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Breakdown of ITCZ-like PV Patterns
Ajay Raghavendra and Thomas A. Guinn

Abstract
This study uses a shallow-water, normal-mode spectral model to examine the non-linear potential vorticity (PV) dynamics of the 

break¬down of both infinite an finite-length initial vorticity strips, simulating the inter-tropical convergence zone (ITCZ) found near 
the tropical eastern Pacific region.  Irregularities in convection and diabatic heating are simulated using uniformly and randomly spaced 
pockets of enhanced vorticity as well as mass sinks embedded in otherwise uniform vorticity strips.  Since the absolute vorticity divided 
by the fluid depth is materially conserved in the shallow water framework, analogies are drawn to the evolution of Ertel’s PV in a stratified 
fluid.  Results indicate the spacing of vorticity pockets had a greater influence on the evolution of PV than did broadband perturbations of 
the vorticity strip boundaries; however, all results were consistent with linear stability theory.  Finite length initial vorticity strips of uniform 
width had a greater tendency to break down into two PV pools while finite strips of non-uniform width did not.  This may suggest the 
breakdown of elongated areas of PV into two circulation centers is more likely when ITCZ convection patterns are more uniform in width.   

Introduction
The Inter-Tropical Convergence Zone (ITCZ) is a 

zonal belt of intense convection, responsible for the 
genesis of over 80 percent of all tropical cyclones (Gray, 
1979).  This elongated band of convection is often ob-
served to undulate and breakdown into smaller distur-
bances forming tropical cyclones (TCs) as seen in Fig. 1.  
Because the ITCZ is a region of intense diabatic heating 
and shear, it results in a maximum of Ertel’s potential 
vorticity (PV), thus meeting Rayleigh’s necessary condi-
tion for barotropic instability (Rayleigh, 1945; Guinn 
and Schubert, 1993).  The dynamics associated with 
the breakdown of idealized ITCZ-like PV patterns have 
been previously investigated in numerous barotropic 
studies (e.g., Guinn and Schubert, 1993; Neito-Ferrei-
ra and Schubert, 1997) as well as full physical model 
studies (e.g., Wang and Magnusdottir, 2005). This paper 
expands the previous barotropic studies by introducing 
irregularities in the PV pattern representing observed 
irregularities in convective activity within the ITCZ as 
frequently occurs in the eastern tropical Pacific ocean 
as seen in Fig. 2.  In addition, the paper investigates 
the effects of asymmetry in shape on the evolution of 
PV strips of finite length, again representing ITCZ-like 
structures. While the barotropic nature of the model is 
incapable of capturing all the moist dynamics of tropical 
weather systems, it does capture many of the funda-
mental dry dynamics. Lastly, the study also invests in 

Figure 1. GOES IR images at 1646 UTC on (a) 26 July, (b) 28 
July, (c) 3 August, and (d) 12 August 1988 showing a case of ITCZ 
breakdown (from Nieto-Ferreira and Schubert, 1997)
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developing a relatively simple numerical model for use 
as an educational tool at the advanced undergraduate or 
junior graduate level.

This paper is organized as follows.  We first describe 
the shallow water equations (SWEs) and the numerical 
aspects of the model, to include a description of the mass 
sink procedure used to represent irregularities in con-
vective activity within the ITCZ.   Next we discuss the 
basic initial conditions common to all six simulations 
presented in this paper as well as the modifications to the 
basic conditions that make each simulation unique. We 
then compare the results from each of the solutions and 
discuss the significance of each. Finally, we summarize 
the model results and offer concluding remarks regarding 
the model’s potential use for educational purposes. 

Equations and Model Background
A normal–mode spectral model was developed to solve 

the SWE-s in Cartesian coordinates on an f-plane (10˚ 
latitude was chosen for this study given the climatologi-
cal persistence of the ITCZ north of the equator, (e.g., S. 
G. H. Philander et al., 1996) using a doubly periodic 
domain  0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, where Lx and Ly represent 
the length and width of the model domain, respectively.             
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In equations (1)-(3), u and v represent the zonal and 
meridional components of the velocity vector, respec-
tively, g the acceleration due to gravity, f the Coriolis 
parameter (a constant), h the fluid depth, S the effects of 
convective heating or cooling (mass sinks or sources) and 
k is the diffusion constant. While the planetary vorticity 
changes rapidly near 10°N (or S), the undulations and 
subsequent disturbances do not deviate significantly 
from their original latitude so the f-plane approximation 
is reasonable for thin strips of 300-400km (±2° latitude 
either side of center).  However, this approximation is 
less valid for the finite disturbance cases as will be noted 
later.

Similar to Guinn (1992) and Guinn and Schubert 
(1993), we used the normal-mode method to solve 
equations (1)-(3). All simulations were conducted on 
a 6,400km × 6,400km domain with 512 × 512 collo-
cation points. Time integration was performed using a 
fourth-order Adams-Bashforth-Moulton predictor-cor-
rector scheme, and the total simulation length for all 
simulations was 120hrs using 60s time step.

To prevent aliasing of quadratically non-linear terms, 
we retained only 170 waves in the Fourier transform 
resulting in an effective horizontal resolution of ap-
proximately 37km.  To reduce spectral blocking, we 

(1)

Figure 2. A GOES 15 IR image of the ITCZ. The bright colors are indicative of non-uniform convection along the ITCZ.
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included ordinary diffusion (i.e. k∇2 u, k∇2 v, and k∇2 h 
on the right hand side of equations (1) – (3).  Similar to 
Schubert, et al. (1999) we chose a diffusion constant of 
100 m2s-1, resulting in waves with total wavenumber 170 
e-folding approximately every 53 minutes.  

To simulate the effects of convection on the PV field, 
we introduced a mass sink in the mass continuity equa-
tion (3). To see the relationship of convection to mass 
sink, consider the following.  In the shallow water frame-
work, PV is given as:

PV f
h

H=
+( )ζ

                  
(4)

where ζ is the relative vorticity, 𝑓 is the Coriolis parame-
ter, ℎ is the fluid depth, and 𝐻 is the undisturbed fluid 
depth (a constant). In the absence of friction, PV is a 
materially conserved quantity.  In the absence of friction-
al effects and mass sources or sinks, this quantity is 
materially conserved.  In comparison, consider Ertel’s 
PV, which is defined as:

PV f
z

= +
1
ρ
ζ

θ( ) ∂
∂               

(5)

where ρ is the density of the fluid, ζ is the relative vortic-
ity, and θ is the potential temperature. Ertel’s PV can be 
thought of as the absolute vorticity divided by the height 
difference between two θ-surfaces.  In the real atmo-
sphere, convection results in latent heat of condensation 
(i.e., diabatic heating), which increases the vertical θ gra-
dient, resulting in smaller distances between θ surfaces, 
therefore increasing the PV. In the shallow water frame-
work, this is closely analogous to shallower fluid depth. 
Therefore, we can simulate the effects of diabatic heating 
due to convection by introducing a mass sink that locally 
decreases the mean fluid depth, therefore increasing the 
PV.

Initial Conditions
We created four variations of infinite strips of enhanced 
vorticity aligned in the longitudinal direction plus two 
finite strips (six cases total) to simulate various initial 
structures of the ITCZ.  However, because sharp discon-
tinuities on the edges of the initial strips would result 
in significant model noise due to Gibbs phenomena 
(e.g., Mattuck et al. 2011), we instead specify our ini-
tial disturbances (as well as mass sinks) using smooth, 
piecewise continuous functions. Following Shubert et.al 

(1999), we chose a Hermite polynomial of the form 
P(s)=1-3s2+2s where s ∈{0,1} to smoothly transition 
the vorticity patterns from their maximum value near 
the edge of the strip (i.e., s=0), to zero over a specified 
distance (i.e., to s=1). The shape of P(s) is shown in 
Fig. 3.  Note that we also used this technique to smooth-
ly reduce the mass sink from the region of maximum 
heating to zero over a specified distance in experiments 
where a mass sink was used (Figs. 4 and 5).  Next, using 
the specified initial vorticity field, we extracted the initial 
wind and mass fields by applying the non-linear balance 
equation (e.g., Guinn and Schubert, 1993 and DeMaria 
and Schubert, 1984; for a detailed explanation see Thel-
well, 2011). 

Mathematically, we can describe the initial vorticity 
field in the following manner.  We first define the dis-
tance from the center of the vorticity strip at which the 
vorticity starts to decrease (ds) from its central value of  
ζo as well as the distance at which the vorticity decreases 
to zero (de).  We next define the normalized distance 
parameter (s) as:

s d d de
ds de

( ) = −
−                

(6)

which has the desired range between 0 and 1 for use 
with the Hermite polynomial.  Using this, our shape 
function for our vorticity strip becomes:

Figure 3. Plot of the cubic Hermite polynomial P(x)=1-3x2+2x3. 
Note that the slope,  dp(x)/dx = 0 at x=0 and 1.
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Since the spectral model is periodic in both x and y, 
the net circulation must be zero, or it would violate pe-
riodicity (i.e., winds at opposing boundaries would not 
be identical).  This requires the domain-averaged vor-
ticity be zero.  We can accomplish this in spectral space 
simply by creating the initial vorticity field then zeroing 
the spectral coefficients corresponding to the mean (i.e., 
wavenumbers zero in both x and y). This introduces a 
weakly negative background vorticity field, which is 
minimized by using a larger than necessary model do-
main.

Case 1:  Infinite Strip 

For our initial case we chose a 400km wide infinite (in 
longitude) strip of vorticity, where the vorticity decreases 
(in latitude) over a distance of 100km starting 100km 
either side to the strips center. Specifically, starting at 
the center of the strip and moving perpendicular to the 
strip, ds = 100km and de = 200km for both sides of the 

Figure 5. Time variation of the heating function for Case 4

Figure 4. Visualizing a pocket of vorticity in Case 2 and 3 of this 
section. (a) A sketch of the vortex pocket that consists of concen-
tric
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strip.  The inner 200 km wide region is a strip of uni-
form vorticity of value 7.5×10-5 s-1.  The results from this 
simple case serves as a verification for the proper func-
tion of the model and provides a foundation for all other 
comparisons. To accelerate the breakdown of the vortex 
pattern as well as better replicate the non-smooth nature 
of ITCZ shapes, we added a random wave number 16 
broadband perturbation (e.g., Schubert et.al, 1999) with 
a magnitude of 0.3 percent of the maximum vorticity 
within the strop. 

Case 2: Infinite Strip with Uniformly Spaced Pertur-
bations

Case 2 is a slight modification of case 1.  Here the 
vorticity strip is similar in shape size and shape; however, 
we added 10 circular shaped vorticity perturbations that 
were 1.7×10-5s-1 greater that the core value of 
7.4×10-5 s-1.  We decreased the core value of vorticity 
slightly from case 1 to maintain a similar value for the 
area-averaged vorticity.  For the circular perturbations, 
we chose the inner radius of the circular region to be 
40km in which the perturbation value equaled 1.7×10-

5s-1. Then, in a manner similar to the infinite strip of case 
1, we used a Hermite polynomial to decrease the vortici-
ty perturbation to zero over an additional 40km. 

Case 3: Infinite Strip with Randomly Spaced Pertur-
bations

Case 3 is identical to case 2 except, the ten circular 
regions of perturbation vorticity are spaced in both x 
and y with random offsets of ±25km in y and ±200km 
in x. In addition, we added a ±10% random variation in 
the magnitude of the individual perturbation vorticity 
regions. 

Case 4: Infinite Strip with Random Spaced Pockets of 
Convection

Case 4 is identical to case 1 except, there was no 
broadband perturbation. Instead, we added ten random-
ly spaced circular mass sinks positioned along the center 
of the strip. The seed of the random number generator 
was kept the same as in case 3 such that the positions of 
the mass sinks were identical to the previous case.  The 
individual mass sinks each had a radius of 40km and 
used a Hermite polynomial used to decrease the mag-
nitude of the sink over an additional 40km. For the heat-
ing shape function, Q(x,y), we followed the same format 
as the shape of the vorticity pockets in case 3 and as 
shown in Fig. 4. For the temporal portion of the heating 

function, we used an exponential growth function for 
turning on the heating with and exponential decay 
function for turning off the heating. We used the same 
non-dimensional steepness parameter, α (10-8s-1), for 
both the growth and decay of the heating function. We 
provide a depiction of the temporal function in Fig. 5.  
Mathematically we used the below function to achieve 
the desired heating:

S x y t
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where, t1,t2, and t3 represent the time at which the sink 
was turned on, maintained at a steady state, and start-
ed to decrease, respectively.  At peak value, the heating 
function drained fluid at the rate of 0.017ms-1 to simu-
late a heating rate of approximately 10K per day (Guinn, 
1992).  In this simulation, we started the heating func-
tion at 0hrs and it achieved its peak value 12hrs into the 
simulation.  The function maintained peak heating for 
6hrs and then slowly decreased to zero over an additional 
12hrs using the same steepness parameter. The heating 
function was therefore active for a total of 30hrs or 25 
percent of the total model simulation time.

Case 5: Unsymmetrical, Finite-Length Strip

In this experiment, we chose to modify the work of 
Vaughan and Guinn (2013), where they examined the 
evolution of a symmetric, “Twinkie”-shaped finite strip 
of vorticity, representing a finite portion of the ITCZ.  
Our goal was to examine the effect of shape asymme-
try in the evolution of these initial PV fields.  Our mo-
tivation stemmed from the climatological persistence 
of similarly shaped convective patterns associated with 
the ITCZ in the tropical eastern Pacific (e.g. Walis-
er and Gautier, 1993 and Salby, 1991).  The time lapse 
diagrams in Fig. 6 provide an example of the reoccur-
ring ITCZ pattern unique to the eastern Pacific region.

Mathematically, the asymmetric or lopsided 
“Twinkie”-shape can be described as the resulting pe-
rimeter of two circles of radius r1and r2 separated by a 
distance d (measured center to center) and connected 
by two exterior tangent lines as shown is Fig. 7.  For 
our specific case, we chose circles of radii 500km and 
100km, separated by a distance of 2,800km. Similar to 
the previous initial conditions, we then used the same 
Hermite polynomial to reduce the vorticity from a peak 
value of 5.85×10-5 s-1 to zero over a distance of 100 km 
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at the outer perimeter.  

Case 6: Symmetrical, Finite-Length Strip

Case 6 is a finite, symmetric “Twinkie”-shaped strip 
of vorticity similar to Vaughan and Guinn (2013). We 
chose this case for comparison with the Unsymmetrical 
case.  This case helps in making a comparison to case 5. 
We again chose a size such that the total area of the strip 
as well as the area-averaged vorticity values were similar 

to case 5.

Results and Discussion
The evolution and breakdown of the four infinite strips 

showed only subtle differences between the individual 
cases, while the breakdown of the finite strips differed 
significantly from one other.  We present the results of 
these six cases in this section. Fig. 8 – 13 show the time 
evolution of PV field at 0, 24, 48, 72, 96 and 120 hrs for 

Figure 6.  A GOES-15 IR time lapse of an ITCZ breakdown in the eastern Pacific occurring between 30 Aug and 4 Sep 2014.  
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all six cases. 

Case 1:  Infinite Strip 

Based on linear stability theory for an infinite strip 
of uniform vorticity, the wavelength of the most un-
stable mode is approximately eight times the width of 
the strip (Rayleigh, 1945; Guinn and Schubert, 1993). 
For uniform, infinite strips of width 200km, 300km 
and 400km, linear theory therefore predicts the strip to 
breakdown into approximately 4, 2.66 and 2 disturbanc-
es, respectively, when viewed over the model domain 
length of 6,400km. However, as described earlier, the 
infinite strips of vorticity are not uniform in the y direc-
tion because they smoothly taper at the edges. However, 
a uniform infinite strip of width 300 km would pro-
duce identical area-average vorticity to the infinite strip 
presented in cases 1-4. It is therefore reasonable to expect 
two to three disturbances to develop.  The simulation 
verified this with three disturbances forming and devel-
oping as shown in Fig. 8. The evolution of the PV is very 
similar to Guinn and Schubert (1993). 

Case 2: Infinite Strip with Uniformly Spaced Pertur-
bations

In spite of the higher pockets of vorticity embedded 
along the infinite strip, there was little difference in the 
evolution of the PV from case 1. The circular regions of 
higher PV are quickly sheared into a single, relatively 

uniform strip, and the evolution then became nearly 
identical to that of case 1 as shown in Fig. 9.  In fact, we 
noted in trial simulations (not shown) that the break-
down of the strip was more sensitive to the random 
phase shifts in the broadband perturbation than the 
magnitude of the circular regions of higher vorticity. 

Case 3: Infinite Strip with Randomly Spaced Pertur-
bations

As with case 2, the pockets of PV were quickly sheared; 
however, the resulting shape after shearing contained mi-
nor undulations as seen in Fig. 10.  This resulted in the 
production of four disturbances rather than three as with 
previous case.  However, we noted in simulations with 
longer run times, that two of the disturbances eventually 
merge leaving a total of three disturbances.  The initial 
stages of merging can be seen the last panel of Fig. 10.  
In this panel, we see the third disturbance from the left 
is highly sheared and unable to develop, and it eventu-
ally merges with the neighboring disturbance to the left 
(not shown). The end result is the random spacing of the 
vorticity perturbations did little to alter the final pattern 
of disturbance; however, more time was required to reach 
the final state of three disturbances.  

Case 4: Infinite Strip with Random Spaced Pockets of 
Convection

 Despite the use of a mass sink instead of an initial 

Figure 7. Illustration of the lopsided “Twinkie” shape. Two circles with centers C1 and C2 and radii r1 and r2 separated by a distance, d, 
along axis m.  The shape of the initial vorticity field is the shaded portion bounded by the circles and their tangent lines, l1 and l2.  Similar 
to other disturbances, a cubic-Hermite polynomial is used to gradually weaken the strength of the vorticity over a predetermined distance..
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Figure 8. Case 1: PV evolution of an infinite strip 400km wide with 
a wavenumber 16 broadband perturbation.

Figure 10. Case 3: PV evolution of an infinite strip 400km wide with 
10 circular randomly spaced regions of higher PV embedded near 
the center of the strip.

Figure 12. Case 5: PV evolution of a finite non-uniform region of 
vorticity.

Figure 9. Case 2: PV evolution of an infinite strip 400km wide with 
10 circular uniform spacing regions of higher PV embedded along 
the center of the strip.

Figure 11. Case 4: PV evolution of an infinite strip 400km wide with 
10 circular uniformly spaced mass sinks along the center of the strip.

Figure 13. Case 6: PV evolution of a finite uniform region of vortici-
ty (Twinkie shape).
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vorticity perturbation and the lack of a broadband 
perturbation, the evolution of the strip was remarkably 
similar to case 3. This suggests the random placement of 
disturbances and the resulting undulations they create 
have a greater influence on the flow evolution than the 
broadband perturbation we used in the simulation (see 
Fig. 11). 

Case 5: Unsymmetrical, Finite-Length Strip

 This case differs from the others in that the initial 
vorticity disturbance is not infinite in the x direction.  
Thus, the circulation at the ends longitudinal ends of the 
PV strip can freely rotate the disturbance.  The region 
with the larger pool of vorticity (eastern portion) has a 
much stronger resulting wind circulation and is initially 
pushed north.  Later the disturbance shears the tail end 
of the disturbance leaving a spiral shaped band. These re-
sults are similar to those of Guinn and Schubert (1993) 
during the merger of two vortices. The lopsided PV 
shape, while not exact, is suggestive of the breakdown 
of the ITCZ and subsequent formation of TCs observed 
in the eastern Pacific.  However, large displacements in 
the y direction make the f-plane approximation less valid 
in these simulations.  Regardless, similar to the satellite 
time lapse (Fig. 6), the simulation in Fig. 12 also shows 
a thin tapering spiral band of PV extending from the 
center of circulation with little movement. This case may 
suggest barotropic processes are important in the evolu-
tion and breakdown of the ITCZ. 

Case 6: Symmetrical, Finite-Length Strip

 The breakdown of the finite strip is similar to 
Vaughan and Guinn (2013) for the same length to width 
ratio. The symmetry of the shape results in the same cy-
clonic wind circulation at both ends of the disturbance.  
Thus the shape rotates cyclonically at the same speeds 
on both sides of the disturbance.  The strip eventually 
breaks down into two pools of uniform vorticity. It is 
interesting to note for comparison that for all variations 
in size and intensity for case 5 (lopsided strips), we did 
not observe a split as observed in Fig. 13. By noting 
the difference in evolution between case 5 and 6, we 
can conclude the initial shape of the finite strip plays a 
key role in determining the resulting PV evolution and 
merger. In addition, while not conclusive, the results 
suggest the splitting of a finite region of convection into 
two TCs is less likely if the initial convection is relatively 
asymmetric in shape.

Summary and Conclusions
The purpose of this paper was to expand previous work 

involving the use of simple barotropic models (Guinn 
and Schubert, 1993; Nieto-Ferreira and Schubert, 1997; 
Wang and Magnusdottir, 2005) in the study of ITCZ 
breakdown.  Specifically, our first goal was to investigate 
the effect of simulated pockets of perturbation vorticity 
centers embedded within otherwise uniform strips of 
PV representing the ITCZ on the barotropic instability 
of the ITCZ.  For initial conditions we specified the 
initial vorticity field then used the non-linear balance 
equation to determine the corresponding wind and mass 
fields.  We then ran the model for a simulated 12 hrs in 
each case to observe the evolution of the PV field.  These 
pockets of higher vorticity were intended to approximate 
the random pockets of intense convection observed in 
the actual ITCZ.  While, the connection between con-
vection and PV is only suggestive, it appears to produce 
similar results to the observed ITCZ evolution in many 
cases.   Our second goal, was to investigate the evolution 
of irregularly shaped initial vorticity patterns of finite 
length.  These represented the climatologically persistent 
irregularly shaped convective patterns found in the east-
ern Pacific Ocean.    Lastly, we wanted to create a simple 
numerical model that could be used at the advanced 
undergraduate or introductory graduate level.  

The experiments with the infinite strips showed there 
was limited sensitivity of the final PV pattern to the ad-
dition of uniformly spaced vorticity perturbations. These 
simulations tended to produce nearly identical solutions 
to the case without perturbations but with similar values 
of area-averaged vorticity.   The perturbation areas were 
quickly sheared and the vorticity became uniformly 
distributed within the strip, leading to a nearly identical 
evolution.  Results suggest the broadband perturbation 
played a bigger role in the final shape than the addition 
of vorticity pockets. However, when the perturbations 
given random offsets of ±25km in the direction x and 
±200km in the y direction, the results tended to be 
slightly different compared to cases using the uniform-
ly spaced perturbations. We believe the displacement 
in the x direction was the dominating effect because it 
effectively altered the initial wave pattern far more than 
the magnitude of the broadband perturbation. However, 
more work is needed for verification. We also examined 
the use of randomly spaced mass sinks to generate local 
regions of PV rather than specifying the perturbations 
initially.  For this case, we turned off the broadband 
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perturbation.  We noticed from the results that the ran-
dom spacing of the perturbations again tended to have a 
dominate effect on the evolution of the PV field. Thus, 
these last two cases produced nearly identical results, 
generating a wavenumber four pattern compared to wav-
enumber three pattern in the previous two cases. We also 
noted that when the simulation was extended for longer 
periods of time, two of the disturbances merged to create 
a wavenumber three pattern as predicted by linear stabil-
ity theory.  We conclude that the final shape for this case 
closely matches that predicted by linear stability theory.  

In the second set of experiments, we examined irregu-
larly shaped PV patterns of finite length.  Here we want-
ed to expand the studies of Vaughan and Guinn (2013) 
by comparing the evolution of symmetric patterns with 
non-symmetric patterns.  The asymmetry led to sig-
nificantly different evolutions in the PV field.   Most 
notably the asymmetric pattern never separated into two 
distinct vorticity patterns.  While not conclusive, this 
suggests that in nature the development of two TCs from 
a region of enhanced convection may be difficult if the 
initial region of convection is not relatively symmetric to 
start.    

Lastly, one of the objectives of this project was to 
develop a normal-mode spectral model in a user-friendly 
programming language that can be used for both educa-
tion and research at the undergraduate and introductory 
level. The fast Fourier transforms and matrix manipula-
tion algorithms in MATLAB® made it an ideal choice for 
this research project and future research work. The nor-
mal-mode technique also allows the user to separate the 
rotational (Rossby) modes from the gravitational modes 
(Guinn and Schubert, 1993), although this capability 
was not used in this current research, it may be beneficial 
for other studies.  Lastly, it is noteworthy to mention the 
following quote by S. G. H. Philander et al. (1996). 

“The most complex models are capable of the 
greatest realism, but their results are difficult to 
analyze and explain. It is therefore important to 
have simpler models that by excluding certain pro-
cesses, sacrifice realism, but in return allow detailed 
analysis and yield physical insight into the retained 
processes”

While the normal mode barotropic model with an 
f-plane approximation is unable to serve as a reliable 
forecasting tool, simple barotropic models such as these 

still offer excellent insight from a theoretical standpoint, 
and they are still relevant to gaining insight into TC dy-
namics (e.g. Hendricks et.al, 2014).   Please contact the 
author if you are interested in obtaining a copy of the 
MATLAB® scripts used for this project.
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