Introducing Modeling to First-Year Engineering Students for Effective Implementation in the Engineering Design Process

Carolina Barriento Juan Francisco Granizo

This presentation focuses on introducing our research to familiarize students with Modeling and Simulation tools in their first year of engineering studies.

Learning Goals

Description and Sample Teaching Materials

Assessment

Ongoing Research

Learning Goals

Students will be able to... understand the importance of developing a model for a given problem

apply basic process simulation methods to analyze model behavior

develop a basic understanding of system behavior by connecting model behavior to empirically observed system behavior

Part One: Empirical Approach

Lab Setting - Calculating Solar Power Efficiency

Groups of no more than three students.

Use a digital multimeter to measure current and voltage of small solar panel.

Sample Solar Panels used in the Lab

Calculate solar panel efficiency using measured values (simplified).

Part Two: Model Approach: MATLAB Intro

Matlab Example 01

How would you modify the previous code in order to be able to change the amplitude as per user input?

```
amp = input('Enter desired amplitude: ');
```

plot(x,y) % Plotting the sine function

 $\$ Command to add another graph to same plot hold on

```
plot(x, amp*y) % Increasing amplitude by amp
title('Sine Wave') % plot title
xlabel('radians') % x-axis label
ylabel('sine(x)') % y-axis label
```

```
% Turning off hold on command hold off
```


Sample Assignment Code

Part Two: Model Approach: Simulink Intro

Assignment Model

Part Two: Model Approach: Simulink Model

Sample Assignment Output (MATLAB plot)

Sample Assignment Model

Assessment

Criteria	Ratings				Pts
Description of criterion I required items must be present to achieve ull points. Both code file (.m) and utput should be ubmitted.	5 pts Full Marks All required items are present, as per instructions	4 pts Good Attempt Minor errors, such as: missing plot title, axis labels	2.5 pts Fair Attempt Minor errors; some code incomplete, such as missing second plot.	0 pts No Marks Unsatisfactory or missing	5 pt

Sample Intro Assignment Rubric

Criteria	Ratings				
MATLAB	5 pts Full Marks All required items present. No errors.	4 pts Good Attempt Minor errors, such as missing plot labels	2.5 pts Fair Attempt Several errors or incomplete	0 pts No Marks Missing	5 pts
SIMULINK	5 pts Full Marks All required items present. No errors.	4 pts Good Attempt Minor errors, such as using incorrect values	2.5 pts Fair Attempt Several errors or incomplete	0 pts No Marks Missing	5 pts

Sample Model Assignment Rubric

Ongoing Research

CAD modeling and 3D printing concepts are also being included by having students design, model, and 3Dprint a small part to be used in their design project prototype.

In summary, by familiarizing students with Modeling and Simulation tools in their first year of engineering studies:

we encourage proper learning by gradually introducing fundamental concepts;

a project-base approach helps students connect the empirical world with modeling, solidifying understanding in an enjoyable environment.

Questions?

Cover Slide:

https://www.mathworks.com/products/simulink/_jcr_content/mainParsys/band_copy_copy_12162/mainParsys/columns_copy_co/413180c1-9b9c-4453-9f08-92efc0ea59b3/thumbnail_copy.adapt.full.medium.jpg/1651066118470.jpg

Slide 4:

https://m.media-amazon.com/images/I/615CgDio13L._AC_SX466_.jpg https://www.alternative-energy-tutorials.com/wp-content/uploads/2019/09/measuring-solar-panel.jpg

Slide 9:

https://news.erau.edu/-/media/images/news/3d-printing-4.jpg?h=493&iar=0&w=1000&hash=1C559EC9E9A4453541C57C7D0132FD84