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ABSTRACT 

The paper presents application of data mining techniques to fraud analysis. We present some 
classification and prediction data mining techniques which we consider important to handle fraud 
detection. There exist a number of data mining algorithms and we present statistics-based algorithm,   
decision tree-based algorithm and rule-based algorithm. We present Bayesian classification model to 
detect fraud in automobile insurance.  Naïve Bayesian visualization is selected to analyze and interpret 
the classifier predictions. We illustrate how ROC curves can be deployed for model assessment in 
order to provide a more intuitive analysis of the models.  
Keywords: Data Mining, Decision Tree, Bayesian Network, ROC Curve, Confusion Matrix 

1. INTRODUCTION 
Data mining refers to extracting or “mining” knowledge from large amount of data. There are a 
number of data mining techniques like clustering, neural networks, regression, multiple predictive 
models. Here, we discuss only few techniques of data mining which would be considered important to 
handle fraud detection. They are i) Bayesian network, for classifying risk group, and ii) Decision tree, 
for creating descriptive model of each risk group.  
Data Mining is associated with (a) supervised learning based on training data of known fraud and 
legitimate cases and (b) unsupervised learning with data that are not labeled to be fraud or legitimate. 
Bedford’s law can be interpreted as an example of unsupervised learning (Bolton et al. 2002). The 
direct application of these methods to forensic accounting is limited due to almost complete 
nonexistence of large sets of fraud training data (Bolton et al. 2002; Jensen, 1997). 
Insurance fraud, credit card fraud, telecommunications fraud, and check forgery are some of the main 
types of fraud. Insurance fraud is common in automobile, travel. The Uniform Suspected Insurance 
Fraud Reporting Form, adopted by the NAIC Antifraud Task Force 2003, replaced the prior Task 
Force form. This form standardizes insurance fraud data for the insurance industry and makes it easier 
to report and track. Fraud detection involves three types of offenders (Baldock, 1997): i) Criminal 
offenders, ii) organized criminal offenders who are responsible for major fraud, and iii) offenders who 
commit fraud (called soft fraud) when suffering from financial hardship. Soft fraud is the hardest to 
lessen because the   cost for each suspected incident is usually higher than the cost of the fraud 
(National White Collar Crime Center, 2003). Types i) and ii) offenders, called hard fraud, avoid anti-
fraud measures (Sparrow, 2002). 
We present data mining techniques which are most appropriate for fraud analysis. We present 
automobile insurance example. Three data mining techniques used for fraud analysis are: i) Bayesian 
network, ii) Decision tree, and iii) backpropagation. Bayesian network is the technique used for 
classification task. Classification, given a set of predefined categorical classes, determines which of 
these classes a specific data belongs to. Decision trees are used to create descriptive models. 
Descriptive models are created to describe the characteristics of fault.  
The remainder of this paper is organized as follows. In Section 2, we present the existing fraud 
detection systems and techniques. Section 3 the three classification algorithms and application. Section 
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4 presents the data. Finally, in section 5, we discuss the important features of our work and further 
work. 

2. EXISTING FRAUD DETECTION SYSTEMS 
A fuzzy logic system (Altrock et al. 1995) incorporated the actual fraud evaluation policy using 
optimum threshold values. The result showed the chances of fraud and the reasons why an insurance 
claim is fraudulent. This system predicted slightly better results than the auditors. Another   logic 
system(Cox et al. 1995) used two approaches to imitate the reasoning of fraud experts, i) the discovery 
model,  uses an unsupervised neural network to find the relationships in data and to find clusters, then 
patterns within the clusters are identified, and ii) the fuzzy anomaly detection  model, which used 
Wang-Mendel algorithm to find how health care providers committed fraud against insurance 
companies. The EFD system (Major et al. 1995) integrated the expert knowledge with statistical 
information to identify providers whose behavior did not fit the rule.  
The hot spots methodology (Williams et al. 1997) performed a three step process: i) k-means 
clustering algorithm for cluster detection is used because the other clustering algorithms tend to be 
computationally expensive where the datasets are very large, ii) C4.5 algorithm,   the resulting 
decision tree can be converted to a rule set and pruned, and iii) visualization tools for rule evaluation, 
building statistical summaries of the entities associated with each rule. (Williams, 1999) extended the 
hot spots methodology to use genetic algorithms to generate and explore the rules.  
The credit fraud model (Groth et al. 1998) suggested a classification technique with fraud/legal 
attribute, and a clustering followed by a classification technique with no fraud/legal attribute. 
Kohonen's Self-Organizing Feature Map (Brockett et al. 1998) was used to categorize automobile 
injury claims depending on the size of fraud suspicion. The validity of the Feature Map was then 
evaluated using a back propagation algorithm and feed forward neural networks. Result showed that 
the method was more reliable and consistent compared to the fraud assessment.  
Classification techniques have proved to be very effective in fraud detection (He et al. 1998; Chen et 
al. 1999) and therefore, can be applied to categorize crime data. The distributed data mining model 
(Chen et al. 1999) uses a realistic cost model to evaluate C4.5, CART, and naïve Bayesian 
classification models. The method was applied to credit card transactions. The neural data mining 
approach (Brause et al. 1999) uses rule-based association rules to mine symbolic data and Radial Basis 
Function neural network to mine analog data. The approach discusses the importance of use of non-
numeric data in fraud detection. It was found that the results of association rules increased the 
predictive accuracy. 
SAS Enterprise Miner Software (SAS e-intelligence, 2000) depends on association rules, cluster 
detection and classification techniques to detect fraudulent claims. The Bayesian Belief Network 
(BBN) and Artificial Neural Network (ANN)  study used the STAGE algorithm for BBN in fraud 
detection and backpropagation for ANN (Maes et al. 2002). STAGE repeatedly alternates between two 
stages of search: running the original search method on objective function, and running hill-climbing 
to optimize the value function. The result shows that BBNs were much faster to train, but were slower 
when applied to new instances.  FraudFocus Software (Magnify, 2002) automatically scores all claims. 
The scores are sorted in descending order of fraud potential and generate descriptive rules for 
fraudulent claims. FairIsaac(Weatherford et al. 2002) recommended backpropagation neural networks 
for fraudulent credit card use. The ASPECT group (Weatherford et al. 2002) focused on neural 
networks to train current user profiles and user profiles histories. A caller’s current profile and the 
profile history are compared to find probable fraud. (Cahill et al. 2002) build on the adaptive fraud 
detection framework (Fawcett et al. 1997) by applying an event-driven approach of assigning fraud 
scores to detect fraud. The (Cahill et al. 2002) framework can also detect types of fraud using rules. 
This framework has been used in both wireless and wired fraud detection systems.  (Ormerod el al.  
2003)  used dynamic BBNs called Mass Detection tool to detect fraudulent claims, which then used a 
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rule generator called Suspicion Building Tool.  
The different types of fraud detection are: internal, insurance, credit card, and telecommunications 
fraud detection. Internal fraud detection consists in determining fraudulent financial reporting by 
management (Lin et al. 2003; Bell et al. 2000), and abnormal retail transactions by employees (Kim et 
al. 2003). There are four types  of insurance fraud detection: home insurance (Bentley, 2000; Von 
Altrock, 1997), crop insurance (Little et al. 2002), automobile insurance fraud detection(Phua et al. 
2004; Viaene et al. 2004; Brockett et al. 2002; Stefano et al. 2001; Belhadji et al. 2000), and health  
insurance (Yamanishi et al. 2004; Riedinger et al. 2002). A single meta-classifier(Phua et al. 2004)  is 
used  to select  the best base classifiers, and then combined  with these base classifiers’ predictions to 
improve cost savings (stacking-bagging). Automobile insurance fraud detection data set was used to 
demonstrate the stacking-bagging problem.  Credit card fraud detection refers to screening credit 
applications (Wheeler et al. 2000), and/or logged credit card transactions (Foster et al. 2004; Fan, 
2004; Chen et al. 2004; Chiu et al. 2004; Kim et al. 2002; Maes et al. 2002; Syeda et al. 2002). 
Telecommunications subscription data (Cortes et al. 2003; Cahill et al. 2002; Rosset et al. 1999; 
Moreau et al. 1997), and/or wired and wireless phone calls (Kim et al. 2003; Burge et al. 2001) are 
monitored. Credit transactional fraud detection has been presented by (Foster et al. 2004) and bad 
debts prediction (Ezawa et al. 1996). Employee/retail (Kim et al. 2003), national crop insurance (Little 
et al. 2002), and credit application (Wheeler et al. 2000). Literature focus on video-on-demand 
websites (Barse et al. 2003) and IP-based telecommunication services (McGibney et al. 2003). Online 
sellers (Bhargava et al. 2003) and online buyers (Sherman, 2002) can be monitored by automated 
systems. Fraud detection in government organisations such as tax (Bonchi et al. 1999) and customs 
(Shao et al. 2002) has also been reported.  
We discuss below supervised data mining technique to detect crime using Bayesian Belief Networks, 
Decision trees, and Artificial Neural Networks. 

2.1 Bayesian Belief Networks 
Bayesian Belief Networks provide a graphic model of causal relationships on which class membership 
probabilities(Han et al. 2000) are predicted, so that a given instance is legal or fraud (Prodromidis, 
1999). Naïve Bayesian classification assumes that the attributes of an instance are independent, given 
the target attribute (Feelders et al. 2003). The aim is to assign a new instance to the class that has the 
highest posterior probability. The algorithm is very effective and can give better predictive accuracy 
when compared to C4.5 decision trees and backpropagation (Domingos et al. 1996; Elkan et al. 2001). 
However, when the attributes are redundant, the predictive accuracy is reduced (Witten et al. 1999). 

2.2 Decision Trees 
Decision trees are machine learning techniques that express independent attributes and a dependent 
attribute in a tree-shaped structure that represents a set of decisions (Witten et al. 1999). Classification 
rules, extracted from decision trees, are IF-THEN expressions in which the preconditions are logically 
ANDed and all the tests have to succeed if each rule is to be generated. The related applications 
include the analysis of instances from drug smuggling, governmental financial transactions (Mena et 
al. 2003), and customs declaration fraud (Shao et al. 2002) to more serious crimes such as drug related 
homicides, serial sex crimes (SPSS, 2003), and homeland security(James et al. 2002; Mena et al. 
2003). Data mining methods have solved security and criminal detection problems. [Mena, 2003] 
reviewed the subject (intelligent agents, link analysis, text mining, decision trees, self-organizing 
maps, machine learning, and neural networks) for security managers, law enforcement investigators, 
counter-intelligence agents, fraud specialists, and information security analysts. C4.5 (Quinlan et al. 
1993) is used to divide data into segments based and to generate descriptive classification rules that 
can be used to classify a new instance. C4.5 can help to make predictions and to extract crime patterns. 
It generates rules from trees (Witten et al.., 1999) and handles numeric attributes, missing values, 
pruning, and estimating error rates. C4.5 performs slightly better than CART and ID3 (Prodromidis, 
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1999) in terms of predictive accuracy. The learning and classification steps are generally fast(Han et 
al. 2000). However, performance decrease can occur when C4.5 is applied to large datasets. C5.0 
shows marginal improvements to decision tree induction.  

2.3 Artificial Neural Networks 
Artificial Neural Networks represent complex mathematical equations with summations, exponentials, 
and parameters to copy neurons (Berry et al. 2000). They have been applied to classify crime instances 
such as burglary, sexual offences, and known criminals’ facial characteristics (Mena et al. 2003b). 
Backpropagation neural networks can process a large number of instances with tolerance to noisy data 
and has the ability to classify patterns on which they have not been trained (Han et al. 2000). They are 
appropriate where the results of the model are more important (Berry et al. 2000). However, 
backpropagation require long training hours, extensive testing, retaining parameters like the number of 
hidden neurons, learning rate (Bigus, 1996). 

3. APPLICATION 
The steps in crime detection are: i) classifiers, ii) integrate multiple classifiers, iii) ANN approach to 
clustering, and iv) visualization techniques to describe the patterns. 

3.1 Bayesian Network 
Bayesian Network is a Directed Acyclic Graph, where each node represents a random variable and is 
associated with the conditional probability of the node given its parents. This model shows each 
variable in a given domain as a node in the graph and dependencies between these variables as arcs 
connecting the respective nodes. That is, all the edges in the graphical model are directed and there are 
no cycles. 
For the purpose of fraud detection, we construct two Bayesian networks to describe the behavior of 
auto insurance. First, a Bayesian network is constructed to model behavior under the assumption that 
the driver is fraudulent (F) and another model under the assumption the driver is a legitimate user 
(NF), see Figure 3. The ‘fraud net’ is set up by using expert knowledge. The ‘user net’ is set up by 
using data from non fraudulent drivers. During operation user net is adapted to a specific user based on 
emerging data. By inserting evidence in these networks (the observed user behavior x derived from his 
toll tickets) and propagating it through the network, we can get the probability of the measurement x 
under two above mentioned hypotheses. This means, we obtain judgments to what degree an observed 
user behavior meets typical fraudulent or non-fraudulent behavior. These quantities we call p(x|NF) 
and p(x|F). By postulating the probability of fraud P(F) and P(NF) = 1-P(F) in general and by applying 
Bayes’ rule, we get the probability of fraud, given the measurement x, 

P(F|x) = P(F)p(x|F)/  p(x) 
where,  the denominator p(x) can be calculated as 

P(x) = P(F)p(x|F) + P(NF)p(x|NF)  
The chain rule of probabilities is: 
Suppose there are two classes C1, C2 for fraud and legal respectively. Given an instance  
X = (X1, X2, …, Xn) and each row is represented by an attribute vector A = (A1, A2, …, An) 
The classification is to derive the maximum P(Ci|X) which can be derived from Bayes’ theorem as 
given in the following steps: 

i) P(fraud|X) = [P(fraud | X) P(fraud)] / P(X) 
 

P(legal|X) = [P(legal | X) P(legal)] / P(X) 
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As  P(X) is constant for all classes, only  [P(fraud | X) P(fraud)] and [P(legal | X) P(legal)] need to be 
maximized.  

ii) The class prior probabilities may be estimated by: 
P(fraud) = si  / s 

 
Here, s is the total number of training examples and si   is the number of training examples of class 
fraud. 

 

iii) A simplified assumption of no dependence relation between attributes is made.  

Thus, 

 P(X|fraud)  = ∏
=

n

k 1
 P(xk |fraud)    

and P(X|legal)  = ∏
=

n

k 1
 P(xk |legal)    

The probabilities P(x1 |fraud),   P(x2 |fraud) can be estimated from the training samples: 

P(xk |fraud) = sik / si 

Here, si  is the number of training examples for class fraud and  si k  is the number of training examples 
of class with value xk for Ak 

 
3.1.1 Application 

We present Bayesian learning algorithm to predict occurrence of fraud. 
Using the “Output” classification results for Table 1, there are 17 tuples classified as legal, 
and 3 as fraud. To facilitate classification, we divide the age of driver attribute into ranges: 
 

Table 1: Training set 

Instance  Name Gender Age_ 
driver 

fault Driver_ 
rating 

Vehicle_ 
age 

Output  

1 David Okere M 25 1 0 2 legal 
2 Beau Jackson M 32 1 1 5 fraud 
3 Jeremy Dejean M 40 0 0 7 legal 
4 Robert Howard M 35 1 0.33 1 legal 
5 Crystal Smith F 22 1 0.66 8 legal 
6 Chibuike Penson M 36 0 0.66 6 legal 
7 Collin Pyle M 42 1 0.33 3 legal 
8 Eric Penson M 39 1 1 2 fraud 
9 Kristina Green F 29 1 0 4 legal 
10 Jerry Smith M 33 1 1 5 legal 
11 Maggie Frazier F 42 1 0.66 3 legal 
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12 Justin Howard M 21 1 0 2 fraud 
13 Michael Vasconi M 37 0 0.33 4 legal 
14 Bryan Thompson M 32 1 0.33 4 legal 
15 Chris Wilson M 28 1 1 6 legal 
16 Michael Pullen M 42 1 0 5 legal 
17 Aaron Dusek M 48 1 0.33 8 legal 
18 Bryan Sanders M 49 1 0 3 legal 
19 Derek Garrett M 32 0 0 3 legal 
20 Jasmine Jackson F 27 0 1 2 legal 
X Crystal Smith F 31 1 0 2 ? 

 
Table 2 shows the counts and subsequent probabilities associated with the attributes. With these 
simulated training data, we estimate the prior probabilities: 
The classifier has to predict the class of instance to be fraud or legal. 

P(fraud) = si / s =  3/20  = 0.15 
P(legal)  = si / s =17/20  = 0.85 

 
Table 2: Probabilities associated with attributes 

Value Count Probabilities Attribute 
  legal fraud legal Fraud 

M 13  3 13/17 3/3 
Gender 

F 4 0 4/17 0/3 

age_driver (20, 25) 3 0 3/18 0 

 (25, 30) 4 0 4/18 0 

 (30, 35) 3 1 3/18 1/2 

 (35, 40) 3 1 3/18 1/2 

 (40, 45) 3 0 3/18 0 

 (45, 50) 2 0 2/18 0 

fault 0 5 0 5/17 0 

 1 12 3 12/17 3/17 

driver_rating 0  6 1 6/17 1/3 

 0.33  5 0 5/17 0 

 0.66 3 0 3/17 0 

 1 3 2 3/17 2/3 
 
We use these values to classify a new tuple. Suppose, we wish to classify X = (Crystal Smith, F, 31). 
By using these values and the associated probabilities of gender and driver age, we obtain the 
following estimates: 

P(X |legal) = 4/17 * 3/18 = 0.039 
P(X |fraud) = 3/3 * 1/2    = 0.500 
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Thus, likelihood of being legal = 0.039 *0.9=0.0351 
 
Likelihood of being fraud = 0.500 *0.1= 0.050 
 
We estimate P(X) by summing up these individuals likelihood values since X will be either legal of 
fraud: 

P(X) = 0.0351 + 0.050 = 0.0851 
 
Finally, we obtain the actual probabilities of each event: 

P(legal | X) = (0.039 *0.9)/0.0851= 0.412 
P(fraud |X) = (0.500 *0.1) / 0.0851= 0.588 

 
Therefore, based on these probabilities, we classify the new tuple as fraud because it has the highest 
probability.  
Since attributes are treated as independent, the addition of redundant ones reduces its predictive 
power. To relax this conditional independence is to add derived attributes which are created from 
combinations of existing attributes. 
Missing data cause problems during classification process. Naïve Bayesian classifier can handle 
missing values in training datasets. To demonstrate this, seven missing values appear in dataset.  
The naïve Bayes approach is easy to use and only one scan of the training data is required. The 
approach can handle missing values by simply omitting that probability when calculating the 
likelihoods of membership in each class. Although the approach is straightforward, it does not always 
yield satisfactory results. The attributes usually are not independent. We could use subset of the 
attributes by ignoring any that are dependent on others. The technique does not handle continuous 
data. Dividing the continuous values into ranges could be used to solve this problem, but the division 
of the continuous values is a tedious task, and how this is done can impact the results. 

3.2 DECISION TREE-BASED ALGORITHM 
A decision tree (DT) is a tree associated with a database that has each internal node labeled with an 
attribute, each arc labeled with a predicate that can be applied to the attribute, and each leaf node 
labeled with a class. Solving the classification problem is a two-step process: i) decision tree 
induction- construct a DT, and ii) apply the DT to determine its class. Rules can be generated that are 
easy to interpret. They scale well for large databases because the tree size is independent of the 
database size.  
DT algorithms do not easily handle continuous data. The attribute domains must be divided into 
categories. Handling missing is difficult. Since the DT is constructed from the training data, 
overfitting may occur. This can be overcome via tree pruning. 

3.2.1 C4.5 Algorithm 
The basic algorithm for decision tree is s follows: 

i) Suppose there are two classes for fraud and legal. The tree starts as   a single node N 
representing the training samples.  
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ii) If the samples are of the same class fraud, then the node becomes a leaf and is labeled as 
fraud. 

iii) Otherwise, the algorithm uses an entropy-based measure as a heuristic for selecting the 
attribute that will best separate the samples into individual classes.  

 
The entropy, or expected information  needed to classify a given sample  is: 
I(fraud, legal)=  -  (NumberFraudSamples /  NumberSamples)   
log2 (NumberFraudSamples / NumberSamples) – (NumberLegalSamples / NumberSamples)   
log2 (NumberLegalSamples / NumberOfSamples) 

 
iv)  Expected information or entropy required to classify into subsets by test attribute E is: 

E(A) = ∑ [(NumberTestAttributeFraudValues/ NumberSamples) + 
(NumberTestAttributeLegalValues/ NumberSamples)]* [I(TestAttributeFraudValues, 
TestAttributeLegalValues)] 

v)  Expected reduction in entropy is: 

Gain(A)= I – E(A) 

The algorithm computes the information gain of each attribute. The attribute with highest 
information gain is the one selected for test attribute. 

vi) A branch is created for each known value of the test attribute. The algorithm uses the same 
process iteratively to form a decision tree at each partition. Once an attribute has occurred at a 
node, it need not be considered in any of the node’s descendents. 

The iterative partitioning stops only when one of the conditions is true: a) all examples for a given 
node belong to the same class, or b) there are no remaining attributes on which samples may be further 
partitioned. If this is the case, a leaf is created with the   class in majority among samples, c) there are 
no samples for the branch test-attribute. In this case, a leaf is created with the majority class in samples 

3.3 Rule Based Algorithm 
One way to perform classification is to generate if-then rules.  There are algorithms that generate rules 
from trees as well as algorithms that generate rules without first creating DTs. 

3.3.1 Generating Rules from a Decision Tree 
The following rules are generated for the Decision Tree (DT). 

 
If driver age =25, then class = legal 

If (driver_age =40)  ∧  (vehicle_age =7), then class = legal 

If (driver_age =32) )  ∧  (driver_rating =1), then class = fraud 

If (driver_age ≤  40) )  ∧  (driver_rating =1) )  ∧  (vehicle_age =2), then class = fraud 

If (driver_age > 40) )  ∧  (driver_age  ≤  50) )  ∧  (driver_rating = 0.33), then class = legal 

 



ADFSL Conference on Digital Forensics, Security and Law, 2008 
 

65 

4. MODEL PERFORMANCE 

4.1 Confusion Matrix 
There are two ways to examine the performance of classifiers: i) confusion matrix, and ii) to use a 
ROC graph. Given a class, Cj, and a tuple, ti, that tuple may or may not be assigned to that class while 
its actual membership may or may not be in that class. With two classes, there are four possible 
outcomes with the classification as: i) true positives (hits), ii) false positives (false alarms), iii) true 
negatives (correct rejections), and iv)  false negatives( ALGORITH positive and true negative 
represent correct actions. False positive occurs if the actual outcome is legal but incorrectly predicted 
as fraud. False negative occurs when the actual outcome is fraud but incorrectly predicted as legal. A 
confusion matrix (Kohavi and Provost, 1998), Table 3a, contains information about actual and 
predicted classifications. Performance is evaluated using the data in the matrix. Table 3b shows 
confusion matrix built on simulated data. It shows the classification model being applied to the test 
data that consists of 7000 instances roughly split evenly between two classes. The model commits 
some errors and has an accuracy of 78%.  We also applied the model to the same data  but to the 
negative class with respect to class skew in the data. The quality of a model highly depends on the 
choice of the test data. We also that that ROC curves are not so dependent on the choice of test data, at 
least with class skew. 

Table 3a:  Confusion Matrix 
Observed  

 legal fraud 
predicted legal TP FP 

 fraud FN TN 

 

Table 3b: Confusion matrix of a model applied to test dataset
Observed  

 legal fraud accuracy: 0.78 
predicted legal 3100 1125 recall:      0.86 

 fraud 395 2380 precision: 0.70 

 
 
 

 

 
A number of model performance metrics (Table 3c) can be derived from the confusion matrix.    
 

Table 3c: Performance metrics 
 

model performance metrics  
Accuracy(AC) 

 
Recall or true positive rate(TP) 

 
False positive rate(FP) 

 
True negative rate(TN) 

 
False negative rate(FN) 
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Precision(P) 
 

geometric mean(g-mean) 

 
F-measure 

 
 
The accuracy determined above(Table 3b)  may not be an adequate performance measure when the 
number of negative cases is much greater than the number of positive cases (Kubat et al.., 1998). 
Suppose there are 1500 cases, 1460 of which are negative cases and 40 of which are positive cases. If 
the system classifies them all as negative, the accuracy would be 97.3%, even though the classifier 
missed all positive cases. Other performance measures are geometric mean (g-mean) (Kubat et al.., 
1998), and F-Measure (Lewis and Gale, 1994). For calculating F-measure, β has a value from 0 to ∞ 
and is used to control the weight assigned to TP and P. Any classifier evaluated using g-mean or F-
measure will have a value of 0, if all positive cases are classified incorrectly.  
To easily view and understand the output, visualization of the results is helpful.  
Naïve Bayesian visualization provides an interactive view of the prediction results. The attributes can 
be sorted by the predictor and evidence items can be sorted by the number of items in its storage bin. 
Attribute column graphs help to find the significant attributes in neural networks. Decision tree 
visualization builds trees by splitting attributes from C4.5 classifiers. 
Cumulative gains and lift charts are visual aids for measuring model performance. Lift is a measure of 
a predictive model calculated as the ratio between the results obtained with or without the predictive 
model. For instance, if 105 of all samples are actually fraud and a naïve Bayesian classifier could 
correctly predict 20 fraud samples per 100 samples, then that corresponds to a lift of 4.  

Table 4: Costs of Predictions 
fraud legal 

True Positive(Hit) cost= number of 
hits* average cost per investigation 

False Positive(False alarm) cost=number of 
false alarms * (Average cost per investigation 
+ average cost per claim)  

False Negative(miss) cost= number of 
misses* average cost per claim 

True Negative(correct rejection) cost = 
number of correct rejection claims * average 
cost per claim 

 
Table 4 shows that True Positives (hits) and False Positives (false alarms) require cost per 
investigation. False alarms cost are the most expensive because both investigation and claim costs are 
required. False Negatives (misses) and True Negatives(correct rejection) are the cost of claim.  

4.2 Relative Operating Characteristic Curve 
Another way to examine the performance of classifiers is to use a Relative Operating Characteristic 
(ROC) curve, (Swets, 1988). A ROC graph is a curve that depicts the performance and performance 
tradeoff of a classification model (Fawcett, 2004, Flach, 2004) with the False Positives along X -axis 
and the True Positives along the Y axis. The point (0, 1) is the perfect classifier: it classifies all 
positive cases and negative cases correctly. It is (0, 1) because the false positive FP is 0, and the TP 
rate is 1. The point (0, 0) represents a classifier that predicts all cases to be negative, while the point 
(1, 1) corresponds to a classifier that predicts every case to be positive. Point (1, 0) is the classifier that 
is incorrect for all classifications. An ROC curve or point is independent of class distribution or error 
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costs (Provost et al.., 1998). It sums all information contained in the confusion matrix, since FN is the 
complement of TP and TN is the complement of FP (Swets, 1988). It provides a visual tool for 
examining the exchange between a classifier to correctly identify positive cases and the number of 
negative cases incorrectly classified. 
We introduce to new performance metrics to construct ROC curves (in confusion matrix terms), the 
TP Rate (TPR) and the FP Rate (FPR): 
 

TPR(recall) = TP / (TP+FN) 
 

FPR = FP / (TN +FP) 
 

The classifier is mapped to the same point in the ROC graph regardless of whether the original test set 
with sampled down negative class is used illustrating that ROC graphs are not sensitive to class skew. 
One way of comparing ROC points is by using an equation that equates accuracy with the Euclidian 
distance from the perfect classifier, the point (0, 1). We include a weight factor that allows defining 
relative misclassification costs.  We define ACd as a distance based performance measure:  

, where W ranges from 0 to 1, that is used to assign 
relative importance to false positives and false negatives. ACd ranges from 0 for the perfect classifier 
to sqrt(2) for a classifier that classifies all cases incorrectly. ACd differs from g-mean1, g-mean2 and F-
measure in that it is equal to 0 only if all cases are classified correctly. In other words, a classifier 
evaluated using ACd gets some credit for correct classification of negative cases, regardless of its 
accuracy in correctly identifying positive cases.  

4. CONCLUSIONS 
We studied the existing fraud detection systems. To predict and present fraud we used Naïve Bayesian 
classifier. We looked at model performance metrics derived from the confusion matrix. We illustrated 
how ROC curves can be deployed for model assessment. Performance metrics such as accuracy, recall, 
and precision are derived from the confusion matrix. ROC analysis provides a highly visual account of 
a model’s performance. It is strong with respect to class skew, making it a reliable performance metric 
in many important fraud detection application areas.  
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