Short Take-off & Landing for Unmanned Aerial System

Brandon Antosh, Ramy Abdellatif, Eddie Charlton, Ian Enriquez, Justin Gerber, Milton Marwa, Ian Novotny, Praveen Raju, Brandon Saxon, and Alex Soos,

Department of Aerospace Engineering
Embry-Riddle Aeronautical University, Daytona Beach, Florida

Research Advisor: Hever Moncayo, Ph.D., Research Professor
Department of Aerospace Engineering
Embry-Riddle Aeronautical University, Daytona Beach, Florida

Daytona Beach, Florida, April- 3rd, 2013
What Is Short Take-Off and Landing (STOL)

Short Takeoff and Landing: (DOD/NATO) The ability of an aircraft to clear a 50-foot (15 meters) obstacle within 1,500 feet (450 meters) of commencing takeoff or in landing, to stop within 1,500 feet (450 meters) after passing over a 50-foot (15 meters) obstacle. This method is also known as STOL.
Benefits of STOL

Quick flow of airport traffic
More accessible locations for aircraft
UAV Mission Capabilities
Methods used to achieve STOL

- Wing Modification
- Thrust Modification
- Other Methods
Wing Modification

- Flaps
- Slats
- Vortex Generators
- Winglets
Thrust Modification

- Thrust Reversers
- Variable Pitch Propeller
- Rocket Boosters
Other Methods

- Airbrakes
- Wheel Breaks
- Parachute
The UAV will perform as simple flight layout. This will be a simple loop in the shape of the test field.

The crucial data required out of the mission is the distance of takeoff and landing.

The data will be recorded using an on-board computer.
Airframe for Short-Landing Testing

Sig-72 Airframe

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wingspan</td>
<td>72 in (1829 mm)</td>
</tr>
<tr>
<td>Wing Area</td>
<td>720 in² (46.5 dm²)</td>
</tr>
<tr>
<td>Length</td>
<td>51.75 in (1315 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>5 - 5.5 lbs (2268 - 2495 g)</td>
</tr>
<tr>
<td>Radio Required</td>
<td>4-Channel with 5 Standard Servos</td>
</tr>
<tr>
<td>Glow Power</td>
<td>2-Stroke .40-.46 cu. in. (6.5-7.5 cc) 4-Stroke .40-.54 cu. in. (6.5-8.8 cc)</td>
</tr>
<tr>
<td>Electric Power</td>
<td>500 - 800 watt (800 - 1000 kv) Brushless Motor; 50 - 60A ESC; Lipo Battery Pack</td>
</tr>
</tbody>
</table>
Simulation Environment

6DOF Aerodynamic Model

Landing Gear Model
Fast Prototyping of On-board System
Ardupilot APM2.5

APM 2.5
Magnetometer
GPS
IMU
Pressure Sensor
Analog Inputs
Barometric Sensor
RC Channels
Telemetry
Flash Memory
Fast Prototyping of On-board System

Software

- Real-Time Workshop
- C++ Compiler
- ERAU Support
- Blockset
- APM 2.0
- Ardupilot
Fast Prototyping of On-board System

Software

Figure: Function Block Parameters: 6-DOF IMU

- **Parameters**:
 - Low Pass Filter Frequency: 20 Hz
 - Max Gyro Scale: +/- 500 deg/sec
 - Max Accelerometer Scale: +/- 8g
 - Sample Time: ts_arudino_claw
Fast Prototyping of On-board System

Software

![Function Block Parameters: GPS](image)

- **ArduPilot Mega 2.0 MediaTek MT3329 GPS Unit (mask) (link)**
- **UTC_Time, ms from midnight, UTC**
- **UTC_Date, DDMMYY, UTC**

Fix Type:
- 0 = No GPS Unit
- 1 = GPS Unit, no lock
- 2 = GPS unit, locked

Inputs used only for simulation, yada yada yada
Fast Prototyping of On-board System

Software
Fast Prototyping of On-board System

Hardware

- **RC-Remote**
- **RC-Receiver**
- **Tx**
- **Ground Station**
- **Pitot Tube**
- **Servos and Motor**
Fast Prototyping of On-board System

Motor Test-bed
The Academy of Model Aeronautics’ (AMA) Daytona Beach field was chosen for the flight test program. Approximately 1400 ft long and 1300 ft wide, the field has enough space to perform the necessary maneuvers. It has a single, hard-surface runway located on the east side. Figure 5 shows a satellite image of the field.
Preliminary Flight Data

Touchdown

Touchdown - High Frequency signal after touch down
Preliminary Flight Data

Flight State On-board signal

Touchdown - High Frequency signal after touchdown

Activate brakes control and heading control