Singular reaction diffusion equations where a parameter influences the reaction term and the boundary condition (I)

Nalin Fonseka
University of North Carolina at Greensboro

Abstract
We analyse positive solutions to the steady state reaction diffusion equation:
\[
\begin{cases}
-u'' = \lambda h(t)f(u); \quad (0, 1) \\
-du'(0) + \mu(\lambda)u(0) = 0 \\
u'(1) + \mu(\lambda)u(1) = 0
\end{cases}
\]

where \(\lambda > 0 \) is a parameter, \(d \geq 0 \) is a constant, \(f \) is a \(C^2 \) increasing function on \([0, \infty)\) such that \(f(0) = 0 \) and \(\lim_{s \to \infty} \frac{f(s)}{s} = 0 \), \(h \) is a \(C^1 \) nonincreasing function on \((0, 1]\) with \(h(1) > 0 \) and there exist constants \(d_0 > 0, \alpha \in [0, 1) \) such that \(h(t) \leq d_0 t^\alpha \) for all \(t \in (0, 1] \), and \(\mu \) is an increasing continuous function on \([0, \infty)\) such that \(\mu(0) \geq 0 \). We will discuss existence and multiplicity results via the method of sub-supersolutions. Further, we will discuss uniqueness results for \(\lambda \gg 1 \).

*co-authors: A. Muthunayake, R. Shivaji and Byungjae Son.