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The well-known analogy between a special limit of general relativity and electromagnetism is explored

in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal

standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector

to the gravitational sector. We show that components of the post-Newtonian metric can be directly

obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples

including static and rotating sources. Some unconventional effects that arise for Lorentz-violating

electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particu-

lar, we show that even for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.

DOI: 10.1103/PhysRevD.82.065012 PACS numbers: 11.30.Cp, 03.30.+p, 04.25.Nx

I. INTRODUCTION

In its full generality, general relativity (GR) is a highly
nonlinear theory that bears little resemblance to classical
Maxwell electrodynamics. Nonetheless, it has long been
known that when gravitational fields are weak, and matter
is slow moving, analogs of the electric and magnetic fields
arise for gravity [1]. These fields are sourced by a scalar
density and vector current density, just as in electrostatics
and magnetostatics. Furthermore, in the geodesic equation
for a test body, terms of no more than linear order in the
velocity resemble the classical Lorentz-force law arising
from effective gravitoelectric and gravitomagnetic fields
[2]. Also, a well-known analogy exists between the pre-
cession of classical spin in a gravitational field and the
precession of the spin of a charged particle in an electro-
magnetic field [3,4].

In this work we investigate the fate of the standard
connection between stationary solutions of the Einstein
and Maxwell theories when violations of local Lorentz
symmetry are introduced. Recent interest in Lorentz vio-
lation has been motivated by the possibility of uncovering
experimental signatures from an underlying unified theory
at the Planck scale [5–7]. We examine the modified
Einstein and Maxwell equations provided by the action-
based standard-model extension (SME) framework, which
allows for generic Lorentz violation for both gravity and
electromagnetism, among other forces [8–10].

In the so-called minimal SME case, the electromagnetic
sector contains 23 observable coefficients for Lorentz vio-
lation organized into two parts: 4 CPT-odd coefficients in
ðkAFÞ� with dimensions of mass and 19 CPT-even coef-
ficients in the dimensionless ðkFÞ���� [9,11]. The former
set has been stringently constrained by astrophysical ob-
servations at the level of 10�42 GeV [12,13]. The latter set
has been explored over the last decade using astrophysical
observations [14] and sensitive laboratory experiments

including resonant-cavity tests [15], among others
[16,17]. Currently, constraints on these 19 coefficients
are at the level of 10�14 to 10�32 [18].
In the minimal SME gravitational sector, there are 20

coefficients for Lorentz violation organized into a scalar u,
two-tensor s��, and four-tensor t���� [10]. Within the
assumption of spontaneous Lorentz-symmetry breaking,
the dominant effects for weak-field gravity are controlled
by the subset called �s�� [19]. These gravity coefficients
have been explored so far in lunar laser-ranging [20] and
atom interferometry [21–23], while possibilities exist for
other tests such as time-delay and Doppler tests [24].
Since the CPT-even portion of the electromagnetic

sector of the minimal SME has 19 coefficients and the
gravitational sector, apart from an unobservable scaling �u,
also has 19 coefficients, one might expect a correspon-
dence between the two sectors—an extension of the con-
ventional analogy. Indeed, as we show in this work, there is
a correspondence under certain restrictions. Thus it turns
out that, under certain circumstances, Lorentz violation
affects classical electromagnetic systems in flat spacetime
in a similar manner as gravitational systems are affected by
Lorentz violation in the weak-field limit of gravity. As a
consequence, some of the unusual effects that occur for
Lorentz-violating electromagnetism have an analog in the
gravitational case. In addition, from a practical perspective,
it is quite useful to be able to translate analytical results in
one sector directly into the other, as we illustrate toward
the end of this work.
We begin in Sec. II by reviewing the basic field equa-

tions for the gravitational and electromagnetic sectors of
the SME. Next we explore the solutions to these equations
and establish the analogy between the two sectors in both
the conventional case and the Lorentz-violating case in
Sec. III. In Sec. IV, we explore test-body motion for both
sectors and establish the connection in the conventional
and Lorentz-violating cases. We conclude this work in
Sec. V by illustrating the results with the examples of a
pointlike source and a rotating spherical source, and we*baileyq@erau.edu
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discuss some experimental applications of the results.
Finally in Sec. VI, we summarize the main results of the
paper. Throughout this work, we take the spacetime metric
signature to be �þþþ and we work in natural units
where c ¼ �0 ¼ �0 ¼ 1.

II. FIELD EQUATIONS

The CPT-even coefficients for Lorentz violation in the
photon sector of the minimal SME are denoted ðkFÞ����,
which is assumed totally traceless by convention, and have
all of the tensor symmetries of the Riemann tensor and
therefore contain 19 independent quantities [9,11].
Following Ref. [13], it is useful to split these 19 coeffi-
cients into two independent pieces using the expansion

ðkFÞ���� ¼ C���� þ 1
2½���ðcFÞ�� � ���ðcFÞ��

� ���ðcFÞ�� þ ���ðcFÞ���: (1)

With this decomposition 9 coefficients are contained in the
traceless combinations ðcFÞ�� ¼ ðkFÞ���

� and 10 coeffi-
cients are in C����, which is traceless on any two indices.
The modified Maxwell equations can then be written in the
form

@�F
�� þ C����@�F�� þ ðcFÞ��@�F�

� þ ðcFÞ��@�F�
�

¼ �j�; (2)

where F�� ¼ @�A� � @�A� and A� is the vector potential.

This result follows directly from the electromagnetic ac-
tion of the minimal SME in Minkowski spacetime, when
the electromagnetic field is coupled in the standard way to

a conserved four-current j� ¼ ð�; ~JÞ, and when the coef-
ficients are treated as constants in an observer inertial
frame.

In the gravitational sector, the coefficients for Lorentz
violation are expressed in terms of three independent sets
of coefficients: t����, s��, u. The t coefficients are taken as
totally traceless and have the symmetries of the Riemann
curvature tensor, implying 10 independent quantities. The
s coefficients are traceless and contain 9 independent
quantities. With the scalar u, there are, in general, 20
independent coefficients describing Lorentz violation in
the gravitational sector.

Unlike the SME in Minkowski spacetime, it is not
straightforward to proceed directly from the gravitational
action to the field equations. This is because introducing
externally prescribed coefficients for Lorentz violation into
the action can generally conflict with the fundamental
Bianchi identities of pseudo-Riemannian geometry [10].
It turns out, however, that spontaneous breaking of Lorentz
symmetry evades this difficulty [10,25]. In Ref. [19], the
linearized gravitational field equations were derived using
a formalism that treats the coefficients for Lorentz viola-
tion as dynamical fields inducing spontaneous breaking of
Lorentz symmetry, with certain restrictions placed on their

dynamics [26]. Similar methods can be adopted for the
matter-gravity couplings as well [28]. The linearized equa-
tions in this formalism include, as special cases, models of
spontaneous Lorentz-symmetry breaking with scalar [29],
vector [27], and two-tensor fields [30,31].
In linearized gravity the metric is expanded as

g�� ¼ ��� þ h��: (3)

Within the minimal SME approach, the linearized field
equations can be written in terms of the vacuum expecta-
tion values of the coefficients for Lorentz violation, de-
noted �t����, �s��, �u, which are taken as constants in a
special observer coordinate system [32]. The linearized
field equations take the form

G�� ¼ 8	GNðTMÞ�� þ �s��R���� � �s��R�� � �s��R��

þ 1
2
�s��Rþ ��� �s

��R��; (4)

where GN is Newton’s gravitational constant. In this ex-
pression R���� is the Riemann curvature tensor,G�� is the

Einstein tensor, R�� is the Ricci tensor, and R is the Ricci

scalar. All curvature tensors in (4) are understood as line-
arized in the fluctuations h��. Since the �u coefficient only

scales the left-hand side, it is unobservable and is discarded
for this work.
Because of a tensor identity [19], the 10 coefficients

�t���� vanish from the linearized equations, thus leaving the
9 coefficients in �s�� in this limit. This immediately implies
that, should an analogy exist between the photon and
gravity sectors of the SME, it involves a subset of the
ðkFÞ���� coefficients. This subset is comprised of the 9
coefficients ðcFÞ��.

III. FIELD MATCH

A. Conventional GR case

In GR and Maxwell electrodynamics, the analogy
between certain components of the metric fluctuations
h�� and A� reveals itself from the field equations in the

harmonic gauge:

@� �h�� ¼ 0: (5)

Here �h�� are the usual trace-reversed metric fluctuations

defined by

�h�� ¼ h�� � 1
2���h

�
�: (6)

In the absence of the coefficients for Lorentz violation
ðkFÞ���� and �s��, the Einstein equations in this gauge read

h �h�� ¼ �16	GNðTMÞ��; (7)

while the Maxwell equations, in the gauge @�A� ¼ 0, are

hA� ¼ �j�: (8)

To match the structure of the Maxwell equations one
typically makes a slow motion assumption for the matter
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source. For example, for perfect fluid matter with ordinary
velocity vj much less than one, and small pressure,

ðTMÞ00 � �;

ðTMÞ0j � ��vj;

ðTMÞjk � �vjvk:

(9)

Thus, examining Eq. (7), it can be seen that the compo-
nents �hjk will be one power of velocity more than �h0j, and

hence negligible. To be more precise, if one adopts the
standard post-Newtonian expansion and counts terms in
powers of mean velocity �v, labeled asOð1Þ,Oð2Þ, etc., one
finds from Eq. (7) that

�h00 �Oð2Þ;
�h0j �Oð3Þ;
�hjk �Oð4Þ:

(10)

Furthermore, in post-Newtonian counting, partial time
derivatives obey the post-Newtonian counting [33,34]

@

@t
� �v

�r
; (11)

where �r is the mean distance. A consistent approximation

including up toOð3Þ terms would takeh � ~r2
and Eq. (7)

would become

~r 2 �h0� ¼ �16	GNðTMÞ0�; (12)

which can be compared with the stationary equations for
electrostatics and magnetostatics

~r 2A� ¼ �j�: (13)

From these two expressions it is clear that, given solutions
for A� in the stationary limit, the solutions �h0� can be

obtained in the manner below.
(1) Replace charge density �q with mass density �m and

electric current density Jj with mass-current density
�vj.

(2) Write down the metric components as �h0� ¼
�16	GNA�.

This method agrees with standard results in the literature
[35,36].

B. Lorentz-violating case

Equations (7) and (8) lead to a direct correspondence
between the solutions for �h0� and A�. In the presence of

Lorentz violation, this direct analogy involving the trace-
reversed metric fluctuations disappears because the coef-
ficients �s�� in the modified equations (4) generally mix the
components of �h0� with �hjk. As a result of this mixing, �hjk
contains terms of Oð2Þ in post-Newtonian counting, in
contrast to the GR case (10), and so there is no particular

utility in using the trace-reversed metric fluctuations �h��

over the metric fluctuations h��.

We focus on the stationary limit, where a match between
the electromagnetic and gravity sectors can be obtained for
the metric components h00 and h0j. This gravitoelectro-

magnetic correspondence is most easily obtained directly
from the stationary solutions to Eqs. (2) and (4) for the
metric g�� and the vector potential A�. The gravitational

solutions were obtained in Ref. [19] while the results in
electrodynamics were obtained in Refs. [37,38].
Before displaying the solutions here, it will be conve-

nient to introduce various potential functions that take a
similar form for both the electromagnetic and gravitational
sectors. The key source quantities appearing in these po-
tentials are the charge (mass) density � and the charge
(mass) current Jj. The needed potentials are

U ¼ �
Z �ð ~x0Þ

j ~x� ~x0jd
3x0;

Ujk ¼ �
Z �ð ~x0Þðx� x0Þjðx� x0Þk

j ~x� ~x0j3 d3x0;

Vj ¼ �
Z Jjð ~x0Þ

j ~x� ~x0jd
3x0;

Xjkl ¼ �
Z Jjð ~x0Þðx� x0Þkðx� x0Þl

j ~x� ~x0j3 d3x0:

(14)

In the stationary limit, all partial time derivatives of the
potentials vanish. The density � is time independent and
the current is transverse, @jJ

j ¼ 0. This implies some

simplifications of the identities among the potentials listed
in Ref. [19], including @jV

j ¼ 0 and @jX
jkl ¼ 0.

The electromagnetic potentials are obtained by inter-
preting � as charge density, Jj as a steady-state current
density, and letting the constant � ¼ 1=4	. For the gravi-
tational sector, the potentials are obtained by interpreting �
as mass density, Jj ¼ �vj as mass-current density, and
letting � ¼ GN.
The components of the metric fluctuations h0�, relevant

for comparison with the electromagnetic sector, can be
obtained after an appropriate coordinate gauge choice.
We choose coordinates such that

@jh0j ¼ 0;

@khkj ¼ 1
2@jðhkk � h00Þ;

(15)

and the metric fluctuations are time independent. To
post-Newtonian Oð3Þ, the metric components h0� are

then given by

h00 ¼ ð2þ 3�s00ÞUþ �sjkUjk � 4�s0jVj;

h0j ¼ ��s0jU� �s0kUjk � 4ð1þ 1
2
�s00ÞVj þ 2�sjkVk

þ 2�sklðXklj � XjklÞ;
(16)
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where � ¼ GN is chosen in the expressions (14). Although
they are not relevant for the match between the two sectors,
for completeness, the remaining components of the metric
hjk are given by

hjk ¼ ½ð2� �s00ÞUþ �slmUlm�
jk � �sjlUlk � �sklUlj

þ 2�s00Ujk; (17)

which is valid to post-Newtonian Oð2Þ.
In the electromagnetic sector, we choose the stationary

limit and adopt the Uð1Þ gauge condition @jA
j ¼ 0. The

modified Maxwell equations have the solutions

A0 ¼ ½1þ 1
2ðcFÞ00�UE þ 1

2ðcFÞjkUjk
E � ðcFÞ0jVj

E

� C0j0kUjk
E � C0jklXljk

E ;

Aj ¼ 1
2ðcFÞ0jUE þ 1

2ðcFÞ0kUjk
E þ ½1� 1

2ðcFÞ00�Vj
E

� 1
2ðcFÞjkVk

E � 1
2ðcFÞkl½Xklj

E � Xjkl
E �;

� C0kjlUkl
E � C0j0kVk

E � CjklmXmkl
E ; (18)

where the subscript E reminds us to take � ¼ 1=4	 in the
potentials (14).

A glance at Eqs. (16) and (18) reveals that many of the
same terms occur in both sectors. However, in the electro-
magnetic sector the contributions from the 10 independent
coefficients C���� do not vanish. To match the two sectors
we must first restrict our attention to the special case where

C���� ¼ 0: (19)

Next we split the terms appearing in A� and h0� into those

involving potentials derived from charge density � and
those derived from current density Jj. These fields are
defined as

ðh�Þ00 ¼ ð2þ 3�s00ÞUþ �sjkUjk;

ðhJÞ00 ¼ �4�s0jVj;

ðh�Þ0j ¼ ��s0jU� �s0kUjk;

ðhJÞ0j ¼ �4ð1þ 1
2
�s00ÞVj þ 2�sjkVk þ 2�sklðXklj � XjklÞ;

ðA�Þ0 ¼ ½1þ 1
2ðcFÞ00�UE þ 1

2ðcFÞjkUjk
E ;

ðAJÞ0 ¼ �ðcFÞ0jVj
E;

ðA�Þj ¼ 1
2ðcFÞ0jUE þ 1

2ðcFÞ0kUjk
E ;

ðAJÞj ¼ ½1� 1
2ðcFÞ00�Vj

E � 1
2ðcFÞjkVk

E

� 1
2ðcFÞkl½Xklj

E � Xjkl
E �: (20)

Note that the split of A� and h0� corresponds to splitting

the terms in the post-Newtonian metric into Oð2Þ and Oð3Þ
and splitting the terms in the electromagnetic potentials
into ‘‘post-Coulombian’’ terms of Oð2Þ and Oð3Þ [33,39].
The correspondence between the two sectors is summa-
rized in Table I.

Given a stationary solution to the modified Maxwell
equations (2) in the Coulomb gauge (@jA

j ¼ 0), one can

obtain the corresponding metric components by using the
following procedure.
(1) Set C���� ¼ 0.
(2) Replace ðcFÞ�� ! �s��.
(3) Separate A� into density-sourced and current-

sourced terms ðA�Þ� and ðAJÞ�.
(4) Replace charge density �q with mass density �m and

electric current density Jj with mass-current density
�vj.

(5) Write down the metric components

ðh�Þ0� ¼ �8	GNð1þ �s00ÞðA�Þ�;
ðhJÞ0� ¼ �16	GNð1þ �s00ÞðAJÞ�;

(21)

and omit any subleading order terms [Oð �s2Þ].
The close resemblance of the effects of Lorentz viola-

tion on gravity and electromagnetism is remarkable con-
sidering the qualitative differences between the theories,
particularly in the starting Lagrangians and field equations
[10]. On the other hand, since there is a known analogy
between A� and h0� in the conventional case, and both

sectors are affected by two-tensor coefficients for Lorentz
violation, one might have expected a close correspondence
in the appropriate limit. In fact, the map constructed above
further justifies the construction of the post-Newtonian
metric using the formalism in Ref. [19], which itself relied
on several assumptions concerning the dynamics of spon-
taneous Lorentz-symmetry breaking.
An interesting feature of the solutions for Lorentz-

violating electrodynamics is the mixing of electrostatic
and magnetostatic effects in the stationary limit. As can
be seen from (20), this occurs because a part of the scalar
potential A0 depends on current density and part of the

vector potential ~A depends on charge density, a feature
absent in the conventional case. This was aptly named
electromagnetostatics (EMS) in Ref. [37]. For Lorentz-
violating gravity, a similar mixing occurs and h00 depends
partly on mass current while h0j depends partly on mass

density, resulting in what can be called gravitoelectromag-
netostatics (GEMS). These features are illustrated with
specific examples in Sec. V.

TABLE I. The gravitoelectromagnetic correspondence be-
tween the electromagnetic and gravitational sectors of the mini-
mal SME.

Quantity Electromagnetic sector Gravitational sector

Coefficients ðcFÞ�� �s��

Scaling 1=4	 Gð1þ �s00Þ
Density � charge density mass density

Current Jj current density Jj mass current Jj ¼ �vj

� fields ðA�Þ� ðh�Þ0�
Jj fields ðAJÞ� ðhJÞ0�
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Note that other possibilities are open for exploration
concerning the match between the two sectors of the
SME. For example, we do not treat here the interesting
possibility of whether an analogy persists using gravita-
tional and electromagnetic tidal tensors, as occurs in the
Einstein and Maxwell theories [40].

IV. TEST-BODY MOTION

In this section we study another aspect of gravitoelec-
tromagnetism. This concerns the behavior of matter in the
presence of the stationary gravitational or electric and
magnetic fields. As we show below, if one adopts the
appropriate limit, the behavior of test masses in gravita-
tional fields and test charges in electric and magnetic fields
is analogous, despite the presence of Lorentz violation.
However, differences do arise in the presence of Lorentz
violation when comparing the gravitational spin precession
to the classical spin precession of a magnetic moment in
the presence of electromagnetic fields.

A. Geodesic motion

When Lorentz violation is present in the electromag-
netic sector only, test charges e obey

du�

d�
¼ e

m
F�

�u
�; (22)

where u� is the four-velocity. With the usual identification
of the electric and magnetic fields, Ej ¼ Fj0 and Bj ¼
ð1=2Þ�jklFkl, we can write the spatial components of (22)

as the familiar Lorentz-force law:

duj

dt
¼ e

m
½Ej þ ð ~v� ~BÞj�: (23)

For small velocities, uj � vj ¼ dxj=dt. Thus, with kF
affecting only the electromagnetic sector, the force law
for charges is conventional [11].

In the SME, restricted to only the �s�� coefficients, freely
falling test bodies satisfy the usual geodesic equation

du�

d�
¼ ���

��u
�u�: (24)

In its full generality, the structure of (24) is quite different
from Eq. (22) for charges. Nonetheless, in the weak-field
slow motion limit of gravity, there is a correspondence.

Changing variables in (24) to coordinate time, one can
solve for the coordinate acceleration aj ¼ dvj=dt in terms
of the connection coefficients projected into space and time
components using standard methods. One obtains the well-
known expression [34],

aj ¼ ��j
00 � 2�j

0lv
l � �j

klv
kvl

þ ð�0
00 þ 2�0

0kv
k þ �0

klv
kvlÞvj: (25)

So far, Eq. (25) is an exact result, and bears little
resemblance to Eq. (23). If one then assumes that the test

particle velocity is small and keeps only terms linear in the
test particle velocity vj, the acceleration becomes

aj ¼ ��j
00 � 2�j

0kv
k þ �0

00v
j: (26)

To get a match with Eq. (23) additional assumptions are
needed. For example, in the post-Newtonian approxima-
tion, the dominant contributions to the connection coeffi-
cients are given by the formulas

�j
00 ¼ @0g0k � 1

2g
jk@kg00;

�j
0k ¼ 1

2@0gjk þ 1
2ð@kg0j � @jg0kÞ;

�0
00 ¼ �1

2@0g00;

(27)

which is valid to post-Newtonian Oð4Þ. If the metric is
stationary in the chosen coordinate system, (@0g�� ¼ 0),

then the acceleration, in terms of the metric fluctuations
h�� ¼ g�� � ���, is given by

aj ¼ 1
2@jh00 þ vkð@jh0k � @kh0jÞ � 1

2hjk@kh00; (28)

which neglects terms proportional to the test-mass velocity
squared but otherwise is valid to post-Newtonian Oð4Þ.
This expression now resembles the Lorentz-force law,
Eq. (23), except for the last nonlinear term.
To be consistent with the post-Newtonian approximation

toOð4Þ, the last termmust be included, as well as nonlinear
contributions to h00 at Oð4Þ. This is because the second
term in Eq. (28), the so-called gravitomagnetic accelera-
tion term, is an Oð4Þ term in the post-Newtonian
expansion.

1. GR case

Results from GR are contained in (28) and (23) in the
limit of vanishing coefficients for Lorentz violation. In the
stationary limit of GR, and in the coordinate gauge (15),
the acceleration (28) can be written as

aj ¼ @j
� 4vkð@jVk � @kV
jÞ: (29)

Here 
 is a post-Newtonian potential that includes Oð4Þ
terms in GR [33]:


 ¼
Z ð�þ ��þ 3p� 2�UÞ

j ~x� ~x0j d3x0 � 2U2; (30)

where p is the perfect fluid pressure and � is the internal
energy per unit mass. Note that 
 does not satisfy the field
equation (12),

~r 2 �h00 ¼ �16	GN�: (31)

Instead it satisfies

~r 2
 ¼ �4	GNð�þ ��þ 3p� 2�UÞ � 4ð ~rUÞ2:
(32)

Therefore
 � �h00, and it cannot be obtained directly from
the solutions to A0 in Eq. (13) using the standard match.
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Generally, care is required in discarding the nonlinear
terms in 
, while keeping the second, gravitomagnetic
terms in Eq. (29). A simple estimate for a realistic scenario
can establish this. For a rotating spherical body, the solu-
tion for Vj is of order GI!=r2 �GMR2!=r2, where I is
the inertia of the body, R its radius, ! its angular velocity,
and r is the coordinate distance from the origin to the
location of the test body. The typical test particle velocity

vj is of order v� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
or less, where M is the mass of

the source body. Thus, the contribution to (29) from the
gravitomagnetic force term on a test particle outside of the
source body, has an approximate size

j ~agmj � ðGMÞR2!v

r3
: (33)

The contribution from the nonlinear terms in 
 to the test

particle acceleration have an approximate size U ~rU or

j ~anlj �GM

r

GM

r2
: (34)

Assuming that the nonlinear contributions are much
smaller than the gravitomagnetic contributions, j ~anlj �
j ~agmj, amounts to assuming

R!v � GM

R
: (35)

For example, consider a test-body near the Earth’s surface.
For this case one finds that condition (35) implies the
unrealistic condition that the test particle velocity must
be greater than 1=2000 of the speed of light.

In addition to the above argument, it is important to
recall that terms of second and higher order in the test-
body velocity vj were discarded in (26). In terms of post-
Newtonian counting, these terms make contributions to the
acceleration aj at the same order [Oð4Þ] as the nonlinear
terms. One example is the term �j

klv
kvl, which can be

shown to have an approximate size similar to (34) in the
typical post-Newtonian scenario [41]. Furthermore, it is
interesting to note that an argument along the lines of the
one presented here appeared in the original paper by Lense
and Thirring in 1918 [2]. There it was emphasized that
nonlinear terms must be included in the equations of
motion, in addition to the gravitomagnetic force terms, to
properly account, for example, for the precession of the
orbital elements of the planets. As an alternative to this
reasoning, one can incorporate the nonlinear terms, such as
those occuring in Eq. (29), to form ‘‘Maxwell-like’’ equa-
tions, as pursued in Ref. [43].

For simplicity here we separate out the gravitomagnetic
and gravitoelectric acceleration terms from the nonlinear
terms. Thus we write

~a ¼ ~aGEM þ ~aNL; (36)

where the separate terms are given by

~a GEM ¼ ~EG þ ~v� ~BG; ~aNL � ~rð
�UÞ: (37)

Here we have identified the gravitoelectric and gravito-
magnetic fields for GR:

~E G ¼ ~rU; ~BG ¼ �4 ~r� ~V: (38)

2. Lorentz-violating case

To see if there is any resemblance for the Lorentz-
violating case between the gravitational force law and the
electromagnetic force law, we can proceed from Eq. (26).
Adopting the stationary limit (28), we restrict attention to
the gravitoelectromagnetic portion of the acceleration

which we denote ða0ÞjGEM. This acceleration is given by

ða0ÞjGEM ¼ 1
2@jh00 þ vkð@jh0k � @kh0jÞ: (39)

For a consistent expansion to first order in the coefficients
�s��, we take h00 to Oð3Þ and h0j to Oð2Þ. This produces an
acceleration to first order in the coefficients �s�� that is at
most Oð3Þ.
In the presence of the coefficients for Lorentz violation

�s��, the components of the metric from Sec. III B are
needed to this order:

h00 ¼ ðh�Þ00 þ ðhJÞ00; h0j ¼ ðh�Þ0j: (40)

Note that the expansion of h0j is truncated at Oð2Þ since
this term is multiplied by a velocity [Oð1Þ] and therefore
produces an Oð3Þ term in the acceleration.
With the considerations above, the gravitoelectromag-

netic acceleration can be written to Oð3Þ as
ð ~a0ÞGEM ¼ ~EG þ ~v� ~BG; (41)

which now resembles the result in Eq. (23). The effective
electric and magnetic fields are given by

Ej
G ¼ 1

2@j½ðh�Þ00 þ ðhJÞ00�; Bj
G ¼ �jkl@kðh�Þ0l: (42)

This result demonstrates that in the limit that the gravitoe-
lectromagnetic acceleration terms are considered, the force
on a test body takes the same form in the electromagnetic
and gravitational sectors of the SME.
To use this result in a manner consistent with the post-

Newtonian expansion, additional terms at Oð4Þ but at
zeroth order in the coefficients �s�� need to be included
in the acceleration. Specifically, the total acceleration at
Oð4Þ takes the form

aj ¼ ða0Þj þ ajNL þ vk½@jðhJÞ0k � @kðhJÞ0j�; (43)

where aNL is given by Eq. (37) and the components ðhJÞ0j
are taken to zeroth order in the coefficients �s��. In the limit
�s�� ¼ 0, this expression reduces to the standard GR result
in (36).
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B. Spin precession

The classical relativistic behavior of a particle with a
magnetic moment ~� under the influence of external elec-
tric and magnetic fields is well known. Consider a particle,
such as an electron, with spin ~s defined by

~� ¼ ge

2m
~s: (44)

Here, e is the charge of the particle, m is the mass, and g is
the gyromagnetic ratio for the particle. We can describe the
behavior of the spin relativistically using the spin (space-
like) four-vector S� which, in an instantaneous comoving
rest frame, takes the form (S0 ¼ 0, Sj ¼ sj). The motion
of the particle is described with the four velocity u�,
which satisfies Eq. (22). In addition, we have the identity
S�u� ¼ 0.

If we ignore field gradient forces and nonelectromag-
netic forces, the behavior of the classical spin four-vector
S� is determined by the dynamical equations [4,44]

dS�

d�
¼ e

m

�
g

2
F��S� þ

�
g

2
� 1

�
u�ðS�F��u�Þ

�
: (45)

A formula for the precession of the spin as measured in a
locally comoving reference frame can be obtained by
projecting S� along comoving spatial basis vectors e�

ĵ
,

and making use of Eqs. (45) and (22). With the choice of
g � 2, the lowest order contributions to this precession can
be written

dSĵ
d�

¼ e

m

�
~S� ~B� 1

2
~S� ð ~v� ~EÞ

�
k

kĵ: (46)

This result holds up to order v2 in the particle’s ordinary
velocity. Furthermore, Eqs. (45) and (46) will still hold in
the presence of Lorentz violation in the photon sector since
the force law takes the conventional form (23).

The behavior of the classical spin four-vector in the
presence of gravitational fields is given by the Fermi-
Walker transport equation [45]

dS�

d�
¼ ���

��u
�S� þ u�ða�S�Þ; (47)

where a� is the acceleration of the spinning body. For
comparison with the electromagnetic case, we assume
that the spin is in free fall (a� ¼ 0), and again find the
spin precession along the comoving spatial basis e�

ĵ
, a

standard technique [33,45]. The resulting precession was
obtained in the post-newtonian limit for an arbitrary metric
in Ref. [19] and is given by

dSĵ
d�

¼ 
kĵS
k

�
1

4
ðvk@jh00 � vj@kh00Þ

þ 1

2
ð@jh0k � @kh0jÞ þ 1

2
vlð@jhkl � @khjlÞ

�
; (48)

which is valid to post-Newtonian order Oð3Þ. Since this
result was derived for an arbitrary post-Newtonian metric,
it holds for the metric in Eqs. (16) and (17) as well. Note
that the expression (48) does not immediately match (46)
due to the last terms in (48) dependent on hkl at Oð2Þ.
However, a judicious choice of coordinate gauge may
alleviate the problem, as we show below.
In GR, we can make use of the results of section III A in

the harmonic gauge. When expressed in terms of �h�� the

GR spin precession to Oð3Þ is
dSĵ
d�

¼
�
1

2
~S� ð ~r� ~gÞk � 3

8
~S� ð ~v� ~r �h00Þk

�

kĵ; (49)

where gj ¼ �h0j and we have omitted contributions from
�hjk �Oð4Þ. The expression (49) now resembles the elec-

tromagnetic counterpart, at least up to numerical factors. In
fact, one can again define effective electric and magnetic

fields for gravity: ~EG ¼ ð1=4Þ ~r �h00, ~BG ¼ ~r� ~g.
We next introduce Lorentz violation in the gravitational

sector in the form of the post-Newtonian metric (16) and
(17). Unlike in GR there are off-diagonal terms in hjk that

cannot be eliminated by a choice of coordinate gauge. As a
result, we find that the third term in (48) cannot be reduced

to a term of the form ~S� ~r�, where � is a scalar.
Therefore it is not possible to match the form of the spin
precession in the gravitational sector to the electromag-
netic sector of the SME, the latter of which takes the form
(46). Evidently, this is due to the important role of the
metric components hjk in the general spin precession

expression (48).

V. EXAMPLES AND APPLICATIONS

In this section we illustrate the methods of matching
electromagnetic solutions for the fields to gravitational
solutions for the metric components. We also demonstrate
the match between the two sectors for test-body motion. In
our examples we study both a static pointlike source and a
rotating sphere. Finally, we comment on the observability
of the GEMS mixing effects in specific gravitational tests.

A. Static point source

We consider first a point charge q at rest at the origin
in the chosen coordinate system. The potentials in the
Coulomb gauge were obtained in Ref. [37] and are
given by

A0 ¼ q

4	r
½1þ ðkFÞ0j0j � ðkFÞ0j0kx̂jx̂k�;

Aj ¼ q

4	r
½ðkFÞ0kjk � ðkFÞjk0lx̂kx̂l�;

(50)

where x̂ ¼ ~x=r and r ¼ j ~xj.
Using the method outlined in Sec. III B, we can obtain

the corresponding metric components h0� in the fixed

coordinate gauge (15). First we expand the coefficients
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ðkFÞ���� into C and cF terms using (1). Next, we set all of
the coefficients C ¼ 0, according to step 1. Then we make
the replacement in the remaining coefficients cF ! �s. At
this intermediate stage the potentials are given by

A0 ¼ q

4	r

�
1þ 1

2
�s00 þ 1

2
�sjkx̂jx̂k

�
;

Aj ¼ q

8	r
½�s0j þ �s0kx̂kx̂j�:

(51)

Since there is no dependence of the potentials on any
current density, for step 3 we simply note that in Eq. (51)
A0 ¼ ðA�Þ0 and Aj ¼ ðA�Þj. We make the replacement

q ! m and multiply the potentials by a factor of
�8	GNð1þ �s00Þ and cancel subleading order terms
[Oð �s2Þ]. This yields

h00 ¼ 2GNm

r

�
1þ 3

2
�s00 þ 1

2
�sjkx̂jx̂k

�
;

h0j ¼ �GNm

r
½ �s0j þ �s0kx̂kx̂j�:

(52)

In a similar manner, we can also obtain effective gravito-
electric and gravitomagnetic fields using (42):

Ej
G ¼ �GNm

r2

�
x̂j
�
1þ 3

2
�s00 þ 3

2
�sklx̂kx̂l

�
� �sjkx̂k

�
;

Bj
G ¼ � 2GNm

r2
�jkl �s0kx̂l:

(53)

Using these expressions the acceleration of a test mass can
be written in the Lorentz-force law form (41).

An interesting feature arises from this simple solution.
In Lorentz-violating electromagnetism, even a static
source will generate a magnetic field. For gravity, the
analog of this effect occurs. For example, consider the
scenario in which the coefficients �sjk ¼ 0. Apart from a

scaling, the gravitoelectric force appears conventional.
However, even when the source body is static, a test
body with some initial velocity ~v0 will experience a grav-
itomagnetic force.
The nature of this gravitomagnetic force is illustrated in

Fig. 1. The gravitomagnetic field itself falls off as the
inverse square of the distance from the point mass, and
curls around the direction of the vector denoted ~s, where
sj ¼ ��s0j. A test mass approaching the pointlike source
will be deflected in the opposite direction of ~s, as illustrated
in the figure.

B. Rotating sphere

We next turn our attention to a more involved example, a
spherical distribution of charge or mass that is rotating. In
Ref. [37], a scenario was considered that involved a mag-

netized sphere with radius a and uniformmagnetization ~M.
In conventional magnetostatics, an idealized scenario
would allow for the sphere to have zero charge density
and no electrostatic field surrounding it, thus it would only
produce a dipole magnetic field. In the presence of Lorentz
violation, however, a dipole electric field persists, with an
effective dipole moment controlled by the parity-odd
coefficients for Lorentz violation ðkFÞ0jkl.
Since we aim to find the gravitational analog of this

solution, we cannot consider an object with zero charge
density. Instead we study a closely related example: a
charged rotating sphere, which produces an effective mag-
netic dipole moment ~m in the conventional case. For this
example, the current-induced portion of the electric scalar
potential, ðAJÞ0, can be obtained directly from Eq. (31) in
Ref. [37]:

ðAJÞ0 ¼ �jklðcFÞ0jx̂kml

4	r2
; (54)

which holds for the region outside the sphere. For a rotat-
ing charged sphere

mj ¼ 1
3IE!

j; (55)

where ~! is the angular velocity of the sphere. The quantity
IE is the charge analog of the spherical moment of inertia
for massive body,

IE ¼
Z

d3x�j ~xj2: (56)

Comparing (54) with the standard dipole potential, the
effective dipole moment is

pj ¼ �jklmkðcFÞ0l: (57)

The effective electric field therefore takes the standard
form

~E ¼ 3 ~p � x̂ x̂� ~p

4	r3
: (58)

FIG. 1. The gravitomagnetic field ~BG (dark arrows) from a
static point mass m (center). The field curls around the direction
of ~s (light gray arrows) and falls off as the inverse square of the
distance. An approaching test body is deflected opposite ~s.
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The gravitational analog for the solutions (54) and (58)
can be obtained using the methods in Sec. III B. Since the
C���� coefficients do not appear, step 1 is redundant. We
next make the replacement ðcFÞ0j ! �s0j. All that remains
is to change �q ! �m and multiply (54) by 16	GN which

yields

ðhJÞ00 ¼ 4GNI�
jklx̂j!k �s0l

3r2
; (59)

where now I is the spherical moment of inertia of the
massive body, given by Eq. (56) using mass density. Note
that this produces an extra component of the gravitoelectric

field ~EG ¼ ð1=2Þ ~rðhJÞ00.
In the electromagnetic case, part of the electrostatic field

arises from the effective current of the rotating charged
sphere, a feature absent in the standard Maxwell theory.
This unconventional mixing of electrostatics and magne-
tostatics has an analogy for stationary gravitational fields
produced by a rotating mass, in the presence of Lorentz
violation. Thus, a uniformly rotating sphere of mass pro-
duces a gravitoelectric field whose strength depends on the
rotation rate, a feature absent in standard GR.

As in the point-mass example, the vector ~s is responsible
for the effect. In Fig. 2, the effective dipole moment of a
rotating spherical mass is depicted. The dipole moment is
obtained from the cross product of ~s with 4I ~!=3.

The full solution for the case of a rotating massive or
charged sphere can be constructed using the potentials U,
Ujk, Vj, and Xjkl in Eqs. (14). For the electromagnetic case
(� ¼ 1=4	) we obtain, for the region outside the sphere
r > R,

UE ¼ Q

4	r2
;

Ujk
E ¼ Qx̂jx̂k

4	r2
þ IE

12	r3
ð
jk � 3x̂jx̂kÞ;

Vj
E ¼ IE�

jkl!kx̂l

12	r2
;

Xjkl
E ¼ 3Vj

E

�
x̂kx̂l

�
1� I0E

IEr
2

�
þ I0E
kl

5IEr
2

�

þ IEð�jkmx̂l!m þ �jlmx̂k!mÞ
12	r2

�
1� 3I0E

5IEr
2

�
; (60)

where I0E is a spherical moment given by the integral in
Eq. (56) with j ~xj4 instead of j ~xj2. Using these expressions it
is straightforward to calculate the associated electric and
magnetic fields as well as the gravitoelectric and magnetic
fields. The expressions are lengthy and omitted here.

C. Applications

A full analysis of the dominant observable effects in
gravitational experiments and observations has been per-
formed in Ref. [19]. However, the coefficients were ana-
lyzed collectively and the separation of various distinct
Lorentz-violating effects was not fully studied. Here we
focus specifically on the observability of the novel grav-
itomagnetic force shown to arise in the point-mass example
in Sec. VA and illuminate its role in a key test.
Lunar laser ranging and atom interferometry have mea-

sured 8 of the 9 coefficients in �s�� and the combined
results are tabulated in Ref. [22]. These results are reported
in the standard Sun-centered celestial-equatorial frame,
where coordinates are denoted with capital letters for
clarity. In this frame, the current constraints on �sJK are at
the 10�9 level. For �sTJ, the constraints are at the weaker
level of 10�6 � 10�7. The gravitomagnetic force due to the
effective gravitomagnetic field in the second of Eqs. (53) is
controlled by the �sTJ coefficients. This force has been
measured by both lunar laser-ranging and, effectively,
atom interferometry. However, its specific effects are
most easily discernable in orbital tests such as the lunar
laser-ranging scenario, so we focus on this case.
The principle effects from the �sTJ coefficients for lunar

laser ranging are modifications to the relative acceleration
of the Earth and Moon. This acceleration includes such
terms as the gravitomagnetic terms considered in Eqs. (53).
In fact, from the results in Ref. [19], one can read off the
portion of the Earth-Moon acceleration 
aJ responsible for
the effective force that is described in Fig. 1. In the Sun-
centered celestial-equatorial frame coordinates, it reads


aJ ¼ 2G
m

r3
vKð �sTKrJ � �sTJrKÞ; (61)

where 
m is the mass difference between the Earth and
Moon, rJ is the coordinate difference between the Earth

FIG. 2. A depiction of the effective dipole moment that devel-
ops for a rotating sphere in the presence of the coefficients for
Lorentz violation ~s. The dipole moment (medium gray arrow) is
proportional to the cross product of ~s (light gray arrows) with the
angular momentum of the sphere (dark arrow).
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and Moon center of mass positions, and vJ is their relative
coordinate velocity.

The dominant observable effects from Eq. (61) are
oscillations in the lunar range at the mean lunar orbital
freqeuncy !. In the lunar laser-ranging scenario, these
oscillations are controlled by two linear combinations of
the �sTJ coefficients called �s01 and �s02, which are expressed
in the mean orbital plane of the lunar orbit. These two
quantities control the size of the Lorentz-violating grav-
itomagnetic force for this case. Using over three decades of
lunar laser-ranging data, analysis reveals that �s01 ¼
ð�0:8	 1:1Þ � 10�6 and �s02 ¼ ð�5:2	 4:8Þ � 10�7

[20]. Therefore there is no compelling evidence for the
gravitomagnetic force controlled by �sTJ coefficients.
However, ongoing tests such as the Apache Point
Observatory Lunar Laser-Ranging Operation have already
improved on lunar ranging capability and could signifi-
cantly improve sensitivity to this effect [46].

VI. SUMMARY

In this work we have shown that an analogy exists
between the gravitational sector and the electromagnetic
sector of the SME at two levels. First we showed that in the
stationary limit and for a particular coordinate choice, part
of the post-Newtonian metric h0� in the gravity sector can

be obtained from the vector potential A� in the electro-

magnetic sector by essentially making a series of substitu-
tions, most notably the exchange of the coefficients

C�� ! �s��, as outlined in Sec. III B. For the equations of
motion of a test body, the gravitational case was shown to
resemble the electromagnetic Lorentz-force law, so long as
nonlinear terms in the geodesic equation are disregarded.
In Sec. V, we provided two examples of how the mixing

of electrostatics and magnetostatics in Lorentz-violating
electrodynamics has an analog in the gravitational case. In
the same manner as a point charge produces a magnetic
field in the presence of the electromagnetic coefficients
C0j, we showed that a point mass will produce a gravito-
magnetic field controlled by the coefficients �s0j. Similarly,
we also explored the converse of this example, demonstrat-
ing that a moving mass produces an additional gravito-
electric field. We also discussed the observability of the
gravitomagnetic force controlled by the �s0j in lunar laser-
ranging tests.
Several areas are open for future investigation. One

possibility is to systematically isolate the GEMS mixing
effects from others in the various predicted signals for
Lorentz violation in gravitational experiments [19], along
the lines of the discussion in Sec. VC. It also would be
interesting to investigate whether any analogy is possible in
the presence of the matter sector coefficients that play a
role in gravitational experiments [28]. Furthermore, using
a method similar to the one developed in this paper, it may
be possible to extend the class of signals for Lorentz
violation by looking for gravitational analogs of the non-
minimal electromagnetic sector of the SME, which goes
beyond the minimal ðkFÞ���� coefficients [13].
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