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Abstract 

 

A Left Ventricular Assist Device (LVAD) is a mechanical pump that helps patients with Heart Failure 

(HF) condition. This pump works in parallel to the ailing heart and provides a continuous flow from the 

weak left ventricle to the ascending aorta. The current supplied to the pump motor controls the flow of 

blood. A new feedback control system is developed to automatically adjust the pump motor current to 

provide the blood flow required by the level of activity of the patient. The systemic Vascular Resistance 

(RS) is the only undeterministic variable parameter in a patient-specific model and also a key value that 

expresses the level of activity of the patient. The rest of the parameters are constants for a patient-

specific model. To determine the level of activity of the patient, an inverse problem approach is followed. 

The output data (pump flow) is observed and using an optimized search technique, the best model to 

describe such output is selected. Furthermore, the estimated RS is used in another patient-specific 

cardiovascular model that assumes a healthy heart, to determine the blood flow demand. Once the 

physiological demand is established, the current supplied to the pump motor of the LVAD can be adjusted 

to achieve the desired blood flow through the cardiovascular system. This process can be performed 

automatically in a real-time basis using information that is readily available and thus rendering a high 

degree of applicability. Results from simulated data shows that the feedback control system is fast and 

very stable.  

 

Keywords: Feedback Control, Cardiovascular Model, LVAD, Physiological Demand, Fibonacci Search.  

 

 

 

 



A. Introduction 

The American Heart Association (AHA) estimates that 5.8 million patients above the age 

of 20 are suffering from Heart Failure (HF) [1], a condition in which the heart cannot pump 

enough blood into the circulatory system and thus not providing the body with its needs of 

nutrients and oxygenated blood. This occurs because the heart muscle is not strong enough to 

push the blood volume stored in the left ventricle to the ascending aorta and from there to the 

rest of the body. For such patients, heart transplant (HTx) is the best treatment. Patients often 

wait a long time before a suitable donor heart is available (300 days in average). During this 

period they require some sort of mechanical support to help the ailing heart perform its 

functions. The left ventricular assist device (LVAD) is such a device. It is a rotary mechanical 

pump powered with batteries and connected to a controller that sets the pump speed. This 

pump can provide an alternative way for the blood to flow with a higher rate between the 

ventricle and the aorta for HF patients. 

 

At present, the LVAD control is simply a manual setting to regulate the pump to operate a 

constant speed level that matches the lowest venous return [2]. This technique limits the activity 

of the patients and prevent their return to workforce and many other forms of life that require the 

blood flow to be from moderate to high. This would be acceptable if the device is used in bridge 

to transplant (BTR) therapy. As mentioned above, in BTR therapy the device is only connected 

for a period of time until the HTx is performed.  Nowadays, the LVAD is used as destination 

therapy (DT) [3] device for patients who do not qualify for HTx due to their age and/or condition 

[4]. Since the device will have to support the patients for a longer period of time, then it requires 

an automatic feedback controller that can sense and respond to the needs of the patients for 

more or less blood flow [6]. By doing so, the controller can manipulate the current signal input to 

the pump motor, which directly controls the pump flow, to match the physiological need. This 

controller will allow the patients to leave the hospital and return to a relatively independent and 

normal lifestyle. Such controller requires real-time measurements of the hemodynamic of the 

patients. However, under the current state-of-the-art technology the implantation of long-term 

sensors inside the human heart is not possible due to the vulnerability to thrombus formation 

over the sensing diaphragm and the extra strain on the batteries used to power both the pump 

and the controller [5].  External sensors like the ones used in pacemakers are not highly reliable 

to be used in conjunction with the LVAD. Previous work has been conducted to develop a 

physiological demand-based controller [9]-[10]; Vollkron et al. [2] used the venous return, the 



required level of perfusion, and heart rate to accomplish this. In the work by Wu et al. [7] 

adaptive control methods were implemented. 

 

The pump flow data seems to be a good candidate to be used to control the pump motor 

current as it can be easily measured by a flow-meter at one of the pump cannulae [11]. It has 

been shown that the flow through the pump will change, without any changes to the controller 

parameters, as a reaction to a change in the level of activity of the patient [14]. The systemic 

vascular resistance (RS) is the total resistance offered by the systemic circulation to the blood 

flow through the body’s arterial, bed, and venous return system. It is also an indication of the 

activity level of the patient; that is, if the RS is high it means that the patient is at rest, and vice 

versa. Using this relation, the RS can be estimated based on the changes that occur in the pump 

flow. Using inverse problem techniques, the pump flow is observed and using its variations, the 

RS is estimated. Since the RS is the only variable parameter in the model, then the information 

required to determine the physiological demand of the patient is obtained. 

 
( )= SQ G R

 
(0) 

Where Q is the pump flow and ( )SG R is the model governing the relation between the 

pump flow and the systemic vascular resistance. 

 

A Fibonacci search algorithm is used as a one-dimension optimization method to minimize 

the error of the estimation. The Fibonacci search method was chosen over other one-

dimensional optimization schemes because, among other reasons, the number of iterations to 

arrive at a converged solution can be pre-determined based on a required tolerance [8]. This 

feature is extremely important in applications such as the one presented herein as the decision 

process must be quick and accurate, and implemented in real-time.     

 

B. The Cardiovascular Model 

 The cardiovascular system can be represented by a 5th order circuit model and the LVAD 

pump can be simulated by a 1st order circuit model. Combining both models will result in a 6th 

order model that has a minimum number of parameters that can offer enough complexity to give 

an accurate representation of the heart and the LVAD. 

 

 Figure 1 shows the 5th order model of the cardiovascular system. This model is adopted 

from previous work [12] where every resistance, inductance, capacitance, and diode used in the 

model is well explained and a standard value is provided in Table 1 for a typical adult.  



 

 There is a need, however, to discuss in more details some important elements in this 

circuit like: SR  which represents the systemic vascular resistance. This particular parameter can 

be used to simulate the level of activity experienced by the patient, higher value means that the 

patient is resting and lower value means that the arteries are offering less resistance to the 

blood flow because of the high level of activity of the patient (like running, exercising, etc.)  

  

 

Figure 1: Cardiovascular Circuit model 

 

 

Table 1: Cardiovascular Model Parameters 

Parameters Value Physiological Meaning 

Resistances (mmHg· s/ml) 

RS 1.0000 Systemic Vascular Resistance (RS) 

RM 0.0050 Mitral Valve Resistance 

RA 0.0010 Aortic Valve Resistance 

RC 0.0398 Characteristic Resistance 

Compliances (ml/mmHg) 

C(t) Time-varying Left Ventricular Compliance 

CR 4.4000 Left Atrial Compliance 

CS 1.3300 Systemic Compliance 

CA 0.0800 Aortic Compliance 

Inertances (mmHg· s2/ml) 

LS 0.0005 Inertance of blood in Aorta 
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 The left ventricular compliance ( )C t  is the inverse of the elastance function of the heart

=( ) 1/ ( )C t E t . The elastance represents the contractual state of the left ventricle.  It relates to 

the ventricle's pressure and volume according to the following expression: 

 =
− 0

( )
( )

( )

LVP t
E t

LVV t V
  (1) 

Where LVP(t) is the left ventricular pressure, LVV(t) is the left ventricular volume, and V0 is a 

reference volume, which corresponds to the theoretical volume in the ventricle at zero pressure.  

The elastance function E(t) can be approximated mathematically. In our work we use the 

expression: 

 = − +max min min( ) ( ) ( )n nE t E E E t E  (2) 

Where E(t) represents the elastance of the heart as shown in Figure 2. En(tn) is the normalized 

elastance (also called “double hill” function) represented by the expression: 
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 In the expression above, En(tn) is the normalized elastance, tn=t/Tmax, Tmax=0.2+0.15tc  and 

tc is the cardiac cycle interval, i.e., tc=60/HR, where HR is the heart-rate. Notice that E(t) is a 

rescaled version of En(tn) and the constants Emax and Emin are related to the end-systolic 

pressure volume relationship (ESPVR) and the end-diastolic pressure volume relationship 

(EDPVR) respectively.  Figure 2 shows a plot of EH(t) for a healthy heart with Emax=2 mmHg/ml 

and Emin=0.06 mmHg/ml, and a heart-rate of 60 beats per minute (bpm). For a heart with 

cardiovascular disease, the elastance expression used in our model is scaled using the value of 

maxE  which can be varied from 1 mmHg/ml to 0.25 mmHg/ml to represent mild to severe heart 

failure, respectively.  

 

 AD and MD  are the ideal diode representations of the aortic and mitral valves. The opening 

and closing of these valves are controlled by the pressures across them. They are used to 

simulate the dynamics of the two valves and hence the four phases of the cardiac cycle,  

mentioned in Table 2, are achieved. 
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Figure 2: Elastance function E(t)=1/C(t) of a healthy heart. (Cardiac Cycle =60/HR) 

 

Table 2: Phases of the cardiac cycle 

Modes 
Valves 

Phases 
Mitral Aortic 

1 closed closed Isovolumic relaxation 

2 open closed Filling 

1 closed closed Isovolumic contraction 

3 closed open Ejection 

- open open Not feasible 

 

 

C. The combined LVAD-Cardiovascular model 

 The LVAD pump can be modeled as a 1st order system. When added to the 5th order 

model in Figure 1 the result will be a 6th order model that is shown in Figure 3. The pump 

functions in parallel to the heart of the patient, hence the parallel connection of the LVAD pump 

between the left ventricle and the aorta. Table 3 indicates the six state variables for this circuit 

model. 

 



 

Figure 3: Combined Cardiovascular and LVAD model 

 

Table 3: State variables in the cardiovascular model 

Variables Name Physiological meaning (units) 

1( )x t  LVP(t) Left ventricle pressure (mmHg) 

2( )x t  LAP(t) Left atrial pressure 

3 ( )x t  AP(t) Arterial pressure (mmHg) 

4 ( )x t  AoP(t) Aortic pressure (mmHg) 

5 ( )x t  QT(t) Total flow (ml/s) 

6 ( )x t  QP(t) Pump flow (ml/s) 

  

The LVAD considered in this paper is a rotary mechanical pump connected with two cannulae 

between the left ventricle and the aorta. The LVAD pumps blood continuously from the left 

ventricle into the aorta. The pressure difference between the left ventricle and the aorta is 

characterized by the following relationship: 

 − = + + + + + − +( ) ( ) i i o o p p p k

dQ dQ dQ
LVP t AoP t R Q L R Q L R Q L H R Q

dt dt dt
 (4) 

 In the expression above Hp is the pressure (head) gain across the pump and Q is the 

blood flow rate through the pump. The parameters, Ri, Ro, and Rp represent the flow resistances 

and Li, Lo, and Lp represent the flow inertances of the cannulae and pump respectively.  Values 

for these parameters are shown in Table 4.  
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Table 4: Parameter Values in LVAD Model 

Parameters Value Physiological Meaning 

Cannulae Resistances (mmHg.s/ml) 

Ri 0.0677 Inlet Cannula Resistance  

Rp 0.17070 Pump Resistance 

Ro 0.0677 Outflow Cannula Resistance 

Cannulae Inertances (mmHg.s2/ml) 

Li 0.0127 Inlet Cannula Inertance  

Lp 0.02177 Pump Inertance  

Lo 0.0127 Outflow Cannula Inertance 

 

 The nonlinear time-varying resistance Rk in (6) has the form: 

 {α >= ≤
1

1 1

( )0
( ( ) - ) ( )k

LVP t   xifR
LVP t x if LVP t x

 (5) 

 Rk is included in the model to characterize the phenomenon of suction. Rk is zero when 

the pump is operating normally and is activated when LVP(t) (x1) becomes less than a 

predetermined small threshold x
___

1, a condition that represents suction. The value of Rk when 

suction occurs increases linearly as a function of the difference between LVP(t) and x
___

1. The 

parameter α  is a cannula-dependent scaling factor. The values used for the suction parameters 

are α = −3.5 s/ml  and =1 1 mmHgx . 

 

 The pressure gain across the pump Hp is modeled using the direct relation between the 

electric power supplied to the pump motor Pe and the hydrodynamic power generated by the 

pump Pp scaled by the pump efficiency η  as η=p eP P . Furthermore, the electric power may be 

written in terms of the supplied voltage V and the supplied current i(t) to the pump motor as 

= ⋅ ( )eP V i t , while the hydrodynamic power may be written in terms of the pump head or 

pressure gain Hp and the pump flow Q as ρ=p pP gH Q  where ρ  is the density of the reference 

fluid and g is the acceleration of gravity ( ρ = =3 213,600 kg/m , 9.8 m/sHg g ). Combining these 

expressions yields: 

 
η
ρ
= ⋅

( )
p

V i t
H

g Q
 (6) 

Or: 



 γ=
( )

p

i t
H

Q
 (7) 

Where γ η ρ= /V g . For a typical LVAD, after applying the appropriate conversion factors and 

assuming a pump motor supplied voltage = 12 voltV  as well as a pump efficiency of 100% 

(assuming that most losses are accounted for by the pressure losses induced by Rp and Lp), the 

constant γ  can be computed to be γ = ⋅ ⋅89,944 mmHg ml/s amp . 

 

 Substituting (7) in (4) we obtain the nonlinear state equation governing the behavior of the 

LVAD as: 

 γ− = + −* * ( )
( ) ( )

dQ i t
LVP t AoP t R Q L

dt Q
 (8) 

Where = + + +*

i o p kR R R R R  and = + +*

i o pL L L L . Note that it is important to validate the 

numerical solution when expression (8) is used by ensuring that the system does not allow for 

operation at zero pump flow Q(t) at any point during the cardiac cycle since equation (8) exhibits 

its nonlinearity with the pump flow Q(t) in the denominator. 

  

 When combined with the model of the left ventricle, the LVAD state equation model in (8) 

will yield a model that is controlled by the pump motor current i(t) as desired. Furthermore, using 

the relation between the pump pressure Hp and the pump speed ( )ω t [11]: 

 βω= 2( )pH t  (9) 

 An expression for the pump speed in terms of the pump motor current can then be derived 

as follows:  

 
γ

ω
β

=
( )

( )
( )

i t
t

Q t
 (10) 

Here β −= ⋅ 7 29.9025 10  mmHg/rpm . Note that it is now clear how the heart hemodynamic 

through Q(t) influence directly, in a highly nonlinear manner, the pump speed ω( )t . 

 

 The state space representation of the combined model can then be written in the following 

form: 

 = + +& ( ) ( ) ( ) ( )x A t x P t p x b i t  (11) 

Where: 
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And: 
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Where the ξ( ) in ( )r p x  expression is defined by: 
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D. Development of a Feedback Control 

The aim of the feedback controller is to adjust the LVAD speed to provide the required 

amount of blood flow depending on the level of activity of the patient. The current technology 

does not allow the implantation of sensors inside the human heart for long-term applications; 

hence there is a need to depend on the pump flow, which is accessible through the installation 

of a flow-meter sensor inside the pump cannulae, as a feedback variable to automatically adjust 

and control the pump motor current which in turns controls the pump speed. 

 

The results shown in Figure 4 are obtained by simulation (using the 6th order model 

presented above) and reveal that the mean pump flow decreases as the systemic vascular 



resistance (RS) increases while maintaining the pump motor current constant, see [14]. 

Furthermore, this shows that the pump flow signal can be used as an input variable to estimate 

the patient’s systemic resistance as well as to adjust the pump motor current to achieve a mean 

pump flow that satisfies the patient’s physiological demand. Figure 5, shows how the mean 

pump speed is increased spontaneously as the RS increases and that’s due to (10) where you 

can see the pump flow ( )Q t being the reciprocal for ( )ω t . 

 

A block diagram for the proposed feedback controller is shown in Figure 6. The controller 

consists of four stages of data acquisition, decision making, estimation, and adjustment of the 

pump motor current. During the first stage, labeled “detect change in pump flow”, the mean 

pump flow signal is continuously read until a change is detected. This change is evidence that 

the activity level of the patient has changed and there is a need to adjust the pump motor 

current to respond to the new physiological demand. The first stage can be thought of as a gate 

to the rest of the feedback controller blocks. The controller will only work if the first block sends 

a signal as a response to a change in the mean pump flow.  

 

 During the second stage, labeled “Estimate the RS using the 6th order model”, the new RS 

is estimated by adjusting the numerical value of Rs in the 6th order model until the resulting 

mean pump flow (x6) matches the mean pump flow read in the previous stage. This is 

accomplished by setting the problem up as an optimization problem aimed at minimizing an 

objective function formulated as the absolute value of the difference between these mean pump 

flows. Details of this approach are provided in the next section.  

 

Figure 4: Pump flow signals at =( ) 0.18i t amp for different RS values 
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Figure 5: Pump speed signals at ( ) 0.18i t amp= for different RS values 

 

 

Figure 6: Block diagram for the LVAD feedback controller 

 

 During the third stage, labeled “Calculate physiological demand for estimated RS”, the 

physiological demand or required mean pump flow under the current activity level is determined 

by imposing the value of RS found during the previous stage into the 5th order model with 

=max 2 mmHg/mlE  to represent a healthy heart. This is done since the overall objective of the 

controller is to determine the actual output of a healthy heart under the current level of activity, 

characterized by the estimated RS, and try to match it with the LVAD.  

 

 During the fourth stage, labeled “Update Pump Motor Current”, the pump motor current i(t) 

will be adjusted until the mean pump flow reaches the physiological demand for the current level 

of activity calculated in the previous stage. Again, this requires an optimization approach aimed 
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at reducing an objective function formulated as the absolute value of the difference between the 

physiological demand and the adjusted mean pump flow. This process is detailed in the next 

section. 

 

E. Methodology and Results 

As discussed in the previous section, the change in the mean pump flow while the control 

parameters are fixed is an indication of a change in the level of activity of the patient (change in 

RS). This requires the estimation of the new RS for the patient which can be accomplished using 

a one-dimensional search algorithm. The Fibonacci search algorithm was chosen for this 

purpose because of its inherent advantage of having a predefined number of iteration before a 

solution is obtained. The number of iterations is based on the level of accuracy (error tolerance) 

chosen for the application. The following objective function is to be minimized: 

 
min

ˆ( ) ( )S N P SJ R Q Q R= −
 

(15) 

Here, ˆ
PQ  is the mean pump flow produced by the estimated 

SR  (RS) and 
NQ  is the target mean 

pump flow caused by the change of activity.  

 

 

Figure 7: Pump flow signal as RS changes from 1 to 0.5 

 

 Figure 7 shows a simulation of a patient initially at rest who then becomes more physically 

active. This simulation is modeled by a change in RS from 1 mmHg.s/ml to 0.5 mmHg.s/ml.  

  

 The Fibonacci search was then used to minimize the objective function in (15) to estimate 

this change in RS. The number of iterations required to arrive at a converged solution was 

predetermined based on both the possible range of RSs and the tolerance required; the former 
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is assumed to be between 0.4 and 1.4 mmHg.s/ml (this is the range of possible values of RS) 

while the latter was established as 0.01 mmHg.s/ml (accepted tolerance for such application). 

Hence: 

 
− 

> = ⇒ = > ⇒ = 
 

11

1.4 0.4
100 144 100 11

0.01
nF F n

 

(16) 

Here, the number of required iterations, n, is determined as the nth Fibonacci number larger than 

the search range divided by the tolerance. In this case, the 11th Fibonacci number satisfies this 

criterion.  

 

 The Fibonacci search algorithm is then executed evaluating the objective function in (15)

by running the 6th order model with each of the iterative estimates of RS. The search bracket is 

narrowed down at every iteration step until the convergence criterion is met after the nth 

iteration. This process is shown in Figure 8. 

 

 Although the search interval was originally set for values of RS between 0.4 and 1.4 

mmHg.s/ml, prior knowledge of the system could allow to have started from a narrower interval. 

That is, it could have been assumed a priori that the increase in mean pump flow signal was 

evidence of a decrease in RS and therefore start with a bracket between 0.4 and 1.0 mmHg.s/ml 

instead, for example, leading to a smaller number of required iterations. 

 

Figure 8: Lower and upper brackets of the Fibonacci search converging to the estimate of RS 
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 Once the RS is estimated, a similar approach is then used to adjust the pump motor 

current to provide the physiological demand. The objective function to be minimized in this case 

is: 

 
min

ˆ( ) ( )p P pf i CO Q i= −
 

(17)  

Where CO (cardiac output) is the patient’s physiological demand estimated by running the 5th 

order model for a healthy heart (Emax=2) with the estimated value of RS from the previous 

minimization process (RS=0.5 mmHg.s/ml in this case), and ˆ ( )p PQ i  is the mean pump flow 

provided by the iterative estimate of the pump motor current Pi .  

 

 For the case being implemented herein, the physiological demand (CO) was found to be 

148.9 ml/s, larger than the current pump flow of 115.3 ml/s achieved by a pump motor current of 

0.1 amp, therefore, an increase of the pump motor current is necessary to achieve the goal of 

meeting the physiological demand. The initial bracket for the pump motor current was then 

established between 0.1 amp and 0.65 amp while a tolerance of 0.01 amp was set, leading to a 

predetermined number of 10 iterations to reach convergence. Figure 9 shows the evolution of 

the Pi  bracket throughout the Fibonacci search algorithm. 

 

Figure 9: Upper and lower brackets of the Fibonacci search converging to the estimate of Pi  
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F. Conclusions 

A new feedback control system is formulated in this paper to automatically adjust the 

pump motor current of a Left Ventricular Assist Device (LVAD) to provide the blood flow 

required by the current level of activity of the patient. This is accomplished by first estimating the 

systemic vascular resistance (RS) of the patient from a coupled LVAD-Cardiovascular model 

using information from measured LVAD pump flow. Furthermore, the estimated RS is used in a 

patient-specific cardiovascular model that assumes a healthy heart, to determine the demand in 

terms of blood flow. Once the physiological demand is established, the current supplied to the 

pump motor of the LVAD can be adjusted to achieve the desired blood flow through the 

cardiovascular system. This process can be performed automatically in a real-time basis using 

information that is readily available and thus rendering a high degree of applicability. Results 

from simulated data shows that the feedback control system is fast and very stable.  
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