN HORN

ADVISED BY: DR. MEHRAN ANDALIBI

SLAM

▶ Is it possible to place a mobile robot in an unknown environment and for the robot to incrementally build a map of its environment while determining its position within that map?

Source: H. Durrant- Whyte and T. Bailey, Simultaneous Localization and Mapping: Part 1, 2006.

Advantages of Cooperation

- Potential for diverse vehicle cooperation
 - ▶ Land, air, and sea
- Faster more fault tolerant mapping
- Having overlapping information, which can compensate for sensor uncertainties

Multiple Robot Control

Figure 1: Keyboard Control

Multiple Robot Communication

- Wheel encoders
 - ▶ Determine planar coordinates and heading direction
- Kinect sensor

Figure 2: Kinect Field of View

Source: http://talkingaboutme.tistory.com/609

Map Building

Figure 3: Coordinate Transformation

The location of the reflection point is:

$$x_{rp} = x + r * \cos(\theta + \theta_S)$$

$$y_{rp} = y + r * \sin(\theta + \theta_S)$$

Map Building

Figure 4: Mapped Environment

Figure 5: 2D Map

Map Building

Figure 6: 3D Map

Moving Object Detection

Figure 8.a: Original Video

Figure 8.c: Convex Hull

Figure 8.b: Frame Subtraction

Figure 8.d: Moving Object Removed

Robot Identification

Figure 9: Robot identification

Future Steps

- Improving object detection and identification
- Combining individual maps
- Gaining familiarity with sensor fusion
- Implementing cooperative SLAM

Conclusion

- Control and communication with multiple robots
- Map making with individual robots
- Moving object identification and removal from the maps