Proposed AI system

Results 0000000

TRANSFER LEARNING IN THE ERA OF FOUNDATIONAL MODELS: APPLICATION TO DIAGNOSIS IN RHEUMATOLOGY

Prashant Shekhar, PhD Assistant Professor of Data Science Department of Mathematics Embry-Riddle Aeronautical University, FL, USA Email: shekharp@erau.edu

Joint work with Dr. Gurjit Kaeley MRCP, RhMSUS, UF-COMJ Dr. Veena Ranganath, MD, RhMSUS, UCLA Jordan Sanders, ERAU

Proposed AI system

Outline

1 Problem Introduction

2 Developing a smart AI system

3 Proposed AI system

4 Results

Problem	Introduction
••	

Proposed AI system

Data Source

- **B-Mode** (top): grey-scale image in which the organs and tissues of interest are depicted as points of variable brightness .
- **Power-Doppler**(bottom) is a type of ultrasound imaging that displays the strength of the Doppler signal in color.

Proposed AI system

Motivation for this work

Problems with current synovitis grading procedures

- There has been a lack of reliability in grading these images in the medical community due to a lack of universally accepted diagnostic criteria [Momtazmanesh et al., 2022]
- The human/machine variability creates an additional challenge in an efficient automated scoring system [Ranganath et al., 2022]
- There is a lack of consistency between doctors in grading these images [Momtazmanesh et al., 2022]

Can a machine assign arthritis grades to these ultrasounds more reliably ?

Proposed AI systen

Pipeline for developing such a system

Prashant Shekhar

Proposed AI syster

How modern AI methods learn: a typical neural network model

Al System for face classification Person A probability Person B probability Person C probability Person D probability Output Layer Input Laver Hidden Laver 1 Hidden Laver 2 Hidden Laver 3 edges combinations of edges object models

Increasing Context

Can we directly train any such model for synovitis grading ?

- These models are typically huge !! (millions to billions of connections/parameters)
- They require a large number images (again of the order of 100s of thousands to millions) to find the right value of these parameters.
- **③** We typically don't have that many ultrasound images to learn from.

So what should we do !!

Transfer Knowledge and Learning across models

- We need to move beyond the data scarcity issue: Use models trained on publicly available large datasets and leverage their ability, to grade our ultrasound scans.
- We need a robust grader: Be minimally affected by noise in data. For example different doctors, different ultrasound machines etc.
- We need a universal model across joints: Be able to handle scans of different body joints.
- We need a universal model across ultrasound modes: Be able to handle grading for both B-Mode and Power Doppler scans.

Proposed AI system

Proposed AI system

Results 0000000

Regularized-Multitask Transfer Learning (Reg-MTL)

Proposed AI system

Regularized-Multitask Transfer Learning (Reg-MTL)

Model Inputs

- Jointly training with B-Mode and Power Doppler mode scans handles the data scarcity problem.
- Jointly training allows the model to give importance to both modes and learn from both modes.
- Since algorithm searches for similar relevant image features across both modes jointly, it learns to differentiate between noise and signal.

Proposed AI system

Regularized-Multitask Transfer Learning (Reg-MTL)

Common Net

- Here we use ResNetv2 [He et al., 2016] architecture having 67 million parameters.
- This model is pre-trained on ImageNet21K dataset which contains 14 million images from 21,000 classes. These includes natural images belonging to classes like cars, animals etc.
- A model pre-trained on such images has been shown to extract good features even from unrelated images such as ultrasound scans.
- This idea is referred to as Transfer learning [Zhang et al. 2021] in the Al community.

Proposed AI system

Transfer Learning idea: Image Models

Figure: Adapted from [Mukhlif et al., 2023]

Proposed AI system

Regularized-Multitask Transfer Learning (Reg-MTL)

B-Mode Net and Doppler Net

- Mode specific models that use the joint features learnt by Common Net, to make grade predictions.
- These models have very few parameters (100s to 1000s). So tuning with few images is possible.
- We also constrain the behavior of these individual models to avoid learning from noise in images. This is done through feature alignment to regularize the representations of features learnt across B-Mode Net and Doppler Net.

Proposed AI system

Feature alignment based regularization

Maximum Mean Discrepancies for feature aligning

- Intuitively, the representations learnt across B-Mode Net and Doppler Net should be similar. This is because the causal features across both modes have similar shapes.
- We use this logic to regularize the behavior of the MTL model.
- To implement this, we borrow ideas from the theory of Domain Adaptation [Long et al., 2015] and use Maximum Mean Discrepancies (MMD) (1) to restrict the two individual nets to learn similar representation

$$d_k^2(p,q) \triangleq ||\mathbb{E}_p[\phi(x^{B-Net})] - \mathbb{E}_q[\phi(x^{D-Net})]||_{\mathcal{H}_k}^2$$
(1)

Where \mathcal{H}_k is the reproducing kernel Hilbert space (RKHS), ϕ is the feature map, and x^{B-Net} , x^{D-Net} are corresponding feature representations learnt across BMode Net and Doppler Net. The inner product in the RKHS is defined as $k(x^s, x^t) = \langle \phi(x^s), \phi(x^t) \rangle$

Proposed AI system

(2)

Training Reg-MTL model

Cost function for Reg-MTL model

MMD is added to the MTL loss function with a scalar λ , a hyperparameter, which can be tuned to control the hardness of the constraint.

$$Loss = 0.5 * Loss_{BM} + 0.5 * Loss_{DM} + \lambda * Loss_{MMD}$$

Where $Loss_{BM}$ is the Cross-Entropy Loss of the B-Mode images, $Loss_{DM}$ is the Cross-Entropy Loss of the Power Doppler images, and $Loss_{MMD}$ is the MMD loss

λ	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.20	0.30	0.40	0.50
BM	47%	42%	49%	49%	49%	50%	49%	49%	49%	50%	50%	51%	52%	51%
DM	62%	61%	63%	64%	60%	60%	60%	60%	60%	61%	62%	59%	59%	60%

Table: Finetuning λ for best trade-off between accuracy and robustness (validation accuracy)

RESULTS

Proposed AI systen

Data Distribution

	Grade 0	Grade 1	Grade 2	Grade 3
B-Mode	415	156	465	205
Power Doppler	612	148	260	195

Table: Table showing the breakdown of images by sonographic RA synovitis grade and by Ultrasound (US) image mode.

	Training	Validation	Testing
B-Mode	558	373	310
Power Doppler	546	365	304

Table: Table showing the breakdown of images by dataset.

Fine-tuning separate ResNetv2 pretrained models for each US mode

B-Mode

	Validation Accuracy		Testing A	ccuracy
Top 1	42.23% +/- 1.98%	Тор	1 41.03% +/	- 1.62%
Top 2	70.78% +/- 2.74%	Top	2 72.58% +/	- 2.24%
Top 3	89.87% +/- 1.43%	Тор	3 91.06% +/	- 1.32%

Doppler Mode

	Validation Accuracy		Testing Accuracy
Top 1	63.26% +/- 1.15%	Top 1	61.78% +/- 1.69%
Top 2	81.15% +/- 1.49%	Top 2	80.79% +/- 1.81%
Top 3	94.90% +/- 1.12%	Top 3	94.21% +/- 1.31%

Top 1, top 2, and top 3 accuracy mean \pm standard deviation of validation/testing set for ten trial runs.

Prashant Shekhar

Proposed AI system

Fine-tuning one universal model (MTL) for both US modes jointly

B-Mode

	Validation Accuracy			Testing Accuracy
Top 1	52.04% +/- 1.57%	-	Top 1	51.55% +/- 2.20%
Top 2	78.02% +/- 1.29%	-	Top 2	80.52% +/- 2.17%
Top 3	93.43% +/- 1.17%	-	Top 3	94.52% +/- 1.16%

Doppler Mode

	Validation Accuracy		Testing Accuracy
Top 1	61.18% +/- 3.20%	Top 1	61.18% +/- 4.15%
Top 2	81.51% +/- 2.23%	Top 2	82.50% +/- 1.81%
Top 3	95.21% +/- 1.18%	Top 3	94.38% +/- 1.29%

Top 1, top 2, and top 3 accuracy mean \pm standard deviation of validation/testing set for ten trial runs.

Prashant Shekhar

- B-Mode is always more difficult for arthritis grade prediction (relative to Power Doppler mode).
- The accuracy numbers reported for both B-Mode and Power-Doppler mode are close to the performance level of a human rheumatologist [Ranganath et al.].

Benefits of Multitask learning

- Improvement in B-Mode performance: Optimizing Reg-MTL jointly on B-Mode and Power Doppler Mode improves the performance on B-Mode drastically.
- Improvement in Power Doppler Mode performance: Optimizing Reg-MTL jointly on B-Mode and Power Doppler Mode improves the sensitivity of grade 2 in Power Doppler. This is because the model is able to transfer knowledge from large number of grade 2 samples in B-Mode. *Grade 2 is usually the most difficult grade to predict correctly.*

Conclusion and Future work

 $ec{eta}$ Need for moving beyond data scarcity issue (Transfer Learning + Multitask Learning)

- ✓ Need for a universal model across ultrasound modes (Multitask Learning)
- Need for a robust grader (Causal Machine Learning ?)
- Need for a universal model across joints (Domain Generalization ?)

References

- Momtazmanesh, Sara, Ali Nowroozi, and Nima Rezaei. "Artificial intelligence in rheumatoid arthritis: current status and future perspectives: a state-of-the-art review." Rheumatology and Therapy 9.5 (2022): 1249-1304.
- Panganath, Veena K., et al. "Optimizing Reliability of Real-Time Sonographic Examination and Scoring of Joint Synovitis in Rheumatoid Arthritis." Cureus 14.11 (2022).
- He, Kaiming, et al. "Identity mappings in deep residual networks." Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.
- Zhang, Yu, and Qiang Yang. "A survey on multi-task learning." IEEE Transactions on Knowledge and Data Engineering 34.12 (2021): 5586-5609.
- Mukhlif, Abdulrahman Abbas, Belal Al-Khateeb, and Mazin Abed Mohammed. "Incorporating a Novel Dual Transfer Learning Approach for Medical Images." Sensors 23.2 (2023): 570.
- Long, Mingsheng, et al. "Learning transferable features with deep adaptation networks." International conference on machine learning. PMLR, 2015