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1. Introduction 

1.1 REVIEW OF DESCRIPTIVE STATISTICS 

When working with a data set, we use the notation xi for the ith data point in 
a data set. For example, if we were working with the following data set of air-
plane’s speeds 

Data set 1.1.1 (airplane’s speeds) 
Speed ( mph ) 

500 

700 

900 

we would call x1 = 500 and x2 = 700 etc. Of course, in the “real world” it is com-
mon to work with extremely large data sets so it becomes necessary to calcu-
late the descriptive statistics, which allow us to understand the various things a 
data set is telling us. These descriptive statistics are, generally speaking, divided 
into two categories: measures of central tendency or measures of dispersion. 
The first category, measures of central tendency, attempts to simply describe 
the average value or middle of the data set; namely, a few examples of the 
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measures of central tendency are the median and the mean as given in defin-
itions (Definition) 1.1.1 & 1.1.2. The second category, measures of dispersion, 
attempts to describe how spread out the data set is; namely, a few examples of 
the measures of dispersion are the range and the variance as given in Defintion 
1.1.3 & 1.1.4. 

It is common that many resources will attempt to describe a data set by 
graphical illustration. Although these illustrations are useful, it is essential to 
remember that as scientists we cannot rely on graphical analyses to draw con-
clusions. Rather, we require formal analytical mathematical statements. For 
example we know that for a data set to be considered a normal distributionfor a data set to be considered a normal distribution the 
data set must have most of the data frequency near the middlemost of the data frequency near the middle with a symmetrical symmetrical 
pattern and the frequency should be less the further away from the middlepattern and the frequency should be less the further away from the middle. Hence, 
if a histogram is constructed it should look like this: 

 

Figure 1. Histogram of a normal distribution 

It is essential to understand that this graph alone does not prove nor reject the 
hypothesis that this distribution is normal. If one wanted to attempt to validate 
the hypothesis that this distribution is normal, then a formal “test of normality,” 
including a formal computed analytical value to be compared to a formal analyt-
ical critical value, would be required. Prior to getting ahead of ourselves, let us 
summarize a few common descriptive statistics with proper analytical formulas. 
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Definition 1.1.1 – The meanmean  (or arithmetic average) of a data set of n elements 

Example 1.1.1 

Find the mean of data set 1.1.1 

Example 1.1.2 

Find the mean of data set 1.1.2 

Data set 1.1.2 (Car speeds) 

Speed ( mph ) 

20 

30 

40 
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Definition 1.1.2 – The medianmedian of a data set of n elements 

  the middle value of the data set when ranked (low – high order), 
NOTE: if there’s a tie for the middle value, then the median is the average of the two middle values. 

Example 1.1.3 

Find the median of data set 1.1.1 
Firstly, we must rank the data set, which in this case is already ordered, as 
X1= 500 & X2 = 700 & X3 = 900. 
Then, the median is simply found as the middle value. In this case 

It is important to note that the measures of central tendency alone do not 
completely describe the data set under consideration. For example, if we com-
pute the mean & median of both data sets 1.1.3A & 1.1.3B, then we will find the 
results to be the same as 50. However, it is obvious that the data sets are quite 
different; namely, the first data set is very clustered together while the second 
data set is much more spread out. 

Data set 1.1.3A 
45 

47 

50 

53 

55 

4 TIM SMITH



Data set 1.1.3B 
30 

35 

50 

65 

70 

Thus, we will need to consider measures of dispersion in addition to finding the 
mean or median. Now, a small value of dispersion would imply that the data 
set is closely clustered together while a large value of dispersion would mean 
the data set is more spread out; hence we would expect data set 1.1.3A to have 
smaller measures of dispersion than data set 1.1.3B. This is indeed true as we 
will find the variance of 1.1.3A is 17, while the variance of 1.1.3B is 312.50. 

 

Definition 1.1.3 – The rrangeange of a data set of n elements 

The distance between the largest & smallest value of the data set when ranked. 

Example 1.1.4 

Find the range of data set 1.1.1. 
Firstly, we must rank the data set, which in this case is already ordered, as X1= 

500 & X2 = 700 & X3 = 900. 
Then, the range is simply the largest value minus the smallest value X3 – X1 = 

900 – 500 = 400. 
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Definition 1.1.4 – The vvarianceariance of a data set of n elements 

S2 =

Example 1.1.5 

Find the variance of data set 1.1.3A. 
First, we must find the mean, which in this case is 50. Next, it helps to use the 

following table to simplify the procedure for computing our formula. 

xi 

45 -5 25 

47 -3 9 

50 0 0 

53 3 9 

55 5 25 

If we sum the last column we will find the sum of the squares, 

which in this example is 68. The variance is then found as this value divided 
by n-1. In this example we would divide by 4 to find the variance to be 68/4 = 17. 

 

Definition 1.1.5 – The sstandard deviation tandard deviation of a data set of n elements 
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S = square root of variance 

The standard deviation is essentially measuring the same thing as the variance 
did, however, by taking the square root we are bringing the measure back to the 
same dimension / units of the original data. For example, if we computed the 
variance of data set 2 we would find it to be 100. However, this would actually 
be in units of mph2 which may not be the most practical in applications, yet the 
standard deviation would be in units of just mph. 

Example 1.1.6 

Find the standard deviation of data set 1.1.2. 
First, we must find the variance which as noted above is 100 mph2. Thus, 

by definition, the standard deviation is the square root of variance = 

It is also very important to keep in mind “unit bias” when performing data 
analysis. For example if we were to compare our prior data set of car speeds 

Data set 1.1.2 (Car speeds) 

Speed ( mph ) 

20 

30 

40 

to our prior data set of plane speeds 
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Data set 1.1.1 (Aircraft speeds) 

Speed ( mph ) 

500 

700 

900 

it should be apparent that a 200 mph difference of speed in one context is 
quite different than a 200 mph difference of speed in another (have you ever 
been passed by another vehicle on the freeway going 200 mph faster?). This 
“unit bias” can be eliminated by transforming the raw data to the “Z scores” 
which, as the next definition will outline, is done simply by dividing the individ-
ual data point’s deviation by the standard deviation. In fact, this standardization 
will show that the third car, which is going 10 mph above the mean of that data 
set, has the same “Z score” as the third plane, which is going 200 mph above 
the mean of that data set. Hence, one can infer that a 10mph deviation in car’s 
speed is essentially equivalent to a 200 mph deviation in an airplane’s speed. 

 

Definition 1.1.6 – The Z score Z score of data point Xi from a data set 

Example 1.1.7 

Compute the Z score for all data points in data sets 1.1.1 & 1.1.2. 
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xi xi 

2
0 -1 500 -1 

3
0 0 700 0 

4
0 1 900 1 

 

1.2 INTRODUCTION TO CORRELATION & REGRESSION 

To conclude this introductory chapter, in this section we will briefly introduce 
the idea of correlation between two data sets x and y which we will assume both 
contain an equal number of elements, namely n elements in each data set. The 
main idea with correlation, or perhaps the main question to ask, is this: is there 
a pattern between the two data sets? A common mistake that can be made is 
thinking that the only way to have a correlation between data set x and data set 
y is that the pattern between x and y must be linear, perhaps y = 2x or y =3x 
etc. However, this is not correct as there are many other correlation patterns 
which can occur between two data sets such as quadratic fits or exponential fits. 
Later on in the textbook we will study the concept of building a predictive model 
from an x,y data set pair known as a linear regression model, and this tool is 
one of the most widely applicable statistical models. Of course the linear regres-
sion model is a primary purpose of our study and for students of engineering 
or the sciences this linear predictive data model can be extremely useful. But, 
it is important to note that linear fits are not the only fit and just because data 
is correlated does not mean that a linear regression model will work. In mathe-
matical terms one might say that a solid value of correlation is a necessary con-
dition for a linear regression model to work, but it is not a sufficient condition! 
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The correlation between two data sets is defined in terms of the deviation 
between the Z scores of the x data set and the Z scores of the y data set. No 
deviation between the data set’s Z scores is defined as perfect correlation, while 
an extreme amount of deviation between the data set’s Z scores is defined as a 
low correlation or near zero correlation. For example, if we were to revisit exam-
ple 1.1.5 and call the data set of car’s speeds the x data set and the data set 
of airplane’s speeds the y data set and then compute the differences of those 
Z scores, we would essentially be studying the correlation pattern between the 
cars and airplanes. It is worthy to note, prior to working out the details of this 
example, that in this case we expect a perfect correlation as we have previously 
discovered that the car’s speeds and airplane’s speeds go up in a uniform pat-
tern of 1 standard deviation each data point. 

Example 1.2.1 

Compute the difference between the Z score for data points sets 1.1.1 & 1.1.2. 

x
i 

yi 

2
0 -1 50

0 -1 

3
0 0 70

0 0 

4
0 1 90

0 1 

To begin we recall from Ex 1.1.7 the Z score which we previously computed and 
then label accordingly as done above. To complete this example we then simply 
compute the differences 
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Differences= 

-1 -1 0 

0 0 0 

1 1 0 

We observed, as expected, that the total differences are zero which shows a 
perfect correlation between our data sets. 

Now, for a formal definition of correlation we use the following definition 
which has the interpretation similar to a percent: r near 1 is near perfect corre-
lation (analogous to 100% being near perfect chance) while r near 0 is low cor-
relation (analogous to 0% being near no chance). 

 

Definition 1.2.1 – The correlation correlation between a data pair set x and y both of n elements 

Example 1.2.2 

Compute the correlation for data pairs from data sets 1.1.1 & 1.1.2. 
To begin, we recall from Ex 2.1.1 the differences in the Z score which we pre-

viously computed and then we must compute the squared differences 
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Differences= 

-1 -1 0 

0 0 0 
 

1 1 0 

Now, to complete the problem we utilize the definition 

with n= 3. Doing so this yields the solution 

We observed, as expected, that the correlation here is a perfect correlation = 
1, which again we can informally view analogously to a percent so in an informal 
sense we can think this data set is 100% correlated. 

Example 1.2.3 

Compute the correlation for data pairs from the data set 1.2.1 below. 
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Data set 1.2.1 

X Y 

1 2 

2 4 

3 6 

4 7 

5 11 

Where it is given that the mean of x is 3 and y is 6, while the standard deviation 
of x is 1.58 and of y is 3.39. 

To begin, we must compute the Z scores in for x and y separately 
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Now, the differences in the Z scores must be computed and then their squares 
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Differences= 

-1.26582 -1.17994 -0.08588 0.007376 

-0.63291 -0.58997 -0.04294 0.001844 

0 0 0 0 

0.632911 0.294985 0.337926 0.114194 

1.265823 1.474926 -0.2091 0.043724 

Finally, to complete the problem we utilize the definition 

with n= 5. Doing so yields the solution 

We observed, as expected, that the correlation here is a very high correlation 
= 0.98 as expected because in the data set we can observe the pattern Y being 
approximately 2x. Again we can informally view analogously to a percent so in 
an informal sense we can think this data set is 90% correlated. 

It is worthy to note that while the prior definition is the theoretically correct 
and the original definition it is not always the commonly used one. By putting in 
the definitions of Z scores and performing some algebraic manipulation the fol-
lowing alternate definition for correlation can be obtained and is useful since it 
is all in terms of values from the data set, hence it is not needed to first compute 
the Z scores. Also, for mathematical interest the correlation can be written as 
the covariance of X and Y divided by the products of their standard deviations. 
Namely, we can write 
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Definition 1.2.2 – The correlation correlation between a data set x and set y both of n elements 

The above definition will yield the exact same value as the correlation definition 
provided in the prior definition 1.2.1, and is actually derived from that prior def-
inition, but this new formula is often preferred when coding formulas as it can 
be computed directly from raw data as opposed to needing the normalized “z 
values.” 

One of the most useful applications of correlation for an (x,y) pair data set is 
to build a predictive model to predict the y variable in terms of the x variable as 
input. Namely, it is desired to create an equation of the form 

where the hat notation is utilized to distinguish it as being a predicted value; 
perhaps a future or forward data point. 

 

Definition 1.2.3 – The linear regression line linear regression line of a data set x and set y 

where 

and 
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Example 1.2.4 

Compute the linear regression line for data pairs from the data set 1.2.1. 
To begin, we recall from the prior solution that 

Hence, we can compute 

and 

Which yields our solution as the predictive model of our linear regression line 

The linear regression line has far reaching applications in various fields such 
as engineering or science and finance applications. For example, our data 
ended at the value of x being 5 so one could use the linear regression line to 
expand beyond that, perhaps to find the predicted y value associated with a 
future x of 6 as 

For another example, our data set contained only integer values of x being 1 
then x being 2 etc., and one could use the linear regression line to fill in between 
that, perhaps to find the predicted y value associated for a half way value x of 
1.5 as 

There are many other applications, and of course restrictions to, the linear 
regression line and this will be a central theme of the later chapters of this 
textbook. However, prior to continuing with our development it is necessary to 
overview, or perhaps receive for the informed reader, some key principles from 
the mathematical theory of probability which are contained in Chapter 2. Due 
to the fact that this text is designed as a self-contained resource, these princi-
pals in Chapter 2 are developed “from the ground up” and the informed reader 
may be able to jump forward at this point. Any reader who has the knowledge 
equivalent to a Junior or Senior year university level course in mathematical 
statistics and/or introductory probability theory can most likely jump to Chap-
ter 3. Regardless of that progression, it is important to close this Chapter with 
one essential principal regarding regression: while it is logical that it only makes 
sense to use a linear regression model for a data set which is highly correlated, 
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that does not ensure that the linear regression model will work or be statisti-
cally valid. Namely, it is vital to understand, as previously stated, that from a 
mathematical point of view one can say that a solid value of correlation is a nec-
essary condition for a linear regression model to work, but it is not a sufficient 
condition! 

1.3 A BRIEF COMMENT ABOUT MULTIVARIABLE DATA 

While the purpose of this textbook is for engineering students to obtain the 
knowledge needed to understand the underlying mathematical theory of prob-
ability, as opposed to an introduction to the many methods of inferential statis-
tics & data analysis, it is worthy to include here a quick discussion about how to 
deal with data sets of more than two variables. Namely, one of the most com-
mon questions that arises is: “now that we have the definition of correlation 
between x & y, how do we generalize that to a data set that has more than two 
variables, for example x & y & z?” And, the answer to this question is that gener-
ally we do not have a “multi correlation,” but in the following example a method 
is outlined as to how such a measure can be computed. 

The data set below was used in a research study to predict the value of an 
exchange traded fund called DJD, which is a very popular investment instru-
ment that is designed to track the famous United States DOW JONES index; 
however, this index only includes a subset of the index of companies that have 
either maintained or raised their dividends over the last year, hence it is often 
preferred by investors looking for a somewhat conservative and safe invest-
ment. Now, the goal of the research study was to determine a statistical model 
that utilized macroeconomic predictor variables to make a mathematical pre-
diction of the fair value of DJD. A data set of monthly values from 2016 to 2109 
was obtained, and a subset of that data is listed below for illustration where the 
predictor variables have been normalized. For those interested in the details 
the values used here were: Consumer Price Index ( AKA “CPI” or the govern-
ment’s measure of consumer inflation ), Producer Price Index ( AKA “PPI” or the 
government’s measure of product cost inflation ), Gross Domestic Product ( AKA 
“GDP” ), and the Federal Funds Rate ( AKA “FFR” ), with all data being publicly 
available freely from official government websites. 
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Data set 1.3.1 

DJD Date CPI PPI GDP FFR 

$19.91 Jan 2016 1.45 1.23 1.68 -1.19 

$20.56 Feb 2016 1.46 1.20 1.68 -1.17 

: : : : : : 

Now, in the analysis one of the worst things that can be done when creating 
such models is to have high amounts of inter correlation within the predictor 
variables; this applies regardless if the model being used is regular regression 
like was done in this research or more advanced modern models such as 
machine learning methods (of course technically regression is the nicest exam-
ple of supervised machine learning). Often a first investigative step is to run a 
correlation matrix, which will yield results that look something like 

 CPI PPI GDP FFR 

CPI 

PPI 0.984656 

GDP 0.983551 0.968366 

FFR 0.965445 0.942653 0.986 
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The issue with this procedure is that it is not really a multi variable correlation, 
rather it is a list of multiple individual correlations. For example, the value 
0.984656 is the correlation between CPI & PPI in isolation, while the value of 
0.968366 is the correlation between PPI & GDP in isolation etc. 

The correlation matrix does provide information, but it does not really answer 
the question of how multi correlated these variables are. For example, the 
largest correlation between any two variables is seen between FFR and GDP, as 
that pair has the largest value of correlation being 0.986. However, when this 
was computed the computation was done in isolated. Namely, when calculating 
this the same correlation formula from our prior section 

was used with the x variable being FFR and the y variable being GDP, but none 
of the other variables were considered in the computation ( i.e. it was done in 
isolation ). Thus, this measure does not really define how one of the variables, 
say GDP, is correlated to all of the other variables. One informal resolution to 
this problem is to add up all of the individual correlations, e.g. 0.986 + 0.968366 
+ 0.983551. Doing so we would obtain the total for GDP to be 2.937917. Then 
similarly the total for CPI to be 2.933651, the total for PPI to be 2.895676 and 
the total for FFR to be 2.894098. While this does provide the information that 
GDP does appear to have the worst inter correlation, with CPI not so far behind, 
this is not exactly a mathematically proper definition. 

In order to measure how correlated one variable is related to multiple other 
predictor variables the following procedure is often applied. Firstly, take the 
variable of concern and move it into the column of the response variable; for 
example if we were to do this for GDP our data set would now look like 
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Data set 1.3.2 
Y=GDP Date CPI PPI FFR 

1.68 Jan 2016 1.45 1.23 -1.19 

1.68 Feb 2016 1.46 1.20 -1.17 

: : : : : 

or if we were to do this for CPI our data set would now look like 

Data set 1.3.3 
Y=CPI Date PPI GDP FFR 

1.45 Jan 2016 1.23 1.68 -1.19 

1.46 Feb 2016 1.20 1.68 -1.17 

: : : : : 

Now, the next step is to run a multivariable regression model with the remain-
ing predictors being used as normal, but the Y variable not being the original 
data desired but instead replaced by the predictor variable under considera-
tion. Then after running this multivariable regression model from the output 
the value of the so called coefficient of determination ( AKA R squared ) should 
be noted. For example doing so for data set 1.32, which has GDP as the 
response, above yields R2 = 0.987513087343, so this is essentially a measure-
ment of how GDP is totally correlated ( technically predicted by ) the predictor 
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variables CPI, PPI and FFR. Likewise, doing so for data set 1.33, which has CPI 
as the response, above yields R2 = 0.984192914938173, so this is essentially a 
measurement of how GDP is totally correlated (again, technically predicted by) 
the predictor variables PPI, GDP and FFR. 

 

Definition 1.3.1 – The variance inflation factor ( VIF ) variance inflation factor ( VIF ) for a predictor variable Xi from a set of predictor variables 

X1,X2,… 

where the 

is the coefficient of determination obtained from the multi variable regression model predicting 
variable Xi in terms of the remaining predictor variables. 

Example 1.3.1 

Compute the VIF for both GDP and CPI from data set 1.3.1, and using the previ-
ously obtained information. 

To solve this it is needed to obtained the coefficients of determination, but 
those have already been provided. Thus, we can quickly compute 

and 

Now, while these computations are very interesting and provide information, 
the big question is do they really answer the question as to how “multi corre-
lated” one variable is to all of the others, and the answer is sort of! The coef-
ficient of determination does tell us what percentage of the variance in the 
variable under consideration is explained by a regression model created from 
the other variables, and while this is not exactly a correlation it does provide 
similar information. However, it is important to remember the main question 
in applications is not really to see how correlated one variable is to the others, 
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but will putting both of them into the model cause an issue? The general rule of 
thumb is if a variable has a VIF > 10 then it would be advised to proceed with 
caution as to using the variable, and if a variable has a VIF closer to 100 then it 
absolutely should not be included. Moreover, what is interesting to observe is 
how the variance inflation factor sniffs out minor details. Namely, in this exam-
ple we found, using the not so formal method of adding up all the individual 
correlations, that CPI and GDP were about the same, 2.933651 and 2.937917 
respectively. However, the VIF method is much more accurate as it shows that 
GDP had a much higher value, 80 compared to 60, thus it provides a clear solu-
tion that of these variables GDP is the most correlated, formally what is referred 
to as multicolinearity. 

It is important for the reader of this text, who again should be more focused 
on understanding the mathematical theory of probability, that the big take away 
is that while we do not really have a definition of multi correlation, this method 
of VIF is an important tool which can be used to narrow down a data set; hence, 
avoiding redundancy within the data set which can be an issue if one predictor 
variable is extremely correlated to many of the other predictor variables. Lastly, 
to close this chapter the formal definition of the coefficient of determination is 
provided for mathematical completeness, but no examples as those are gener-
ally discussed in courses such as inferential statistics or regression analysis. 

 

Definition 1.3.2 – The coefficient of determination coefficient of determination ( ( RR22) ) for a regression model 

where the term FUV is known as the fraction of unexplained variance, which can be computed in 
terms of the known data value, 

along with the predicted data value, 

along with the mean as 
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Chapter 1 Exercises 

1. Compute the variances for the following two data sets: 

◦ Data Set 1: 5, 15, 20, 25, 35 

◦ Data Set 2: 15, 17, 20, 23, 25 

2. Using the results from the previous problem, describe what variance tells us about the 
data set. 

3. If a normally distributed data set has a mean of 75 and a standard deviation of 3, find 
the interval that contains 95% of the data. 

4. If a normally distributed data set has a mean of 100 and a variance of 25, find the maxi-
mum value to be considered in a normal range (99%). 
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2. Definition of Probability 

2.1 INTRODUCTION FROM EXAMPLES 

When studying probability theory, it is very important to consider the per-
spective we have when investigating problems. As engineers or scientists, it is 
expected to have solution values that predict exactly when or exactly where 
some event will occur, i.e. deterministic solutions. However, in probability we 
do not have such solutions or problems; rather, we define the likelihood of out-
comes. This begins with how we define our variables; namely we define a ran-
dom variable (RV) as a number whose value depends on the outcome of a 
random experiment. The key point here is that the outcome of the experiment 
are random and not deterministic. A good example is the lottery: the odds say it 
is extremely unlikely to win but that does not mean you will not win. We do not 
know the outcome until the experiment of the lottery numbers being drawn is 
conducted. 

There are, generally speaking, two “kinds” of variables: discrete variables and 
continuous variables. One of the simplest illustrations to demonstrate the dif-
ference between these two kinds of variables can be illustrated from a typical 
classroom situation; namely, the number of students in the class is a discrete 
variable while the time of the class is a continuous variable. A discrete variable 
is one that is finite and countable. For example, no matter how large the class 
is the number of students is countable! We also notice that the number of stu-
dents is a finite discrete value, identified by a positive integer, as you can think 
when new students enter the class there is either 1 student or 2 students, but 
no in-between value such as a half of a student. On the other hand, a continu-
ous variable is one that is infinite. For example, time is an infinite continuum. 
A student who is studying theoretical physics will be very interested to dialog 
about the matter of time as a variable and observable measurements. How-
ever, for simplification of the idea let us just look at one interesting property 
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of continuous real numbers. There is a famous mathematical axiom that states 
between any two real numbers there is always at least one more value. Hence, 
any interval on the real number line contains an infinite number of values. Now, 
this idea can be illustrated by just considering two moments in time. Let us have 
a starting time of t=1 second and an ending time of t=2 seconds, and in doing 
so we see that there is a halfway point: 

= ½
Repeating this process using the original starting time of t=1 second but a 

new ending time of t=1.5 seconds we see that there is a new halfway point: 
= ½

Repeating this process once more using again the original starting time of t=1 
second but a new ending time of t = 1.25 seconds we see that there is a new 
halfway point: 

= ½
As you can see, this process could go on indefinitely, hence proving that 

between any two values of a continuous variable there are infinitely many 
points. 

The prior result is very interesting from a pure mathematical number theoret-
ical point of view alone, but it also yields one very interesting probability result 
for us to take note of: the probability of our RV being any one single value is 
exactly equal to zero. While this will be developed more formally later on, we 
can see the idea as follows using the classical definition of probability when it is 
applied to the sample space being any interval from the real number line: 

2.2 THEORETICAL VS EXPERIMENTAL DEFINITION 

Prior to beginning our formalization of probability, we must first summarize 
some key terminology. 

Definition 2.2.1 – A simple event simple event of an experiment under consideration in an application of probability 

a single outcome of the experiment under consideration. 
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Definition 2.2.2 – An event event of an experiment under consideration in an application of probability 

a collection of one or more simple events. simple events. 

For example, if you were considering the experiment of drawing a card from a 
deck of 52 cards, a simple event would be the ace of spades from this deck of 
cards, as that is a single outcome (card). However, an event, which is a collection 
of one of more simple events, could be drawing an ace card, as the outcome of 
an ace technically consist of four simple events. 

Definition 2.2.3 – The sample space sample space of an experiment under consideration in an application of probability 

All possible outcomes. The symbol ⯑ is often utilized to identify the sample space. 

Now that we have defined the events and sample space, we can proceed to for-
malize our definition of probability! 

Definition 2.2.4 – The theoretical definition of probability theoretical definition of probability related to an experiment under consideration 

Which is often written as 

For example, if we were playing a game of cards and wanted to find the prob-
ability of drawing an ace on a random trial, we would identify that there are 4 
simple events in E, and the size of the sample space is 52. Hence, we can find 

It is very important to note here that we should not round up the solution, 
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often a common practice is to cut, not round, solutions at the second decimal 
place and report the solution as a whole probability. Moreover, it may be desir-
able to keep more accuracy, perhaps 7.6% or 7.69% etc, but we should never 
round the solution up! While rounding 7.69% up to 7.7% (or perhaps rounding 
7.6% up to 8%) may seem like an insignificant detail, in some real world appli-
cations such details can have serious consequences! Thus, for consistency in 
this text we will always follow the rule of “being a conservative statistician,” and 
always report our solutions as whole percentages, which are cut, not rounded, 
at the second decimal from our numerical results obtained. 

Definition 2.2.5 – The empirical (or experimental) definition of probability empirical (or experimental) definition of probability related to an experiment under consider-

ation 

Which is often written as 

For example, if we were playing a game of cards that had four players which 
exhausted the deck, hence each player got 13 cards, and we got the hand: ace 
of hearts, jack of spades, 9 of hearts, 8 of clubs, 7 of spades, 6 of hearts, 5 of 
clubs, 4 of spades, 3 of hearts, 2 of clubs, king of spades, queen of spades, and 
the ace of spades. Then we could compute the probability of getting an ace as 

Now, at this point students often find these results a bit confusing. A common 
question that arises is “why are they not the same?”. The general answer is the 
theoretical probability tells you what should happen, and the empirical proba-
bility tells you what did occur. Usually they are closer, but the bottom line is we 
cannot predict the future and there is always something that is left to chance; 
hence the reason why you often see people buying the lottery at the gas station. 
While the probability of actually winning is minuscule, there is still a chance. The 
point here is that the outcome of each event is random! The theoretical defini-
tion of probability tells us that for every 52 cards we should get 4 aces, i.e. for 
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every 13 cards we should get 1. However, that does not tell us this will happen, 
but rather it just defines a likelihood of it occurring. The truth here – and the 
important point which separates probability theory from applications of deter-
ministic mathematical models such as differential equations – is that outcomes 
of experiments under consideration in probability theory are random: a person 
could play this game of cards all day and never actually get an ace but another 
person could play this game of cards once and get a great hand like the one out-
lined here with two aces. However, there is one important “fine print” to keep in 
mind: the law of large numbers states that as the number of trials gets larger, 
the empirical definition will be approximately the same as theoretical definition. 
For example, if we draw 13 cards and get 2 aces, it is a big deal that we got one 
extra ace than expected. However, if we draw 1300 cards and get 101 aces, it is 
NOT a big deal that we got one extra ace than expected. 

In general, we will use the theoretical definition of probability when working 
out application problems here. In general, the results are often presented in a 
“PDF” probability chart. For example, the outcomes of a single card drawn could 
be presented as 

X P(X) 

Ace 4/52 ≈ 0.07 

Other Face Card (King, Queen or Jack) 12/52 ≈ 0.23 

Other Card (regular number card) 36/52 ≈ 0.69 

It is very important to note that not every probability chart is valid. In order for 
a probability chart (or the function used to create the probabilities) to be valid, 
it must satisfy the following: 

Definition 2.2.6 – Valid Probability Function Requirements 
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• All P(X) values must be valid probability values: 0 < P < 1 

• The sum of all P(X) values must be 100%: ∑P= 1 

It is worthy to note that in many applications the condition (ii) will not exactly 
be one, but it should be extremely close. For example, looking at our probability 
function for the game of cards the sum would be ≈1 as 0.07 + 0.23 + 0.69 = 0.99, 
but this is of course just due to truncating. 

2.3 MATHEMATICAL FORMALISMS 

Suppose that 
is a finite sample space. Then the probability of an event E is the sum of the 

probabilities of all of the simple events contained in E. In symbols, this yields the 
definition 

Definition 2.3.1 – The theoretical definition of probability theoretical definition of probability related to an experiment under consideration 

Now, it is interesting to notice that if all the events 

are equally likely, then every is the same, namely 

Thus, in this case the definition becomes 

which, by calling k the number of events, yield 

It is interesting to compare this definition to our prior definition in the last 
section with the main difference being this result only applies if all of the events 
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are equally likely to occur. Moreover, on the latter definition, if we notice that N 
is the same as the size of the sample space, then the definition 2.3.1 is exactly 
the same as those from the prior section. However, if the events are not equally 
likely, then only the first definition can be applied, which will be illustrated in the 
next two examples. 

Example 2.3.1 

Use proper mathematical notation to both compute and set up the correspond-
ing formulas needed to find the probability of drawing a heart card and sep-
arately a club card into a two card hand where each draw is taken from a 
separate 52 card deck, hence we can assume independence. 

To solve this, we need to first define the events. Let us call the first event, the 
event of drawing a heart card, e1. Doing so we can identify p1 to be 1/4 which 
is equivalent to 13/52 or the number of heart cards divided by N. Likewise, we 
call the second event, the event of drawing a heart card, e2. Doing so we can 
identify p2 to be 1/4 which is equivalent to 13/52 or the number of heart cards 
divided by N. Now, the formal definition yields 

Alternatively, this could have been computed using the prior definition 

Example 2.3.2 

Use proper mathematical notation to both compute and set up the correspond-
ing formulas needed to find the probability of drawing a blackjack on the sec-
ond card, assuming you are holding a King, and then separately winning in a 
single roll on a 38 slot roulette wheel. 

To solve this, we must first define the events. Let us call the first event, the 
event of winning the blackjack, e1.This would actually be to draw an Ace from 
the remaining 51 cards, hence we can identify p1 to be 4/51. Now, we call the 
second event, the event of winning on the roulette wheel, e2. Doing so we can 
identify p2 to be 1/38 since the only way to win is if the ball falls into the single 
slot chosen. Now, the formal definition yields 

2. DEFINITION OF PROBABILITY 31



This cannot be rewritten using the prior definition, as the two events are not 
equal likely; moreover, it is important to note that what is computed here is not 
the “and probability”. The interpretation of this result is just a probability sum of 
both probabilities and it is not representing the probability that someone would 
win both games in sequence. Moreover, while we will not be covering the defin-
itions in full detail, nor discussing examples, the following formulas can be used 
to calculate the probability of sequential events given that the probability of the 
first event, which we will call A, is known in addition to the probability of the sec-
ond event, which we will call B. 

Definition 2.3.2 – Addition Rule Addition Rule and Multiplication Rule Multiplication Rule 

The addition and multiplicationaddition and multiplication rules state that the probability of event A or event B occurring is 
found to be 

while, under the assumption of independence, the probability of event A and event B in sequence 
is found to be 

It is worthy to note that in some examples the union & intersection notations 
are utilized, hence the probability of event A or event B occurring is often rewrit-
ten as 

likewise the probability of event A and event B in sequence, under the 
assumption that the events are independent, is written as 

Also, it is often common to see the notation 

which reference to the complement A, e.g 

For example, if event A is drawing an ace from a standard deck of cards then 
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which is the probability of drawing any card other than an ace from a stan-
dard deck of cards. 

Now, at this point we will not dive into the details, it is worthy to note that the 
formula given above for the “AND” probability is only valid under the assump-
tion that event A is independent of event B, e.g. the outcome of one of the 
events does not have any impact on the outcome of the other. This is not always 
the case. For example, consider the case of drawing two cards from a deck of 
52 cards. Let’s call the first draw event A and the second draw event B. Say we 
wanted to find the probability that the second card was a King, it is reasonable 
to conclude that 

since there would only be 51 cards remaining, but this would be on the 
assumption that we knew the first draw was not a king. If the first draw was a 
king then we would conclude that 

The situation under consideration here is referred to as conditional probabil-
ity, and the truth is that it is not really practical to define the probability of B 
until we know what happened on the first draw. However, we define the condi-
tional probability 

as the probability of B occurring given that A already did. Moreover, in the 
case of dependent probabilities we redefine the multiplication rule to be 

This of course reverts to the prior rule if event B is truly an independent event, 
as in that case the conditional probability would just be the same as 

due to the fact that, in this case event B would not have any dependence on 
event A. 

It is common to see the dependent conditional probabilities formula rewrit-
ten as 

as often in applications, the conditional probability value is obtained by 
counting outcomes, which would have the same format as the right hand side 
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here. Moreover, an interesting result, known as Bayes’ theorem, comes if we 
begin by thinking the labels for A and B are just labels. Now, by reversing them 
the above could be rewritten as 

It is logical to conclude that the probability of A and B is exactly the same as 
the probability of B and A, so solving the first equation we find 

Likewise, solving the second equation we find 

And, equating the two then solving for the conditional probability , 
we obtain the famous Baye’s theorem 

The above formula has many applications, especially in business, as it allows 
one to find a conditional probability in another direction given the other. For 
example, consider the situation where event A is the event that the future econ-
omy will be good, so the market will go up, while event B is the event that an 
economist gives a good forecast. The conditional probability  would 
be a probability that could be obtained from prior data, namely the probability 
that the economist gave a good forecast when the economy was good. How-
ever, the conditional probability  would not be possible to obtain as 
nobody knows what the future of the economy will be, but the trick is by using 
Bayes’ theorem one can approximate this value! 

Chapter 2 Exercises 

1. Jamie is joining a movie club. As part of her introductory package, she can choose from 
12 action selections, 10 comedy selections, 7 fantasy selections and 5 horror selections. If 
Jamie chooses one selection from each category, how many ways can she choose her intro-
ductory package? 

2. How many different four-letter secret codes can be formed if the first letter must be an 
A or B? 
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3. In a contest in which 15 contestants are entered, in how many ways can the 4 distinct 
prizes be awarded? (Meaning there is a different prize for 1st, 2nd, 3rd, and 4th.) 

4. For the following problems, consider a group of 50 students. There are 8 Computer 
Engineering (CE) majors, 12 Computer Science (CS) majors, 20 Electrical Engineering (EE) 
majors, and 10 Software Engineering (SE) majors. There are no dual major students. 

◦ The department chair will pay for 16 students to go to a conference. In how 
many ways can the 16 students be selected if exactly 4 are selected from each 
major? 

◦ 8 of the students are lined up from left to right. In how many ways can this be 
done when we consider their individual names, not their majors? 

◦ 8 of the students are lined up from left to right. In how many ways can this be 
done if we consider only their majors, and not their names? 

5. Amy, Jean, Keith, Tom, Susan, and Dave have all been invited to a birthday party. They 
arrive randomly and each person arrives at a different time. Find the probability that Jean 
will arrive first and Keith will arrive last. 

6. A committee consisting of 6 people is to be selected from eight parents and four teach-
ers. Find the probability that the selected group will consist of all parents. 

7. You are dealt one card from a 52-card deck. Find the probability that you are NOT dealt 
a jack. 

8. The physics department of a college has 15 male professors, 11 female professors, 7 
male teaching assistants, and 5 female teaching assistants. If a person is selected at    ran-
dom from the group, find the probability that the selected person is a teaching assistant or 
a female. 

9. A card is drawn from a 52-card deck and a fair coin is flipped. What is the probability of 
drawing a heart and flipping heads? 

10. There are 45 chocolates in a box, all identically shaped. There are 16 filled with nuts, 15 
with caramel, and 14 are solid chocolate. You randomly select one piece, eat it, and then 
select a second piece. Find the probability of selecting 2 solid chocolates in a row. 

11. Numbered disks are placed in a box and one disk is selected at random. If there are 8 
red disks numbered 1 through 8, and 2 yellow disks numbered 9 through 10, find the prob-
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ability of selecting a red disk, given that an even-numbered disk is selected. 

12. The two-way frequency table below shows the preference of sports to watch among 
males and females of a sample of 150 people. 

Hockey (H) Basketball (B) Tennis (T) Total 

Male (M) 41 23 15 79 

Female (F) 10 16 45 71 

Total 51 39 60 150 

Find the following probabilities. Write each answer as a simplified fraction: 

◦ 

◦ 

◦ 

◦ > 
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3. Overview of Discrete Random 
Variables 

3.1 DEFINITION OF A RANDOM VARIABLE 

In deterministic scientific theory a variable, commonly x for location or t for 
time, is used to make a prediction through a mathematical model. For example, 
using newton’s law one can solve a differential equation which will tell you the 
exact location of a rocket launched into space from Cape Kennedy after, t=1 
minute to t=2 minutes etc. The location will be exactly determined from the 
solution, based, on initial conditions of the system. There is no error in the mea-
surements. This is classical scientific theory, and how it works. On the other 
hand, statistical analysis is a bit different. For example, if a pitcher in a baseball 
game throws a fastball every time, but it is a little different each time: some-
times the pitcher throws it as possible, other times just not quite as fast or 
other times puts a spin on it which causes it to sink. For the batter the pitch 
would not exactly known from any solution, rather it would be a bit random, or 
what one might call a random outcome of a statistical experiment. Each time 
the batter stands at the plate, the pitch coming is random. Sure it might be one 
of a known set – fast fastball, not quite as fast fastball, slow sinking fastball – 
but each event is random. Interestingly these events should be random of each 
other, just because the last pitch was a fast fastball doesn’t mean the next one 
won’t be. 

In statistical analysis we define a random variable, RV, to be a mathematical 
formalization of an outcome of a statistical experiment which depends on ran-
dom events. The value of x is commonly used, and if the corresponding proba-
bility density is defined on real numbers then 
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3.2 DISCRETE PROBABILITY DISTRIBUTIONS & EXAMPLES 

It is common for a random variable x, which has n possible outcomes 

that have the corresponding probabilities 

e.g . 

to be presented in a chart as 

Definition 3.2.1 – The Expected ValueExpected Value  of a probability distribution chart 

The expected value of a probability distribution chart 
\begin{matrix}x_1&p_1\\x_2&p_2\\:&:\\\end{matrix} 
is defined to be 

If the outcomes of an experiment, which is the purchasing of a lottery ticket, 
which has only three outcomes: 

or 

with the corresponding probabilities chart as 

Example 3.2.1 

Find the expected value of the 
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and interpret what this result can tell about the experiment. 
The above formula 

Definition 3.2.2 – The variancevariance of a probability distribution chart 

The variance of a probability distribution chart 
\begin{matrix}x_1&p_1\\x_2&p_2\\:&:\\\end{matrix} 
is defined to be 

where μ is the numerical result obtained as the expected value. 

 
Rather than discuss many repetitive examples of this, let us now consider 

examples of one of the most useful discrete probability distributions, the bino-
mial. 

Definition 3.2.3 – The binomial distribution function binomial distribution function 

where the random variable considered in the experiment has only two possible 
outcome, a success with associated probability = p, or a failure with associated 
probability = 1-p. Moreover, the experiment under consideration is repeated n 
times, with the trails being truly independent so that the result of the last trial 
has no effect on the result nor probabilities for the current trial. 

where μ is the numerical result obtained as the expected value. 
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It is worthy to note here that the factorials term out front, often called nCx 
or “n choose x,” is often done in a separate computation, for example using an 
online calculator, so it is more common to see the binomial written as 

Example 3.2.1 

Use a binomial probability distribution to find the probability of getting 7 
answers correct from 10 total questions on a multiple choice test where each 
question has four choices, e.g. the probability of a correct guess is 1 out of 4, 

. 

Now, the solution here would be obtained from the binomial 

plugging in p as 0.25 and n = 10 which yields our density function 

The desired solution is obtained by plugging in x as 3 which yields, noting that 
10C3 is found to be 120 from the calculator, the solution 

or 0.3%. 
It is worthy to note that the solution of the prior example, 0.3%, tells us the 

probability to get exactly 7 right from 10 guess. If passing the test is defined as 
getting seven or more right, our solution is not the probability of passing. Rather 
to find such a value we would need to first use the formula again to find the 
probability of getting 8 right, p8, and then find the probability of getting 9 right, 
p9, and then probability of getting them all right, p10, hence 

It is worthy to note that in practice one would not prefer to perform this cal-
culation, and since it is possible to approximate our binomial with a regular 
normal, having mean =μ, and variance= σ2, the same solution there could be 
computed as  using the normal density. 

Definition 3.2.4 – The meanmean, μ, and the variancevariance, σ2 , of the binomial distribution function 
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are: 

and 

Now, while the emphasis of this text is on continuous probability distributions, 
which will be introduced in the next chapter, and most lecture examples com-
monly used for discrete probability distribution functions utilize the binomial, 
due to is wide range of applications, it is important to understand that it is not 
the only discrete probability function. Moreover, there are many other discrete 
probability functions and once the logic of the process is understood all that is 
needed to work with a new discrete probability function is the function’s expres-
sion along with its interpretation.  For example, the Poisson distribution, which 
expresses the probability a given number of events occurring in a fixed interval 
of time, provided that these events occur with a known constant mean,  , and 
are independently of the time since the last event has the probability density 
function 

 

Once this function is defined for the probability experiment under considera-
tion, then the remaining computations are logically the same as those outlined 
in the prior examples using the binomial. For example, if it is historically known 
that house on the intercostal river floods once every 50 years on average, then 
lambda would be 1 and we could set up our function as 

Then, we could use it to compute the probability of no floods in the next 50 
years, i.e. put x as zero, to be 

P\left( {X = 0} \right) = \frac{{{1^0}{e^{ - 1}}}}{{0!}} \approx 37\% 
Likewise if we knew at our local airport historically a flight, which flew daily 

Monday through Friday, arrived more than 15 minutes late 2 times out of the 
week, then lambda would be 2 and  we could set up our function as 
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which we could use compute various probabilities. In these applications, 
along with many other probability applications, it is very important to under-
stand the implications of the phrase “are independently of the time since,” 
which is basically saying that each day is a new day. A good example is the river 
example, let us say that the river flooded last year and ponder the question if 
that has any affect on the likelihood of it flooding this year.  While our common 
sense may make us think, well if it flooded last year then it most likely will not 
flood this year, this does not agree with what probability tells us. Using the Pois-
son probability density from our river example, and plugging in x as two, i.e. 
finding the probability of two floods in fifty years, we find the probability to be 

This tells us that there is an eighteen percent chance that this river will flood 
again in the next forty-nine years, but it does not tell us anything about when 
this will occur. It is equal likely to occur this year as it is occur next year or the 
following year, and so forth. While this concept may not agree with our common 
sense, it is how probability works when we have the assumption of indepen-
dence. Of course, not all probability problems have the assumption of indepen-
dence and there is a procedure called conditional probability that addresses 
problems where the likelihood of the next event occurring does depend on 
results of prior outcomes. 
 

Chapter 3 Exercises 

1. Sarah is looking to buy a larger home for her family. She is only going to consider homes 
that have 3 or more bedrooms and more than 2500 square feet. 

◦ Is the number of bedrooms in houses that she considers a discrete or contin-
uous random variable? 

◦ Is the square footage of houses she considers a discrete or continuous vari-
able? 
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3. For a finite (discrete) random variable, state the two requirements for p_k to be a valid 
probability distribution. 

4. For an infinite (continuous) random variable, state the two requirements for f(x) to be a 
valid probability density function (PDF). 

5. Complete a probability distribution for the following scenarios and determine if it is a 
valid probability distribution 

◦ , , , 

◦ , , , 

6. Consider the following probability distribution: 

x 0 1 2 3 

p(x) .12 .38 .4 ? 

Assuming 0, 1, 2, and 3 are all the possible values of x, find p(3). 

◦ What value of x is most probable? 

◦ P(x < 1 or x ≥ 2) = _______ 

◦ P(x > 0) = _______ 

1. A bank branch collected data from customers regarding the number of credit cards they 
have. The probability distribution is displayed below. 
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x 0 1 2 3 4 

p(x) .13 .39 .28 .15 .05 

Find the following (round to the nearest hundredth): 

◦ ___________ 

◦ ___________ 

2. On a ten question multiple choice test, you must get at least 7 questions correct to pass. 
Each question has five possibilities; hence, the probability of a correct guess is 20%. 

◦ If you guessed on all of the questions, what is the probability that you got 
exactly 7 correct? 

◦ What is the expected number of correct answers if you guessed on all 10 ques-
tions? 

3. Determine if the following are appropriate binomial experiments. If so, solve using Mat-
Lab or binomial formulas. If not, explain why it is not a binomial experiment. 

◦ A plane is landing at LGA and there is a 75% chance that it will land on time. If 
every day of the week, this plane flies the same route and the weather, air traffic, 
etc is the same everyday and I fly one day a month for a year, what is the proba-
bility that I am on time at least 10 times. 

◦ I drive home 40 miles everyday and some days it rains and some days it does 
not. On the days it does not rain, the probability I make it on time is 80%. If next 
week I work 4 days and it only rained once what is the probability that I make it 
home on time everyday. 

4. Stephen Curry was unanimously voted the MVP of the NBA for the 2015-2016 season. He 
has one of the highest free throw percentages at about 91%. So let’s say the probability of 
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Curry making a free throw shot is 91%. Consider if Curry attempted 80 free throws. Let x 
represent the number of free throws made. 

◦ Can the probability distribution of x be approximated by the binomial distrib-
ution? 

◦ ___________ 
____________ 

____________ 

◦ Find the probability that Curry makes exactly 75 of the free throws 

◦ Find the probability that Curry makes at least 60 of the free throws 

◦ Find the probability that Steph Curry makes less than 10 of the free throws 

3. OVERVIEW OF DISCRETE RANDOM VARIABLES 45



4. Introduction Continuous Probability 
Theory 

4.1 CONTINUOUS RANDOM VARIABLES 

In the following section we will define one of the most important topics in the 
mathematical theory of probability, the continuous probability density function. 
It is from this density function that many results such as probability solutions 
and expected values will be derived. However, prior to doing so, it is impor-
tant to note that for simplification through the remainder of this text, which is 
designed to for a first course in probability theory, we will only be considering 
examples of independent continuous random variables, hence all computations 
will involve single variable functions and their corresponding calculus computa-
tions 

Definition 4.1.1 – Continuous random variables 

A random variable X is a continuous random variable if the variable is defined on a scale as a regu-
lar “continuous” numerical values, e.g. X is a real number.  Recall we define X to be a random variable 
if it is a mathematical formalization of a outcome which depends on random events. 

At this level we will not attempt to develop the derivation or underlying motiva-
tion for our probability density functions; rather, we will define a density func-
tion f(x) for a random variable X to be the function that creates the probability 
as 
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Now, this probability density function must meet two basic properties, which 
are in line with the axioms of probability: 

Definition 4.1.2 – Requirements to be a density of a random variable X 

• 

• 

 
NOTE: if you have an example of a function desired to be used for a density 

that meets criteria (i) but not (ii) then you can create a valid density by the nor-
malization process (similar to that of normalizing a vector) by dividing the con-

stant , as one will find the function 

will be a valid density function. 

Example 4.1.1 

Find the normalized density for a density of the form 

defined for x > 0 and zero elsewhere. 
To begin we note that we must satisfy properties (i) and (ii) of definition 4.12. 

Now, it is first observed that property (i) is met because the exponential func-
tion is a strictly positive function. However, property (ii) is not met because 

Thus, using the logic from above we take the constant 

to create the normalized density to be the so called exponential density exponential density 
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. 
 

Example 4.1.2 

Find the value of C so that the function, which is defined as 

or 0 otherwise, will be a valid density. 
To begin we note that we must satisfy properties (i) and (ii) of definition 4.12. 

Now, it is first observed that property (i) is met because this parabolic function 
will be above the x axis, with zeros at x=1 and x=0, provided that the value of C 
is positive. Now, property (ii) is not met until we specify the value of C, thus we 
compute 

Now, in order to make this a valid density we must choose C=6. 

Example 4.1.3 

Verify that the uniform density uniform density 

or 0 otherwise, is a valid probability density function. 
To begin we note that we must satisfy properties (i) and (ii) of definition 4.12. 

Now, it is observed that property (i) is met because the function is a constant 
positive value. In verifying property (ii), we obtain 

Example 4.1.4 

Verify that the standard normal standard normal density density 

is a valid probability density function. 
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To begin we note that we must satisfy properties (i) and (ii) of definition 4.12. 
Now, it is first observed that property (i) is met as the exponential function is a 
strictly positive function. However, we must verify property (ii), and in doing so 
we obtain 

This is a very difficult integral to do in closed form, but one can compute 
numerically and verify that this integral is indeed equal to 1, hence the provided 
density is a valid probability density function! 

4.2 COMMONLY UTILIZED CONTINUOUS DENSITY FUNCTIONS 

It is worthy to take note of a few of these common density functions as they will 
frequently be used in examples as we move forward and have many common 
real world applications! The following are the most likely examples that you will 
encounter are: 

The exponential exponential densitydensity is 

which is defined for x > 0, 
and the uniform uniform densitydensity is 

which is defined for L < x < R, 
where both of these densities serve useful for textbook illustrative examples 

due to the fact that the resulting integrals turn out to be doable without the 
need for complicated integration techniques. 

The normal normal densitydensity is 

which is defined for all x, and this density is by far one of the most applicable in 
real world modeling applications. 

The standard normal standard normal densitydensity is 

which is defined for all x, and is a special case of the normal density with mean 

4. INTRODUCTION CONTINUOUS PROBABILITY THEORY 49



µ=0 along with variance ⯑=1, serves as the backbone of many theoretical math-
ematical statistical results such as the famous central limit theorem. 

The TT densitydensity is 

which is defined for x > 0 with v being the degrees of freedom. This density is 
utilized in applications as an approximation for the normal density when some 
of the information of the population mean, µ, or variance, ⯑2 , is unknown. 

The chi chi squaredsquared densitydensity is 

which is defined for x > 0, with v being the degrees of freedom. This density is 
utilized in applications for error analysis when considering the sum of squares 
error and/or Goodness of fit error analysis. 

The FFdensitydensity is 

which is defined for x > 0, where d1 and d2 are the degrees of freedom, numer-
ator and denominator respectively. This density is related to a ratio of two chi 
squared densities and is very useful in a great deal of applications. especially 
the analysis of linear regression. 

The logistic logistic densitydensity is 
µ

µ

which is defined for x > 0, with s representing the scale not standard deviation 
as one might expect. This density is very useful in the analysis of regression 
when applied to case when the response variable in the form of a categorical 
“1/0” variable (AKA logistic regression). 

Some more generalized “abstract” examples are: 
The Beta densityBeta density is 
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which is defined for x > 0. 
The factor ⯑ is the so called “Gamma function,” which normalizes the density. 

There is 
a formal definition of this function valid for any values of n, but for our 
purposes it will suffice to use the definition: 

for integer values 

for halves using odd n; note 
!!=(n-2)∙(n-4)⋯ 

Now, we have several probability density functions let us look at some examples 

Example 4.1.5 

For the exponential exponential density density 

Find the probability P(0<x<5). 
To begin we know the density is as given above so we just need the probably 

integral 

Thus, we compute 

Hence, we have computed the probability P (0<x<5) = 99.3%. 

Example 4.1.6 

For the uniform density uniform density 
with R = 10 and L = 0 find the probability P (0<x<2). 
To begin we note that our density will be 

and the probability integral will be 
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. 

 
Thus, we compute 

Hence, we have computed the probability P(0<x<2) = 20%. 

Example 4.1.7 

For the standard normal standard normal density density 

find the probability P(0<x<2). 
To begin we know the density is as given above so we just need the probably 

integral 

. 

 
Thus, we compute 

However, this integral, which is ultimately an integral of the form , is not solv-
able in closed form so numerical approximations will be required (which yield 
the solution of approximately 47%) . In the next chapter we will further discuss 
how to work with normal density, as it is one of the most important densities 
if not the most important, and we will look at some applications of nice func-
tion in MATLAB. For now, we will move on with developing further properties of 
probability distribution theory, namely the expected value and variance. 

In the following section we will define two extremely useful properties of sta-
tistics the expectation and the variance. Generally speaking one can view these 
in an analogous manner as the expected value and variance are interpreted in 
elementary data analysis. Namely, the expectation ( AKA expected value ) can 
be viewed as the average value or “what we expect to get on average,” which is 
frequently just called the mean and often the symbol µ is utilized. And, the vari-
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ance can be viewed as a measure of dispersion or “how spread out is the data,” 
which is often notated by the symbol ⯑2. For simplification we will define, for a 
random variable x, the expectation as E(x) and moving forward write all expres-
sions, definitions and so forth in terms of E(x) as not only is it good practice for 
consistency, but it is also the proper and formal way to define things! 

4.3 EXPECTATION AND VARIANCE 

Definition 4.3.1 – The expectationexpectation of a continuous random variable X with density f(x) 

At this time we will focus on solving examples and address interpretations along 
with theoretical implications for later studies. However, it is good for the reader 
to understand the solution obtained is an expected value and not a probability, 
i.e. it does not have to be within the usual range of 0 to 1 rather the answer can 
be viewed as just a number! 

Example 4.3.1 

Find the expectation for the Standard Normal Standard Normal density density 

To begin we recall the above definition of the expectation is . 

and we compute 

Example 4.3.2 

Find the expectation for the particular case of the Beta density Beta density 
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, or 0 otherwise. 
To begin we recall the above definition of the expectation is 

and we compute 

Definition 4.3.2 – The variancevariance of a continuous random variable X with density f(x) 

where the symbol µ is representing the value of the expectation for the density, 
as often the expectation is interpreted as a mean or average value. Again, at this 
time we will quickly observe solving an example and leave interpretations along 
with theoretical implications for later studies. 

Example 4.3.3 

Find the variance for the Standard Normal Standard Normal density density 

To begin we recall the above definition of the variance is 

Thus, we compute 

For the purpose of this textbook study, the preceding definitions will suffice 
to cover all forthcoming needed mathematical theory. However, we will close 

this 
section with the following definitions and results as they can be very useful in 
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applications to actually compute the expectation and/or variance for a density 
without 

conducting the integrals from the prior definitions. 

4.4 NORMAL DENSITY AND ITS SMALL SAMPLE APPROXIMATION 

To begin our illustration we will actually steal the results from a couple of exam-
ple forthcoming in the next chapter ( examples 5.12 & 5.1.3 ), and while we will 
not yet go into the details of the calculation, for the result called a P value, it is 
interesting to note that the solution yielded the results of 0.0062 if the normal 
density was utilized or 0.0027 is the T density was used with v=5 degrees of free-
dom. Moreover, if we increase the degrees of freedom, say to 50 then 100, we 
obtain the results of this P value to be 0.008 then 0.007 respectively. Thus, one 
can conclude that as the degrees of freedom for the T distribution get larger the 
result gets closer to the normal distribution! Of course the question here often 
comes as to what exactly are degrees of freedom? The exact answer to this 
question depends on the exact application and/or statistical experiment under 
consideration, but in most cases one can think that the degrees of freedom are 
about the same as, or very closely related to, the sample size of the data set 
being used in the statistical study. For example, in the classical hypothesis test-
ing, which is one of the most commonly applied techniques, if the T density is 
used as the density the degrees of will actually be one less than the sample size 
of the data set, e.g. v= n-1. Thus, it is often comment to think of the T density 
as a small sample size approximation of the normal density. Moreover, one can 
actually prove that 

This result can be viewed visually below in the graphs, where the BLUE is the 
T density with 5 degrees of freedom, and the RED is the T density with 50 while 
the OTHER is the normal distribution. 
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An interactive version of this graph is available at desmos.com by selecting the image. 

It is worthy to note that in most applications it is not practical to actually find 
the population mean nor variance, hence the values needed for the true normal 
density; thus, in practice most applications will use the T density as the model. 
The T density actually provides results that are a little more conservative, which 
is always a good thing to do when doing statistical analysis! 
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4.5 EXAMPLES WITH APPLICATION TO ERROR ANALYSIS 

To begin our first application we will assume an experiment has been done – 
either building a statistical model such as regression or a regular experiment 
such as trying a new method to make a part for an airplane – and it is desired 
to conduct analysis on the mean squared error, e.g. on the term 

where the regular y represents the data and the   is used for either the approx-
imated value from the model or the desired value obtained from the underlying 
engineering scientific theory. Moreover, if one can assume that each of the 

terms are normally distributed, and each 

is independent of all of the others, then the sum of their squares would be a 
chi-squared distribution 

where in this example the notation k, which is referred to as degrees of free-
dom, is how many independent variables are added. Hence, one can conclude 
that the distribution 

can be used when analyzing the term 

In many applications it is desired to evaluate the Mean Squared Error “MSE,” 
which is defined as 

However, it is commonly not possible to compute this value on the whole data 
set; often it is not possible to obtain the full data set, so only a small data set is 
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obtainable & analyzed, or only a subset is used for the computation initially as 
the other part of the data set is used to create the model ( AKA training/testing 
data ). If the full data set is of size n, and the total held back for testing is of size 
k, the MSE to compute would be 

A method known as statistical learning, which can be defined as “a framework 
for machine learning drawing from the fields of statistics and functional analy-
sis, which deals with the statistical inference problem of finding a predictive 
function from a data set. For example, a method could be used on a data set 
that was split into this training/testing data set format in many different ways, 
and an algorithm could be written to obtain the outcome of all of the possible 
splits that would then identify the best model to use. 

The MSE can also be written in terms of an expectation as 

which is often rewritten as 

where the latter term is known as the bias. The BIAS term, formally known as 
the bias of an estimator, is defined as the difference between the estimator’s 
expected value and the true value of the parameter being estimated. 

Another application of the chi squared density function is referred to as the 
goodness of fit. Technically this method requires to utilize the logic of hypoth-
esis testing, which will not be introduced here until the next chapter, but the 
main idea can be understood if we think to compare an approximated value, 
, with a true data y. If the approximated is referred to as O, and the true data is 
E, the Pearson’s chi-squared statistics is defined as 

and is often used in practice to describe how well a statistical model under 
consideration fits a set of data. It is also used widely in test for normality of 
residuals. 
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4.6 EXAMPLES OF REAL WORLD APPLICATIONS 

To begin our first application, it is worthy to mention the famous Black-Scholes Black-Scholes 
partial differential equation partial differential equation 

which was originally derived by Fisher Black and Myron Scholes utilizing prob-
abilistic methods to calculate the fair price of a European call option, V, given 
the information of the initial stock, S, price along with the risk free rate, r, and 
the volatility, σ. The solution to this equation is give as the famous Black-Scholes Black-Scholes 
equation equation 

where S0 is the initial price of the stock, K is the so called strike price, and N(#) 
is our standard normal cumulative distribution, i.e. 

In applications, the details of the numbers d1 and d2 can be obtained through 
two messy formulas involving the other known values, such as risk free rate and 
volatility, and often this formula is used as a starting point to obtain forward 
stock valuations. 

Now, while the Black-Scholes equation is extremely useful in applications, 
it does have two concerns in regard to our desired purpose here, to use our 
probability theory to obtain stock price valuations. Firstly, it requires a measure 
known as volatility to be specified, which in practice is often extremely difficult, 
if not nearly impossible, to accurately define. Secondly, the result gives the fair 
price value of the option on a stock, rather than the price of the stock itself, and 
while options can be utilized to obtain information about the future price of a 
stock it would be preferred for our purposes here to obtain stock valuations 
directly. 

To begin our brief study of stock valuations, we must first introduce the con-
cept known as the time value of money. While this concept is a major core con-
cept in advance studies in finance, in principal it is not overly complicated as at 
its core it simply says: “a dollar to be received in the future is worth less than a 
dollar to be received today.” To understand this idea, let us consider the follow-
ing example: if your instructor would give you the option of $10,000 today or 
$10,500 at the end of the year, which is worth more? The answer really depends 
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on various situations in the economy, and of course the needs of the individual, 
but for simplification let us determine how much the $10,000 given today could 
grow to if it was invested in a safe investment. Moreover, if we could invest the 
$10,000 in some sort of savings or bond, with a guaranteed rate of return of r%, 
then the $10,000 would become (1+r)*$1,000. At the time of writing this text-
book, the United States Treasure was offering Series I Savings Bonds at a rate 
of 9.62%, hence if that investment was chose the $10,000 today would be worth 
$10,962. This is much higher than the other option of the $10,500 at the end of 
the year. It is this concept from where we obtain the time value of money, and 
discounting of future cash flows. 

Definition 4.6.1 – Present value of a future cash flow 

The present value of a future cash flow in the amount of FV$ to be obtained in time T years is 

where r is the risk free rate. Often this formula is referred to as discounting a future cash flow. 

At this level we will not attempt to develop a full treaty on what exactly the risk 
free rate is, but rather we will just accept here the use of 7%. 

Example 4.6.1 

Find the present value of $10,000 to be given to a freshmen college student 
from their family after completing college, which is 4 years forward in time. 

To begin we note here that the future cash flow is $10,000 and the value of 
T is 4, thus using the present value formula we obtain the present value of this 
cash flow to be 

Now, in practice the next step would be to decide what risk free rate should 
be applied, but as previously noted here we will just apply the value of r to be 
7%, hence our solution is 
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From the prior example we can clearly see that $10,000 now is not the same 
as $10,000 to be obtained four years in the future. In fact $10,000 in four years 
is theoretically equal to $7,268.95 today. Of course there is a lot more to such 
problems in the real world, for example if this was a business is there some 
chance that whoever is saying they will pay us $10,000 in four years, may not 
do so? Perhaps the business may default on some of their obligations, or in 
extreme cases actually go out of business. However, for our purposes let us just 
accept that the present value, of a future cash flow in the amount of FV$ to be 
obtained in time T years is 

Now, how does this apply to stock valuation? While there is an entire industry, 
in addition to a very active academic research topic, dedicated to making pre-
dictions of stock market investments utilizing many modern methods, one of 
the most simple – yet very useful and frequently successfully utilized – is the 10 
year free cash flow analysis. The long story short is, at the end of a year, after 
a business collects all of its revenue and pays all of its debts and obligations it 
will have some money left over, this is referred to as free cash flow. The 10 year 
free cash flow analysis of a company simply says that the current valuation of a 
business is the present value of next 10 years of a company’s future free cash 
flows, and the value of this company’s stock should be this value divided by the 
number of shares outstanding in the market. 

Example 4.6.2 

A large American company, that has been in business of over a hundred years, 
has a current cash flow of $1,000,000 and is expected to maintain roughly the 
same business operating procedures for the next several decades. Use the 10 
year free cash flow analysis to determine the current value of this company. 

To begin we note here that this year’s cash flow is $1,000,000 and from the 
details provided in the question we can assume that this same cash flow will 
occur next year, and then the following year etc. 

Now, the present value of this year’s cash flow is $1,000,000, 
But the present value of next year’s cash flow is 
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Likewise, the present value of following year’s cash flow is 

And, continuing in this fashion for a total of 10 terms ( note the last value of 
T will actually be T=9, as we are including this year’s or starting at T=0 ), then 
summing we can obtain the value of this company to be $7,515,232= 

Example 4.6.3 

The same large American company described in the prior example is knows 
to have 400,000 shares outstanding in the market, determine the value of this 
company’s stock price. 

To begin we recall that the 10 year free cash flow analysis states “the current 
valuation of a business is the present value of next 10 years of a company’s 
future free cash flows, and the value of this company’s stock should be this 
value divided by the number of shares outstanding in the market.” From the 
prior example we computed the current value of this company to be $7,515,232, 
and we know that there are 400,000 shares outstanding in the market, hence 
the price of this company’s stock should be 

Now, a few very important points must be made at this point! Firstly, the value 
computed here is what the company’s stock value should be, but it is very com-
mon that the stock’s value in the market will be very different. This is due to 
the fact that what we view as the “stock market,” is really the secondary mar-
ket. Namely, when a company first goes public it sells a predefined number of 
shares through an initial public offering at a fixed price. The individuals who 
purchased those shares directly then can resell them to other investors in the 
open market place – AKA the secondary market – at any time for any price, 
and this is where the stock market price swings come: if there are more peo-
ple wanting to buy a specific stock than there are people offering it for sale, 
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then the price will rise and likewise in the other direction. The second point is 
regarding how to accurately know if the company will maintain its cash flows? 
The answer to this question is not a simple one, but is at the core of an invest-
ment philosophy! A wise investor will chose to invest in a company that is not 
only expected to maintain their cashflows, but rather grow them as the com-
pany grows with time. For example, if the company from the prior example 
was expected to moderately grow, perhaps its cashflows would increase by 10% 
year of year; thus, after one year the cashflow would be $1,100,000 and then 
after the second year it would be $1,210,000. In theory this growth could be at 
any rate, but other than being able to time travel into the future to investigate 
there is no way to really know. A wise investor will do a very detailed investiga-
tion of the company and its competitors, and then make predictions based on 
the information obtained. While mathematics may not be able to exactly model 
such uncertainty, it is possible to apply a probability density as 

and then apply it to compute an expected valuation, where here the p1 and 
p2 values are subjectively created. To illustrate this let us revisit the prior exam-
ple and introduce some growth. 

Example 4.6.4 

A large American company, that has been in business of over a hundred years, 
has a current cash flow of $1,000,000 and is expected to grow this cash flow 
by 10% year over year for the next several decades. Use the 10 year free cash 
flow analysis to determine the current value of this company. Then compute the 
value of this company’s stock if 400,000 shares are outstanding in the market. 

To begin we note here that this year’s cash flow is $1,000,000 and from 
the details provided in the question we can assume that next year that this 
cash flow will grow by 10%, hence it will be $1,000,000 + 0.1*$1,000,000 = 
$1,100,000. Then the next year’s cash flow will follow, hence it will be $1,100,000 
+ 0.1*$1,100,000 = $1,210,000, and this will continue up to the 9th year which 
will be $2,357,948 

Now, the present value of this year’s cash flow is $1,000,000, 
But the present value of next year’s cash flow is 
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Likewise, the present value of following year’s cash flow is 

Then, continuing in this fashion and summing we can obtain the value of this 
company to be $11,360,801= 

Lastly, we know that there are 400,000 shares outstanding in the market, 
hence the price of this company’s stock should be 

As expected, the result obtained here with growth is quite a bit higher than 
the prior example of no growth, which was $187.88. So the question arises as to 
which is the most accurate, which is the most likely? Well the truth is it is nearly 
impossible to accurately tell what will occur in the future, but a common trick 
used in applications is to compute some sort of combination of the outcomes, 
perhaps a weighted average of the outcomes. For example, if we claimed that 
there is a low probability – say 33% – that the company will maintain, and there 
was a strong probability – say 67% – that the company will grow, would a valid 
price target be? 

The answer, just like the answer to many questions in finance and stock 
investments, is maybe? While this book is a textbook in probability, not financial 
mathematics, and this is the end of our application section to stock valuation, 
the author will end with the one accepted fact in stock market investments and 
some sound advice: if an accurate stock valuation is obtained and if the current 
asset is selling either below ( or above ) then in the long run the price will revert, 
in a rational functioning market, to the correct valuation. Moreover, there is no 
magic scheme to win in the markets – the stock market is a net sum zero game 
meaning for every person that makes $1 someone gives $1 – but long term 
investing in solid companies will build wealth, especially if the investor can pur-
chase at a discount! The life story of the legendary investor Warren Buffet is a 
great read to further understand this wisdom. 

64 TIM SMITH



 

Chapter 4 Exercises 

1. Let the exponential function f(x) = e-3x , x ≥ 0, and assume the variable x represents time 
(in hours) after 11am that I arrive on campus. 

◦ Create a normalized and valid PDF. 

◦ Use the PDF created in part a to find the probability that I arrive to campus 
between 11am and 12:30pm. 

◦ Use the PDF created in part a to find the probability that I arrive to campus 
after 1pm. 

◦ Redo part c leaving your answer in terms of  “the Gamma Function”. 

◦ Find the value of X so that it is 95% likely I will arrive to campus before time X. 

2. Use the uniform density function f(x) = 1/10 on the domain 0 ≤ X ≤ 10 and assuming the 
variable x represent time ( in hours ) when an event occurs. 

◦ Use this PDF to find the probability that the event occurs within 0 to 5 hours. 

◦ Use this PDF to find the probability that the event occurs after 10 hours. 

3. Given a RV defined for the range of x between 0 and 10 whose data suggests a quadratic 
model, use the data points to create a valid and normalized PDF. data points: 

 Use y=Ax2+Bx+C 

◦ Model equation after found values A, B, C is the equation: y=_______________ 

◦ Valid normalized PDF is y=_______________________ 

4. Use the function 

◦ Create a normalized and valid PDF 

◦ Use the PDF found in part a to find the probability 
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◦ Compute the expectation for the PDF created in part a. 

◦ Compute the variance for the PDF created in part a. 

5. Use the normalized beta density 

◦ Compute the expectation for the PDF 

◦ Compute the variance for the PDF 
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5. Introduction of Advanced Analytical 
& Inferential Statistics 

5.1 FORMAL DEFINITION OF ALPHA LEVELS AND P VALUES 

In this chapter the idea we want to consider is this: let’s say we have two data 
sets – call one the control or historical data and call the other the experiment 
– and we want to test, formally, if there is a statistically significant difference 
between them. The inference is whatever experiment, or effect we applied, 
worked, and we want to conclude that it caused difference. However, since this 
is a maths foundations textbook & course we do not dive into the details of 
such matters. It is worthy to mention that one should never make a conclusion 
from a single experiment data set, rather they should look for trends in the data 
across multiple data sets. 

Definition 5.1.1 – Statistically significant difference Statistically significant difference 

We say that an observed difference between two data sets is statistically significant if it is unlikely to 
have occurred by chance alone (often referred to as unlikely to have occurred given the null hypoth-
esis ). 

Definition 5.1.2 – Critical Value Z Critical Value Z 

 We define the critical value of an experiment, conducted at the level of  percentage confi-
dence, to be the solution, Z, of the equation 
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where the integration to compute the probability would be utilizing the proba-
bility density function associated with the data. It is worthy to note that in many 
textbooks or educational websites one will see this definition written in the clas-
sical  “two tailed format,” but here we have rewritten this, using the argument 
of symmetry, by adding half of the alpha, 

, from the left tail to make the equation in a cumulative format, 

which is useful as many coding languages utilize the cumulative distribution 
function. For example NORMCDF(Z) in matlab will return the probability for a 
standard normal up to the value of the random variable equal to Z. 

Example 5.1.1 

Find the critical value for a 95% confidence, assuming the density function is a 
standard normal 
To begin we note here that alpha is 0.05. Now, the solution to ensure 95% is 
within would be 

Or rewriting this in terms of the density function, it becomes 

and while this solution can not be obtained explicitly (the definite integral of 

is not known in exact closed format) it is possible to create and run a numeri-
cal code which will yield the well known solution 

where the common notation, , of the solution is used here and henceforth. 
An important comment to note here is on the rounding, say for example the 

program yielded the solution to the above to be 1.951, we could not round that 
down to 1.95. As while the solution would tell us that 1.951 is the value of our 
random variable so that 95% is below, the value of 1.95 would be to the left 
on the axis, so there would be less area. The value of 1.95 would possible only 
cover 94.9%, which is not 95% as we claim the level of confidence to be. It is 
always essential in statistical analysis to round in a way called “statistically con-
servative,” this is rounding as to always ensure to we meet or exceed the level of 
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confidence of area under the curve; namely round up critical value and round 
down test statistical values obtained from experimental data. 

Definition 5.1.3 – P value P value 

When given the test statistic, TS, of a statistical experiment governed by the probability density 
function, f(x), we define the P value as 

where the calculation is essential the area (or doubt) that is remaining in the 
rejection region above Za. Hence, when comparing two models the one with the 
lower P value is preferred! 

Example 5.1.2 

Find the P value given a test stat of 2.5, assuming this experiment was done 
using a standard normal density. 

To begin we note here that TS = 2.5 and the density is a standard normal, 

so our definition of P value 
would become 

which has the solution 0.0062 (or 0.6%) 

Example 5.1.3 

Find the P value, using the same test stat from the prior example, TS = 2.5, but 
assuming this experiment was done using a T density, with five degrees of free-
dom. 

To begin we note here that alpha is TS = 2.5 and the density is a T with v=5, 
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, so our definition & computation of P value would 

be 

with the density formula noted above, and has a solution of 0.00275 (or 
0.27%). 

Now, it is important to note here that the P value is different for the same test 
stat when using a different distribution; hence, why the P value is the simplest 
stat to look at. Think: the lower the P value the better. 

It is very important to remember, as a data analyst reporting results showing 
two data sets are significantly different, is not the same as nor does it prove 
Cause and Effect! Moreover, even if a longitudinal trend is shown within the 
data this does not prove a scientific theory. Data Science may be used to inves-
tigate solutions and/or governing equations, but such things – especially within 
fields like engineering – can only truly be developed utilizing the classic mathe-
matical framework, e.g. modeling through things such as Newton’s Law. 

Definition 5.1.4 – Confidence Interval Confidence Interval 

The term of Standard Error is most commonly taken to be the standard devi-
ation divided by the square root of the same size./calculation is essential the 
area (or doubt) that is remaining in the rejection region above . Hence, when 
comparing two models the one with the lower P value is preferred! 

The big idea, or definition, to understand in the applications of the confidence 
interval is this: if a confidence interval is built using historical data, then an 
experiment is conducted and the mean of this experimental data set is 
obtained. Then, if the experimental mean is outside of the confidence interval, 
we define the difference to be statistically significantly different; hence, we can 
infer, but not prove, that whatever treatment was applied to the experimental 
data set worked. 
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5.2 MATHEMATICAL DEVELOPMENT OF CONFIDENCE INTERVALS AND 
INTRODUCTION TO HYPOTHESIS TESTING 

In the prior chapter the general theory of probability was summarized along 
with the main concepts of probability density functions, cumulative distribu-
tions, and moment generating functions. Now, in this chapter we will embark 
on the study of one of the most powerful and important real-world applications 
of mathematics: the theory of hypothesis testing! The general idea of hypothe-
sis testing can be summarized as the process of obtaining some data from an 
experiment and then using probability theory to attempt to validate a claim. 
Moving forward, we will refer to the claim as the hypothesis and generally 
speaking the experiment will involve the implementation of something that 
wasn’t utilized in the past which we will refer to as the treatment. While the idea 
will not be discussed in detail here many instructors effectively teach hypoth-
esis testing through the parallel logic of a court case. Namely, in a court case 
the defendant is assumed innocent until proven guilty beyond a reasonable 
amount of doubt as decided by a jury. Likewise, in hypothesis testing we desire 
to validate our claim the hypothesis, but we will take the stance that it is not 
valid (AKA assumed innocent) until proven otherwise beyond a mathematical 
amount of certainty (AKA beyond reasonable doubt). 

In general, the hypothesis procedure will consist of 4 steps: 
First, the hypothesis is made as a mathematical statement. 
Second, the so called “critical value” and “rejection region” are defined. 
Third, calculation of the test statistic. 
Fourth, conclusions are stated. 
In the following derivation, we will assume that the hypothesis is being stud-

ied on the simple difference on a population mean after the application of a 
treatment. Namely, we will consider the so called “null hypothesis” as µ = pop-
ulation mean value as given. The idea of this hypothesis statement is that the 
symbol µ is in a sense representing the population mean moving forward in 
time with the treatment applied consistently in the future ( i.e. this statement is 
saying that the mean does not change when the treatment is applied ). In the 
same manner that a defendant is assumed innocent in a court case until proven 
otherwise, we will assume this null hypothesis is truthful until proven otherwise. 

The null hypothesis will be rejected if our soon to be defined test statistics 
falls outside our mathematical region which is defined from our chosen level of 
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statistical certainty. Namely, if we define our statistical certainty to be at a level 
of then the critical value  (AKA endpoints) of our mathematical region 
can be found from the probability statement: . For 
example, if we take a 95% confidence level the critical value will solve the equa-
tion 

This example will yield the solution of  which is a very important, if 
not “famous,” critical value and very much worth remembering! It is worthy to 
note that many authors will use the notation 

 due to the fact that this example is an illustration of a so called “two tailed 
test.” A two tailed test is one where the allowable error is allowed either above 
the critical value or below the negative of the critical value, hence the error is 
split in half. A one tailed test it where the error is not split in half, hence only 
outside of the critical value in “one tail.” For now, we will restrict our study to 
the two tailed examples for simplification. 
Looking back to the original claim, we see that we have defined two regions: the 
range within the region is where we expect things to be and the range outside 
of the region, which is to be viewed as an oddity. Thus, we can define the region 
outside to be the region to reject the null hypothesis. Namely, if our soon to be 
defined test statistic is either greater than  (or less than – ) we will reject the 
null hypothesis. Or, in a cleaner mathematical statement we can say: 

Reject the null if || test stat || > . 
Now, the only missing point is the so-called test statistic. We will formally 

define and prove where this value comes from shortly but let us first accept 
the definition so that we can view a few examples to illustrate this process of 
hypothesis testing. 

Definition 5.2.1 – The Test statistic Test statistic for a single sample hypothesis test of differences of mean 

TS = 
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Example 5.2.1 

To begin solving, we recall that a full solution to a hypothesis test problem has 
four steps: 

First, the hypothesis is made as a mathematical statement. 
Second, the so called “critical value” and “rejection region” are defined. 
Third, calculation of the test statistic. 
Fourth, conclusions are stated. 
For our present example, we will assume that the level of confidence is 95% 

and the test is a two tailed test ( which would make sense as the researcher 
wanted to unbiasedly test for an effect on speed rather than specifically test for 
an increase ). So, we already know the second step is with 1.96 being the crit-
ical value. Hence, all we really need to compute are the 1st and 3rd steps. To 
begin, we must define the desired hypothesis, which is what we really want to 
show and is often referred to as the alternate hypothesis. In this example, the 
researcher knows that the population mean is 73 and they are attempting to 
see if the drug has an effect on that speed. Thus, we set the alternate hypoth-
esis to state that µ is different than 73. Then, we also must construct the null 
hypothesis (the logical opposite of the alternate hypothesis) which in this case 
will state that µ is equal to 73. Now, all that remains is to compute the test sta-
tistic from our formula and then use our results to conclude. 

In doing so, we obtain the for step solution as: 
First, null H: µ = 73. 
Alt H: µ ≠ 73. 
Second, assume the null is truthful and reject if || TS || > 1.96. 

Third, TS =

Fourth, since the TS does not fall in the rejection region, we fail to reject the 
null. 

It is very important to note in this example that the result is just simply failure 
to reject the null hypothesis. This wording is very important, and it is essential to 
understand that this conclusion does not disprove anything, nor do we accept 
anything, rather we have just failed to reject the null hypothesis. Perhaps, one 
will find it useful to think that we have attempted to do something and failed to 
do so. Hence, our conclusion is that we did not do anything, or perhaps a more 
sophisticated way it to say we have “no conclusion!” Analogously, when a jury is 
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tasked to find a defendant guilty beyond a reasonable doubt, if they do not find 
the evidence, then their formal result is to say “not guilty” or “no, we did not find 
sufficient evidence.” 

Example 5.2.2 

An instructor wants to see if group activity work increase test scores. Currently 
the school’s average math score is 85 with a standard deviation of 4. A sample 
of 36 students are assigned to do group work in class. Their average is 90. 

Perform an appropriate hypothesis test. 
Again, we note that a full solution to a hypothesis test problem has four steps, 

and to begin our present example we observe that the desired hypothesis is 
specifically to increase the test scores. It is known that the population mean 
score is 85, so the logical choice for the Alt H is : µ > 85. As in our last example, 
we will assume that the level of confidence is 95%, but this is a one tailed test. 
Therefore, the prior critical value of 1.96 would not be the correct critical value. 
To find the correct value we would need to go back to our probability density 
theory. In doing so, we obtain the desired equation to solve 

which will yield the solution of 

We are now prepared to fully develop our hypothesis testing procedure: 
First, null H: µ = 85. 
Alt H: µ > 85. 
Second, assume the null is truthful, and reject if: TS > 1.65. 

Third, TS = 

Fourth, since the TS does fall in the rejection region we reject the null. 
We previously presented the definition of the test statistic formula without 

development nor proof. Let us now formally define and prove from where this 
formula comes. We assume that the population problem we are studying is 
modeled by a normal distribution with mean µ and standard deviation ⯑, hence 
X~N(µ,⯑). Now, in regards to the sample we will need to utilize two Lemmas 
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from a theorem of advanced probability theory known as the Central Limit The-
orem. Namely, we will take as definition the following: 

Definition 5.2.2 – The meanmean and variancevariance of a sampling distribution 

If X1,X2,…, Xn are random variables with 

and if is the random variable of the sample means of all the simple random sample size n from a pop-
ulation with expected value E(X), and variance Var(X) then 

We now need to prove our main foundational result, which is illustrated in the 
following theorem definition. 

Definition 5.2.3 – Central Limit Theorem Central Limit Theorem 

If X1,X2,…, Xn are normally distributed random variables with mean µ and standard deviation ⯑, 
then 

Proof: Let us begin by recalling a fact about random variables, namely if 

and we consider the RV =aX, where a is a fixed constant, then we can show by 
some routine algebra on the cumulative distribution function that this 

A similar result is well known that if we have two random variables 
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and 

and if we consider the RV = X + Y, then we will find 

Thus, we can draw the conclusion that our X1,X2,…, Xn are normally distributed 
random variables that 

Now, we shall look at the expression 
\frac{\bar X -μ}{σ/\sqrt{n}}=\frac{\sqrt{n}}{σ}\bar X -\frac{\sqrt{n}}{σ}μ. 
From the results above we will see that this has a mean 0 and standard devia-
tion 1, hence we have proved that 

which means the use of the standard normal distribution for our critical values 
are validated. 

5.3 MOMENT GENERATING FUNCTION 

The Moment Generating Function, as its name implies, is a function that we will 
create which can be used to find the moments of the probability distribution, 
and these moments are very useful in applications to find things such as the 
mean and variance. The good news is once we have obtained the MGF, we will 
be able to obtain these moments without computing lengthy integrations such 
as we encountered in prior sections when attempting to directly compute the 
variance. However, as we will see shortly the actual definition of the MGF is actu-
ally itself an integration, but in most applications one will be able to start from 
a known MGF rather than needing to compute, phew! 

The formal definition of the Moment Generating Function, is the expected 
value of the function , where x is the random variable and t is a new variable 
which is not related to x, hence it can be treated as a constant in operations 
such as the expected value integration which is with respect to x. Thus, we have 
arrived at our main definition for this section: 
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Definition 5.3.1 – The moment generating function moment generating function for density f(x) 

where the result is a function of t. 

Example 5.3.1 

Find the moment generating function for the uniform density with L =1 and R = 
5, i.e. the density 

To begin our solution we note that we have the density defined as 

and from our prior knowledge we recall that this function is defined on the sam-
ple space of 1<x<5. Hence, we can now compute its MGF as 

Now, to compute this integration it is first noted that the value of t, while it is 
officially a variable, can be treated as a constant within this integration, hence 
we can compute the integration as 

Example 5.3.2 

Find the moment generating function for the exponential density with A=2, i.e. 
the density 

To begin our solution we note that we have the density defined as 
 and from our prior knowledge we recall that this function is 

defined on the sample space of x >0. Hence, we can now compute its MGF as 

Now, to compute this integration, again it is important to recall that while the 
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value of t is officially a variable, here it can be treated as a constant within the 
integration. Also, the useful property of exponential functions, 
, is applied and doing so we find 

It was assumed here that the value of t was chosen so that t-2<0, hence the 
value of the parameter t was chosen so that our integration would converge. 

In a pure mathematical point of view one may state the conclusion from 
the last example that we have found the moment generating function to be 

 which is only defined for t < 2. However, for our purposes in this 

textbook we will not include such details as we will only be working with well-
known Moment Generating Functions which are stable and defined at the value 
of t as needed in applications (generally it is needed to evaluate these function 
at t = 0), but the abstract concept of convergence it important to be aware of as 
not all density functions have a convergent MGF, such as the next example will 
illustrate. 

Example 5.3.3 

Find the moment generating function for T density, with v=2, i.e. the density 

To begin our solution we note that we have the density defined as 

 and from our prior knowledge we recall that 

this function is defined on the sample space of x >0. Hence, we can now com-
pute its MGF as 

Prior to computing this integration it is worthy to recall the known particular 
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values of the gamma, namely that  and  hence our 

integration simplifies to 

Now, while no exact “closed form” of this integral (e.g. indefinite integral) is 
known, it is possible to compute the integration using series methods; how-
ever, doing so would result in a solution that involves all positive power terms of 
the form  This would then need to be evaluated at positive infinity, which 
would lead to a divergent result. Hence, the conclusion we obtain is that this 
MGF integration for the T density does not converge, so we conclude that the T 
density does not have an MGF. 

Prior to continuing our development of Moment Generating Functions, along 
with their applications, it is worthy to revisit our list of common density function 
that are frequently used in examples, and now also state their Moment Gen-
erating Functions. The following are the most likely examples that you will 
encounter are: 

The exponential exponential densitydensity is  which is defined for x 0, and its MGF 

is 

The uniform uniform densitydensity is  which is defined for L < x < R, and its 

MGF is 

The normal normal densitydensity is  which is defined for all x, and its 

MGF is 

The TTdensitydensity is  which is defined for x > 0 

with v being the degrees of freedom, and as noted in the last example from the 
prior section it does not have a MGF. 
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The chi squaredchi squareddensitydensity is  which is defined for 

x > 0, with v being the degrees of freedom, and and its MGF is 

As the proof of the prior section developed, we can now alternately find the 
nth moment, 

of a probability distribution without needing to actually computing the expecta-
tion integration. 

Definition 5.3.1 – The n’thn’thmoment moment of a density f(x) 

This result can be extremely useful in applications, such as finding the variance 
which one can show is equal to µ µ

Prior to moving forward with examples, let us quickly outline the proof of the 
above result. To being, the nth moment is formally defined as 

Now, the moment generating function is defined as 
. 

And, expanding the exponential function from this definition in a power series, 
we obtain that the moment generating function can alternately be written as 

Then, if one takes the first derivative and evaluates that at t being zero, all 
terms except the expected value of x will vanish hence, we have established that 

Likewise, if one takes two derivative and evaluates that at t being zero, all 
terms except the expected value of x squared will vanish hence, we have estab-
lished that 
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And, this pattern can be continued on indefinitely to prove the result provided 
in definition 5.3.1. Moreover, if one plays a little algebra – recalling that the 
mean “μ” is a constant so it can be taken outside of the integration – with the 
prior definition of variance 

It can be established that 

or in terms of moments 
. 

 
Then, recalling that μ1 can be computed as the first derivative of the MGF, 

while μ2 can be computed as the second derivative of the MGF, we can see it is 
possible to obtain both the mean & variance through this new method as 

The method developed above can be used to compute the expectation and 
variance without computing any of the integrals, such as done in the prior 
examples. Let us now look to some examples for illustration. 

Example 5.3.4 

For the exponential exponential densitydensity is  which is defined on the sample 

space for x>0, and has the MGF is  find the mean and variance, 

firstly by the classical “integration” method, then secondly by the MGF method. 
To begin our solution we note that we have the density defined as 

 and from our prior knowledge we recall that this function is 
defined on the sample space of x >0. Hence, we can now compute its expecta-
tion as 

5. INTRODUCTION OF ADVANCED ANALYTICAL & INFERENTIAL STATISTICS 81



The solution to this integration is found to be = 0.5. Now, on the other hand we 
can compute the 1st moment as 

Likewise, we can now compute the variance as expectation 

µ µ

The solution to this integration is found to be = 0.25. Now, on the other hand 
we can compute the variance as 

µ

Example 5.3.5 

Find the mean of for chi squared density, with v=2 degrees of freedom, firstly 
by the classical “integration” method, then secondly by the MGF method. 

i.e. the density 

with the associated MGF is 

To begin our solution we note that we have the density defined as 

and from our prior knowledge we recall that this function is defined on the 
sample space of x >0. Hence, we can now compute its expectation as 

The solution to this integration is found to be =2. Now, on the other hand we 
can compute the 1st moment as 
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Example 5.3.6 

A probability density function is under investigation, but it is not known explic-
itly, and using a set of 100 data points it is found to have the MGF 

Use this function to find the mean and variance, and then use those results 
to find the 95% two tailed confidence interval. Also, make a comment as to if 
it is possible to those results and/or the confidence interval results to find the 
actual probability density function. 

Now, to being we can compute the 1st moment as 

Then, we can compute the variance as 

µ

And, we can then set up the 95% confidence interval 

 to , 

by simply plugging in the value of the mean as 1 and the value of the variance 
“VAR” as 2, and n as 100; doing so yields the solution that we are “95% confident 
that the population mean is between 0.73 and 1.27.” Lastly, to address the 
question as to if any of this information could be used to determine the actual 
probability density function, the answer to that question is a bit of a grey 
area; moreover, if we knew this was from a normal data set and the results 
we obtained were accurate representations of the population mean μ, and 
variance σ2, then we could define the density as 

 However, it is not clear from the informa-

tion given – albeit that the given MGF does look familiar – that it would be safe to 
conclude it is a normal distribution. Moreover, it is important to remember that 
in practice one should never attempt to draw conclusions from a single data set! 
If we had multiple data sets and we saw a trend in the results and we had some 
real world context to suggest the phenomena was modeled by a normal dis-
tribution, then we could move closer to conclusion but it does not appear that 
can be done with the information given. It is important to remember that many 
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results, such as the famous central limit theorem, are only valid for a sample of 
samples! 

Chapter 5 Exercises 

1. From the central limit theorem the term  is often called the standard error term. 

What happens to this term as the sample size grows without bounds? (HINT: perhaps fix 
, say standard normal with , and then try a few big then bigger samples n=10, then 
n=100, then ) 

2. For a sample of n=31, governed by the normal density, set up (not compute) the integral 
equation to find the 

Z critical value for the following two tailed confidence levels using mean=10& variance. 

◦ 

◦ 95% confidence 

◦ 99% confidence 

3. An experimental study is done to improve the cost to drive an electric car; it is found 
the average gas price is $2.69 which leads to a ten cent fuel cost per mile in cars with a 
standard deviation of one cent, use this information as the population. Now, in your exper-
iment of 31 cars you worked with Elon Musk and created both a new battery & interstate 
charging system. This led to the average cost going down to nine cents per mile. At the 95% 
confidence level do you feel confident to say your experiment had an effect and/or is a stasta--

tistically significant differencetistically significant difference? NOTE: use 

4. Compute E(x) for N~(3,1) {e.g. a normal with mean  and st dev } 

◦ by integral definition (set up & simplify integral and use integration software) 

◦ by MGF 

5. Compute P(0<x<1) for T2 (set up & simplify integral and use integration software) 

6. Compute E(x) for χ2 
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◦ by integral definition (do by hand) 

◦ by MGF 

7. Use the exponential PDF with a=7, i.e. , for x>0 

◦ Use the traditional definition  to compute the 

expectation. (do by hand (IBP)) 

◦ Use the traditional definition  to compute vari-

ance. (do by hand (IBP)) 

◦ Use table provided in class to write MGF for this PDF & use it to compute the 
1st & 2nd moments. 

◦ Compute the variance as  and verify that it yields the same 

solution as part b. 

◦ Use the traditional definition  to verify your part 

c solution for 

8. Use the uniform PDF with L=3, i.e. , for 0<x<3 

◦ Use the traditional definition  to compute vari-

ance (do by hand) 

◦ Use table provided to write MGF for this PDF & use it to compute the 1st & 2nd 
moments. Hint: you will need to expand  using a Taylor series. Hint: Taylor 
series for 

◦ Compute the variance as  and verify that it yields the same 

solution as part a. 
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6. Applications to Disease Prediction 
and Spread Prevention 

6.1 SUMMARY OF SIR MODEL 

To begin our brief summary of disease modeling, it is noted from Wikipedia arti-
cle (XYZ1), that as of April 2020 the basic reproduction number “R0” for SARS-
CoV-2 was estimated to be between 1.4 and 3.9. The computation of this value 
is absolutely essential to any mathematical prediction of the disease spread, 
as this value basically explains how many people one infected individual will 
spread the virus to. However, this value is often extremely challenging to obtain 
in real time as not only is it very difficult to trace either where an individual 
was infected from and/or to whom they may have passed it to, but this value 
is also very much affected by the regional aspects. For example, an individual 
in a highly urbanized area such as New York City will generally interact with 
hundreds and hundreds of people during their usual everyday lives commuting 
on subways or walking on crowded sidewalks, hence interacts with a lot more 
hosts to potentially spread to; while an individual in a rural area will generally 
interact with only a few people during their everyday lives, hence interacting 
with only a few potential hosts to spread to. 

Now, while there are many advance techniques to resolve such issues in data 
collection we will not address those here but rather we will focus on outlin-
ing the main steps in developing a mathematical model to model a spread in 
disease. Then in the following two sections a summary of two applications of 
hands on real world data analysis is illustrated to show how one can, in real 
time, obtain practical useful information to understand more in real time of how 
a disease is spreading. 

One of the most commonly utilized infectious disease predictions methods 
is the so called SIR model This model attempts to predict, as time moves for-
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ward, the number of Infected and then Recovered individuals from a popula-
tion of Susceptible individuals. Hence, the SIR model name is referring to the 
flow . To summarize the logic behind this model we first define the 
following functions 

 the number of not yet infected individuals susceptible of the disease at 
time t. 

 the number of not yet recorded individuals infected with the disease at 
time t. 

 the number of previously infected individual, who are now recovered 
at time t. 
The goal of the SIR model is to create a mathematical model between these 
three functions, commonly starting from some initial data  and 

. 
Now, while we will not discuss the intricate details, nor how they adjust the 

modeling, a few main assumptions we note here are that in our simplified mod-
eling we assume that all of the individuals in  are equally likely to become 
infected the disease, and all of the individuals in  are equally likely to spread 
the disease. In addition, we assume that once an individual is infected, hence 
moves from  into  they can no longer spread nor be re infected by the 
disease. Furthermore, the function  is actually a compartment that collects 
all individuals after they leave , hence it includes both recovered individuals 
who survived then gained immunity, but it also includes individuals who died. In 
addition, we do not attempt to predict any methods to adjust these transitions, 
such as applying external factor like cure medicines, nor do we attempt to intro-
duce any jump functions, i.e. , that result from applying external 
factors such as vaccinations. In short, the SIR model we construct here is just a 
good start for an initial model stage in the research. 

The commonly accepted assumption (XYZ2) of the SIR model, is that the rate 
of change of change with respect to time of  is proportional to the ratio, 
from the total population, of the product of current number of susceptible 
times the infected. Thus, by defining the constant value of N as the sum 

, this yields a differential equation for  as 

where β is the to be determined proportionally constant, and it is worthy to 
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note that this value of beta is also the probability of an individual within  to 
become infected with the disease of which is equal likely for all individuals. Also, 
it should be noted that the negative value is utilized in the differential equation 
to explain the fact that as time moves forward the size of  decrease since 
individuals move out of  into  In addition, if we define γ as the to be 
determined proportionally constant modeling the rate of change from  into 

 this yields a differential equation for  as 

It is worthy to note here that γ can also be viewed as the mean recovery/death 
rate which can be approximated from real data in real time. 

If it assumed that this is a closed system then the rate of change of  can 
be computed applying simple in minus out logic, hence this yields a differential 
equation for  as 

Thus, a classic 3×3 system of three differential equations for three unknown 
functions has been obtained. While this system is a complex non linear dif-
ferential equation, there are some methods of solution which can yield some 
extremely useful information. 

Prior to outlining these solution methods, it is worthwhile to take a step back 
and consider what are the most important pieces of information to obtain in 
real time as a new disease is spreading in real time. Namely the basic produc-
tion number, , is one of the most desirable pieces of information to obtained. 
If the basic production number is known, the interpretation of its value can 
be used by doctors along with governmental officials to determine if a disease 
spread will be a minor event or an epidemic or in the worst cases become a 
global pandemic. Now, in a most simple cases one can determine the number 
of infected cases over time, in the early stages of a disease spreading, as simple 
exponential growth model with a logarithmic growth rate of 

Then, if from data, it is possible to estimate that after time,  an individual 
infects exactly 

 new individuals then the value of K can alternately be computed 
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and from this information both the values of initial growth rate along with the 
basic production number can be approximated. However, it is extremely diffi-
cult to actually obtain the information needed in real time and often by the time 
it is discovered that a disease is actively spreading in the real world the growth 
has moved much further along in its evolution than being modeled by such 
a simple model utilized for this rudimentary solution. Thus, a more advanced 
methodology is commonly required to estimate  which is where our full 3×3 
system of differential equations can be utilized. 

The formal definition the basic production number is 

where beta is as previously defined, but often unknown and very difficult to 
estimate in real time, and ⯑ is the mean infectious period which is often able to 
be estimated in real time by observation of real cases. Hence, if one can create 
a mathematical model from data in real time and then compare it to a mathe-
matical model from our prior differential equation solution it maybe possible to 
extract the value of beta, and thus accurately estimate the value of 

. To begin, we take our system of three differential equations 

And, we note that since the sum S+I+R is assumed to be a constant value of the 
total population, we have the fact of 

And, due to the fact that  we note the basic reproduction number can 

be rewritten as 
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we can observe that the value within the parentheses tells a lot of practical 
information. First, it is worthy to note that the value of  will always be pos-
itive in sign. Thus we can conclude that if 

 then the disease will spread rapidly, as the sign of  will be posi-

tive, hence increasing. Thus, with initial data, a disease can be defined as one 
will spread to an epidemic outbreak, or in worst cases a pandemic, if 

while it will not be expected to if 

This information is one of the most powerful pieces of information that doc-
tors and/or governmental officials can be provided with in real time when mak-
ing policy decisions for a new disease. The only major issue with this is that by 
the time enough data has been collected to obtain this critical piece of informa-
tion is obtained, in real time the disease has often spread so far that there is 
often not much that can be done to stop the spread of the disease, other than 
attempts to reduce the function  such as social distancing. 

Now, to actually obtain a model solution for this system of equations, some 
algebraic manipulation is needed. To begin if the first is divided by the third it is 
obtained that 

and by routine variable separation for the first order differential equation this 
becomes 

Then, by conducting a definite integration it is found that 

From which the solution 

is obtained. While this is not exact solution to our 3×3 systems of equations, 
as the value of  obtained depends on the value of  it is an extremely 
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useful piece of information which can be used in real time. If, in real time, data 
is collected to measure the value of  and possibly even  this solution, 
which can be rewritten as 

is an extremely powerful solution. From here further methods can be applied 
to either obtain actual individuals closed from solutions for  and  or can 
yield an approximation for the basic reproduction number. Namely, if a nonlin-
ear regression data fit (AKA using the command ~nls in R or python coding) a 
data fit solution can be created and then by comparing the two one can extract 
an approximation value for 

. 
While this modeling is an extremely interesting mathematical model we will not 
continue further development on the topic here, but rather we will quickly look 
in the next section at one real world data example from New York City of the 
COVID-19 disease spread in to illustrate how the statistical methods learned 
can be applied to actually model a regression solution. Then we will end this 
textbook in the proceeding section to discuss an extremely interesting research 
question, how to determine what factors drive citizens to actively participate 
in social distancing measures. This is a very important topic to study as within 
the scientific community it accepted that once a disease is activity spreading in 
an epidemic, or even worse a pandemic, spread then the most effective way 
to stop the disease is social distancing. This is due to the fact that while these 
mathematical solutions are beautiful to study, the downfall is that in real life 
once a disease starts spreading from person to person there is absolutely noth-
ing that can be done to stop it. The only tools we have available to us such as 
humans in such a battle against a virus are common sense preventative mea-
sures to spread the disease in daily life ( e.g. wearing filtration masks and gloves 
or other personal protective equipment ), or taking societal measures such as 
social distancing. While this is accepted by most in the community, we can now 
validate it mathematical as from our solution of the second equation we noted 
the disease will not become a pandemic if 

While we do not have any control over R naught, and the value of N is fixed, 
we can greatly reduce the value of  by implementing social distancing mea-
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sures; in fact as that value approaches zero the right hand side of this bound 
will become infinite which ensures society will win the battle against the virus, 
or here mathematically a battle against the direction of an inequality symbol! 
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6.2 DATA ILLUSTRATIONS OF SEEKING THE EXPONENTIAL 
INFLECTION POINT 

6. APPLICATIONS TO DISEASE PREDICTION AND SPREAD PREVENTION 93



3/1/2020 0 1 
3/3/2020 0 3 
3/4/2020 0 8 
3/5/2020 0 11 
3/6/2020 0 18 
3/7/2020 0 25 
3/8/2020 0 46 
3/9/2020 0 103 

3/10/2020 0 173 
3/11/2020 1 326 
3/12/2020 2 681 
3/13/2020 2 1299 
3/14/2020 4 1941 
3/15/2020 10 2969 
3/16/2020 19 5085 
3/17/2020 26 7532 
3/18/2020 47 10481 
3/19/2020 71 14159 
3/20/2020 116 18144 
3/21/2020 157 20744 
3/22/2020 205 23288 
3/23/2020 288 26790 
3/24/2020 382 31180 
3/25/2020 503(+31.7%) 35914 
3/26/2020 688(+36.8%) 40840 
3/27/2020 897(+30.4%) 45829 
3/28/2020 1,162(+29.5%) 49214 
3/29/2020 1,444(+24.3%) 52651 
3/30/2020 1,757(+21.7%) 58666 
3/31/2020 2,126(+21%) 63834 
4/1/2020 2,545 68859 
4/2/2020 3,001 74504 
4/3/2020 3,465 80020 
4/4/2020 3,942 83772 
4/5/2020 4,475 87386 
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4/6/2020 5,024 93592 
4/7/2020 5,599 99511 
4/8/2020 6,118 104915 
4/9/2020 6,638 109781 

4/10/2020 7,137 114022 
4/11/2020 7,645 117588 
4/12/2020 8,172 120304 
4/13/2020 8,699 123514 
4/14/2020 9,181 127569 
4/15/2020 9,606 131366 
4/16/2020 9,987 134819 
4/17/2020 10,334 138318 
4/18/2020 10,682 140397 
4/19/2020 11,031 142679 
4/20/2020 11,355 146393 
4/21/2020 11,640 149395 
4/22/2020 11,924 152809 
4/23/2020 12,208 155596 
4/24/2020 12,480 157994 
4/25/2020 12,691 159508 
4/26/2020 12,899 160498 
4/27/2020 13,114 162728 
4/28/2020 13,292 165369 
4/29/2020 13,449 167633 
4/30/2020 13,590 169555 

 
Now, prior to conducting the data analysis for this data set it is useful to make 

a note about how, in real time, it is preferred to look at a very simple measure 
which is the rate of change of cases not the actual increase in raw numbers. For 
example, the day over day change from March 24th to March 25th was 31.7% 
which is easily computed as number of cases reported on March 25th – cumula-
tive number of cases up to March 24th, then to make this a percentage ratio the 
result is divided by the cumulative number. 
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This very simple computation is one of the most important data values to 
watch in real time, as while the number of new cases may still be a large value it 
is the percentage change that really tells the story, really tells when the spread 
is slowing. Obviously, in the early days of the disease spread that value will be 
rapidly changing due to small numbers, but once the progression of the disease 
continues it is noted that this number becomes more stable. Namely, in the 
New York City data this percentage change was steadily growing up to March 
26th , when it reached its maximum value of just under 37%. Then, the value 
steadily declined over the next few days, 30.4% on March 27th and 29.5% on 
March 28th . The value continued a steady decline reaching 19.7% on April 1st 

and then falling to 9.3% on April 8th staying below 20% for the reminder of 
the month. Thus, this numerical value is a measure of when the spread of the 
disease starts to slow, and as one can see within this timeline the peak corre-
sponds to the time shortly after the strict social distancing measures were put in 
for place for NYC residence. Furthermore, it is debatable as to what measure is 
the most accurate to use, the number of infected or the number of deaths, and 
while each is now without some doubt it is generally accepted that the number 
of deaths is more practical in real time as in order to actually know the total 
number of infected persons each member of the population would be needed 
to be tested and it is not practical to do so in real time. However, to study the 
models in the prior section, related to data analysis methods, a data fit for 
is desired, thus we will conduct one now but not address the actual validity of 
the data obtained nor any corrections to the data values due to advanced sam-
pling methods that could be applied. 

If a simple regression model was run on the natural log of the data of the 
number of cases during the month of March, the following result is obtained. 

Thus, one can back solve this to see the approximate exponential growth 
model for the number of infected cases as 

And, from this one can compare to the either one of two things: the formal 
solution to the methods learning in the prior section, hence matching parame-
ters, or a training/testing data set from current time data. Either way, the model 
should be effective at making short term predictions on the future spread of 
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the data. It would be at interesting study to look at this same exercise, but at 
different times in the future; hence, one could conduct a post hoc type statis-
tical analysis to look if measure taken by local authorities had any effect of the 
spread? 
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Exercise Answers 

ANSWERS TO CHAPTER 1 EXERCISES 

1. 

2. The larger the variance, the more spread the data. 

3. 69<x<81 

4. 85<x<115, max value 115 

ANSWERS TO CHAPTER 2 EXERCISES 

1. 4,200 choices 

2. 35,152 codes 

3. 32,760 ways 

4. a. 35,254,642,500 ways, b. 21,646,947,168,000 ways, c. 65,536 ways 

5. 

6. 

7. 

8. 

9. 
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10. 

11. 

12. a. , b. , c. , d. , e. 

ANSWERS TO CHAPTER 3 EXERCISES 

1. a. discrete, b. continuous 

2. 

3. 

4. a. 

x 1 2 3 5 

p(x) .4 .1 .3 .2 

Valid Probability Distribution 
b. 

x 0 1 2 3 

p(x) .3 .2 .4 .2 

Not a Valid Probability Distribution 

1.  a. , b. x=2, c. 0.62, d. 0.88 

1. a. 1.6, b. 1.05 

2. a. 0.00078, b. 2 

3. a. binomial; 0.39, b. not a binomial; probability of success is not the 
same for each trial. (answers may vary) 

4. a. binomial, b. 72.8, , 6.552, 2.560 c. 0.120, d. 0.999 , e. 
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ANSWERS TO CHAPTER 4 EXERCISES 

1. a. , b. 0.988, c. 1, d. , e. 0.9985 hrs after 11am (ie. by 12pm) 

2. a. 0.5, b. 0 

3. a. , b. 

4. a. , b. 0.125, c. 1.5, d. 0.15 

5. a. 0.5, b. 0.05 

ANSWERS TO CHAPTER 5 EXERCISES 

1. 

2. a. , b. , c. 

3. Yes, there is a statistically significant difference. 

4. a. 3, b. 3 

5. 0.28868 

6. a. 2, b. 2 

7. a. , b. , c. , d. , e. 

8. a. , b. ; ; 3 , c.  
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