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ABSTRACT 

Author: Marcus Elwood Fisher 

Title: Burst Pressure Prediction of Filament Wound Composite Pressure Vessels 

Using Acoustic Emission 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 
Year: 1996 

This research demonstrates how acoustic emission (AE) data from flaw growth activity can 
be used to predict burst pressures in filament wound composite pressure vessels. Acoustic 
emission data were taken during hydroproof testing for a set of eleven ASTM standard 5.75 inch 
diameter fiberglass/epoxy bottles. Amplitude distributions were created using only the AE data 
up to 25% of the expected burst pressure to simulate low level proof loadings (thereby avoiding 
damage to the bottles). The bottles were tested at three different temperatures -- 32°F, 70°F, and 
110°F - and hydroproofed using two different pressurization schemes and two transducer 
configurations. Moreover, two of the bottles contained simulated manufacturing defects which 
lowered their burst pressures significantly. 

Both multivariate statistical analysis and artificial neural networks were used to generate 
burst pressure prediction models from the AE amplitude distribution data. For the multivariate 
statistical analysis, fixed failure mechanism bands were applied to the amplitude distributions for 
all eleven fiberglass/epoxy bottles. The optimum failure mechanism bands resulted in a prediction 
equation that had a worst case prediction error of-14% and a correlation coefficient of 49.9%. 
When the defective bottles were left out of the analysis, the results improved to a +10% worst 
case error and a 65.0% correlation coefficient. 

The amplitude distribution frequencies, temperatures, pressurization schemes, and 
transducer configurations were all used as inputs to the artificial neural networks. To begin with, 
the two pressurization schemes and the two transducer configuration schemes were found to have 
no significant effect on prediction accuracies. When one of the defective bottles was included in 
the training set and the other in the test set, the errors were +15.2% and +14.7%, depending upon 
which bottle was used for training and which for testing. Including both defective bottles in the 
fraining set decreased the worst case prediction error to -7.8%. Finally, when the two defective 
bottles were removed from consideration, the worst case prediction errors dropped to -0.8% and 
-1.5%, the former being obtained with temperature included as an independent variable and the 
latter without. 

The neural networks predicted burst pressures to a greater accuracy than multivariate 
statistical analysis. This could be explained by the fact that the statistical analysis generates a 
linear burst pressure equation, whereas the neural network is not limited to linear modeling. The 
neural network results suggest that the addition of one defective bottle in the training set would 
probably allow the neural network to predict burst pressures with a worst case error within the 
desired goal of ±5.0%. It can also be seen that, while the inclusion of temperature as one of the 
inputs to the neural network improves the prediction accuracy, the improvement does not appear 
to be significant. 
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1.0 INTRODUCTION 

Proof testing of composite structures is complicated by the fact that most 

composite structures do not exhibit the same elastic-plastic behavior found in metal 

structures. Excluding macroscopic flaws, as long as the stress is kept below the yield 

point, there is little plastic deformation and therefore no noticeable degradation in the 

structural integrity of metal structures. This does not hold true for fiber/matrix 

composites. Because the fibers are the primary load bearing constituents in composites, 

the structural integrity begins to degrade as soon as the fibers begin to break. For the 

fiber bundle shown in Figure 1.1, fiber breakage began to occur at less than 20 percent of 

the ultimate load [1]. While different structures might begin to experience fiber 

100 -
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0 20 £0 60 80 100 
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Figure 1.1 Percent Fiber Breaks vs. Percent Ultimate Load for a Fiber Bundle 
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breakage at a higher fraction of the ultimate load, the exponential upturn of the number 

of fiber breaks with increasing load is typical for composite structures. This means that 

the common proof testing loads of 70-80% of expected fracture strength used on metal 

designs can significantly damage a composite structure, thereby degrading its structural 

integrity. To avoid significant fiber breakage and the associated structural degradation 

during proof loading, a procedure needs to be adapted that uses a much lower proof 

loading for composites (25 percent of the ultimate load) and would, at the same time, 

accurately determine the ultimate strength of the structure. 

The research performed herein utilized a series of eleven 5.75 inch diameter 

fiberglass/epoxy filament wound composite (FWC) pressure vessels also known as 

bottles. All the bottles employed S904 glass fibers and the ETC0021 resin type and were 

wet wound in a series of helical and hoop layers on a tumble winder at Morton Thiokol 

Inc. (Brigham City, UT) in 1984. Nine vessels were tested, three each at 30°F, 70°F, and 

110°F, in order to ascertain the effect of temperature on the burst pressures. These 

vessels were used to simulate igniters for solid rocket motors, so these temperatures were 

significant in that 70°F is room temperature, 32°F is freezing, and 110°F is estimated to 

be the hottest that a rocket motor would get if the cooling system malfunctioned in a 

missile silo. The final two bottles had simulated manufacturing defects, where the outer 

hoop ply was shortened by 0.4 inches on one bottle and 0.6 inches on the other (Figure 

1.2). Both of the defective bottles were tested at 70 °F. Also, two different pressurization 

schemes were used to test the eleven bottles. The first one was a load-hold-unload type 

pattern as shown in Figure 1.3(a), and the second one was a simple ramp pressurization 

scheme shown in Figure 1.3(b). In terms of notation, the solid lines in Figures 1.3(a) and 

1.3(b) indicate pressurization and acoustic emission (AE) data being considered 

simultaneously, whereas the broken lines indicate pressurization data only. Finally, two 



different acoustic emission transducer configurations were used in monitoring the flaw 

growth activity during hydroproof. The locations of the transducers for each 

configuration are shown in Figure 1.4. 

POLAR (HELICAL) 
FIBERS 
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POLAR BOSS 

Figure 1.2 Filament Wound Composite Pressure Vessel 

The manufacturing process of FWC pressure vessels begins with the filament 

winding process. This process starts with a fiber such as Kevlar, graphite, or for this 

research fiberglass passing through a liquid bath of resin and then being wound around a 

rubber coated, compressed sand mandrel in a series of helical and hoop layers as shown 

in Figure 1.1. The structure is then cured in an oven, and finally the sand mandrel is 

washed from the inside of the bottle using a water jet. The composite pressure vessel 

thus formed has a high strength to weight ratio; hence, FWC pressure vessels have 

replaced metal pressure vessels in many aerospace applications such as rocket motor 

cases. 
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(a) Load-Hold-Unload Pressurization Scheme 
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Figure 1.3 Hydroproof Pressurization Schemes 



Transducer Configuration 1 Transducer Configuration 2 

X - Transducer Location 

Figure 1.4 Acoustic Emission Transducer Placement/Configurations 

Filament wound composite pressure vessels have three primary failure 

mechanisms: matrix cracking, delaminations, and fiber breaks. The purposes of the 

matrix are to protect the fibers, hold the fibers in place, and to transmit the loads to the 

fibers. Because the fibers are the primary load bearing constituents of the structure, fiber 

breaks are the most critical failure mechanism in determining the burst strength. 

However, during a normal hydroproof test, a significant number of fiber breaks can 

occur, which will drastically lower the burst pressure of the bottle. Matrix cracking and 

delaminations can also occur during hydroproof, changing the expected burst pressure of 

the vessels, but to a lesser extent than fiber breaks. 

Acoustic emission technology has proven to be very useful in classifying these 

failure mechanisms, in that each of the mechanisms possesses a different acoustic 

emission signature (Section 2.1). These acoustic signatures will be used to determine the 

effect of the various failure mechanisms on the burst pressure. Acoustic emission 

nondestructive testing is utilized primarily for its ability to monitor structures in real time 
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on a global basis. Acoustic emission is produced by the rapid release of strain energy as 

microscopic and macroscopic flaw growth occurs in a structure. The stress waves 

produced by this release of energy travel radially outward from the flaw growth sources. 

Piezoelectric transducers are placed on the bottle to convert these stress waves into 

electric voltage signals which are then used for analysis (Section 2.0). 

The amount of acoustic emission activity provides a quantitative measure of 

structural integrity. Stress concentrations in the composite structure such as misaligned 

fibers, resin starved areas, etc., can greatly reduce the overall strength of the structure. 

Such stress concentrations are typically very acoustically active from the onset of 

pressurization. As such, acoustic emission has been used to determine the overall 

strength of structures at low proof loads. 

It was demonstrated by Kalloo [2] that AE data and multivariate statistical 

analysis could be used to predict burst pressures in graphite/epoxy pressure vessels. 

Then Walker [3] showed that AE data could be used along with multivariate statistical 

analysis in determining equations for ultimate strength prediction in ASTM D-3039 

unidirectional graphite/epoxy tensile specimens. Subsequently, Walker and Hill [4] 

solved this problem using neural networks; and then Hill, Walker, and Rowell [1] applied 

neural networks to generate a burst pressure prediction model on a series of 5.75 inch 

diameter graphite/epoxy bottles (using three different resin types). 

The research presented herein uses the multivariate statistical analysis and neural 

network techniques to predict burst pressures in a series of eleven fiberglass/epoxy 

pressure vessels. The bottles used for this research are different from previous research 

in the fact that the three temperatures, the two pressurization schemes, and the two 

transducer configurations were all used while hydroproofing the bottles. Also, the fact 

that manufactured defective bottles are used is different than what Hill, Walker, and 
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Rowell have done with neural networks. AE data were collected during the hydroproof 

cycle; however, only the data up to 25% of the expected burst pressure were used for the 

analysis herein to simulate proof loadings of 25% of fracture strength. Both multivariate 

statistical analysis and artificial neural networks will be applied to the AE data from the 

eleven bottles to generate burst pressure prediction models. It will be determined if 

either or both methods can accurately predict burst pressures in the vessels including the 

two bottles with simulated manufacturing defects (premature hoop fiber reversals). 



2.0 ACOUSTIC EMISSION 

To understand how acoustic emission nondestructive testing can be used to 

predict burst pressures in FWC pressure vessels, some background knowledge of acoustic 

emission must be provided. An AE signal is produced by the rapid release of strain 

energy as flaw growth occurs in a material. Energy waves (or stress wave packets) are 

produced from this release of energy and travel outward from the flaw growth source. 

The stress waves either couple into the water or mode convert and propagate along the 

boundaries of the structure as surface waves. 

Piezoelectric transducers are placed on the bottle to convert the stress waves into 

electric voltage signals which are then used for analysis. Resonant (narrow band) 

transducers (Figure 2.1) are used in this application because of their ability to pick up 

low amplitude signals. Pre-amplifiers are placed in the circuit near the transducer and 

shielded cables are used to eliminate interference. The pre-amplifier is usually set to a 

40 dB gain which magnifies the signal by a factor of 100. Bandpass filters are also used 

to block out low and high frequencies such as hydraulic or mechanical noises and 

electromagnetic interference. 

2.1 EVENT PARAMETERS 

A typical acoustic emission signal (Figure 2.2) is a complex, damped, sinusoidal 

voltage versus time trace. As shown, some of the parameters used to quantify acoustic 

8 



emission signals are events, counts, amplitude, duration, and energy. The adjustable 

threshold voltage is set above the noise level of the signal such that no signals will be 

recorded below this voltage. 

CASE 

PIEZOELECTRIC 
ELEMENT • 

ELECTRIC LEAD 

YYvy\\ v r t r r 

WEAR PLATE 

COUPLANT LAYER 

///////////////////////////////////////// 

Figure 2.1 Resonant Piezoelectric Transducer [3] 

AMPLITUDE 

AE ENVELOPE (ENERGY) 

THRESHOLD 

DURATION 

NUMBER OF COUNTS N=5 

Figure 2.2 A Typical Acoustic Emission Signal and Parameters 
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An event begins when the signal voltage first surpasses the threshold and ends 

when the signal goes below the threshold for a specified period of time (say 200 us). 

The counts parameter is the number of times the signal amplitude exceeds the threshold 

during the event. The total time the event lasts is known as duration and is measured in 

microseconds. Energy is the area under the rectified and squared event envelope. The 

peak amplitude, or simply the amplitude, is the maximum voltage the signal attains for a 

given event. Since AE amplitudes typically range from a few microvolts up to tens of 

volts, in order to get them all on one plot, the amplitude parameter is measured and 

plotted on a logarithmic scale (see Section 2.3). 

2.2 AE PARAMETERS OF FAILURE MECHANISMS 

As was mentioned previously, the three primary failure modes for most 

composites are matrix cracking, fiber breakage, and delaminations. Each of these failure 

modes has characteristic magnitudes for the various AE parameters, which makes 

acoustic emission useful in identifying these failure mechanisms. 

Matrix cracking occurs throughout the testing cycle and is usually the least 

damaging of the mechanisms. A typical matrix crack signal is of short duration with a 

small amplitude and low energy. Delaminations occur when the laminae begin to shear 

apart. This mechanism can increase the burst pressure by reducing the interlaminar shear 

stresses within a vessel [5]. A delamination signal can be visualized as a series of 

overlapping matrix crack signals; therefore, the duration will be much longer, the energy 

will be greater, and the amplitude will be higher than those of a single matrix cracking 

signal. The last failure mode, fiber breakage, is typically the most damaging of the 

mechanisms, since the fibers are the main load bearing constituents of the structure. 
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Glass fiber breaks have very short durations and the highest amplitudes of the three 

primary failure mechanisms. The failure mechanisms with their typical acoustic 

emission values are summarized in Table 2.1. Although all the parameters are useful in 

providing information on acoustic emission, the research herein will only use the 

amplitude parameter (in the form of amplitude distribution plots) for burst pressure 

prediction. 

Table 2.1 Characterization of Fiberglass/Epoxy Failure Mechanisms Using AE 
Parameters 

AE 

Parameters 

Counts 

Amplitude 

Energy 

Duration 

Failure Mechanisms 

Matrix Cracking 

Low 

Low 

Low 

Short 

Delaminations 

High 

High 

High 

Long 

Fiber Breaks 

Low-Medium 

Very High 

Medium-High 

Short-Medium 

2.3 AE AMPLITUDE DISTRIBUTION 

The AE amplitude data can be graphed into an amplitude vs. events histogram 

known as an amplitude distribution plot (Figure 2.3). Peak signal voltages of the AE 

signals range from 0 dB (100 uV) to 100 dB (10 V), where amplitude A [dB] is a 

logarithmic representation of the peak signal voltage, V [V], of the AE waveform: 

A = 201og(V/Vref). 
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Typically, Vref = 1 uV at the sensor output is chosen as the 0 dB reference because it is 

slightly above the noise level of the system electronics. 

Bottle 27-28 
700 -| 

560-

c 

o 

1 2 8 0 -
E 
3 

z 
140-

0 ^ 
0 10 20 30 40 50 60 70 80 90 10C 

Amplitude [dB] 

Figure 2.3 AE Amplitude Distribution 

Previous experiments have shown that the failure mechanisms are grouped 

together in characteristic overlapping humps in the amplitude distribution. Since the 

logarithms of measurements tend to have normal distributions [6,7], the humps were 

approximated as such. Kalloo [2] modeled these humps and determined their effects on 

the structural integrity of graphite/epoxy pressure vessels, using multivariate statistical 

analysis to generate a burst pressure prediction equation. 

In 1994 Hubele and Hwarag [8] showed that a three layer backpropagation neural 

network could closely approximate the results obtained from statistical analysis. Neural 

network approximations also take into account any nonlinearities present, and according 

to the Kolmogorov theorem, a three layer neural network should be able to map any 
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continuous function exactly [9]. Therefore, since statistics are capable of predicting 

burst pressures in composite pressure vessels, neural networks should be capable of 

doing the same thing. 

Because of extensive overlap in the amplitude distribution data, an exact 

determination of the failure mechanism humps is not possible. A procedure needs to be 

implemented that will automatically determine the failure mechanism bands and thereby 

eliminate human error. The first technique to be used for this research involves setting a 

fixed decibel range for each of the three humps, and then applying these ranges to all 

eleven sets of bottle data. The second technique uses the event frequencies for each 1 dB 

amplitude interval (instead of the mechanism frequencies associated with each of the 

three humps) as inputs to a neural network. This will provide a more detailed picture 

from which to derive the predictions. 



3.0 STATISTICAL ANALYSES 

Multivariate statistical analysis has been used with the AE amplitude data to 

determine burst pressure equations. The percentage of high amplitude AE events, the 

number of high energy events, and the percentage of the total events in each failure 

mechanism hump have all been used to accurately predict burst pressures. These 

techniques are summarized below. 

3.1 PERCENTAGE OF HIGH AMPLITUDE EVENTS 

Delaminations and fiber breaks have been determined to be the most damaging of 

the three primary failure mechanisms experienced with composite pressure vessels. 

Through previous experimentation, it has been determined that AE amplitudes above 70 

dB were produced by these two mechanisms. Therefore, a measure of the integrity of the 

vessel is provided by the high amplitude AE data. 

Hill [10] has shown that a burst pressure prediction equation could be generated 

by using the percentage of high amplitude AE events for a series of six 18 inch diameter 

graphite/epoxy pressure vessels. Using AE data recorded up to 12.5% of the expected 

burst pressure, a prediction equation was generated to within ±3.0% worst case error with 

a 95% prediction interval. 

Using a stepwise linear analysis of the data with several candidate variables, Hill 

found that only the percentage of high amplitude events and the prepreg batch 

14 
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contributed significantly to the model. The burst pressure equation thus became 

BRSTPRS = - 378.8 + 4539 PCTHAE + 3053 PREPREG 

- 3600 PCTHAE*PREPREG, 

where 

BRSTPRS = Burst Pressure (psig) 

PCTHAE = Percentage of high amplitude events 

PREPREG = Prepreg batch (0, 1, -1 depending upon batch number). 

The cross-product term PCTHAE*PREPREG was needed to account for the 

interaction between the AE amplitudes and the prepreg batch. This can be seen in the 

crossed lines of Figure 3.1. Physically the two resins will have differences in their 

stiffness, therefore, the two resins will have different acoustic attenuation properties. 

Thus, two distinctly different amplitude distributions were produced by the two resin 

batches. 

3600 "5 

- 3400 m 

- 3300 

- 3200 

70 75 80 86 90 95 

Percentage of High Amplitude (70dB) Events up to 2 76 MPa (400 psig) 

Fi<nire 3.1 Burst Pressure vs. Percentage of High Amplitude Events [10] 
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3.2 NUMBER OF HIGH ENERGY EVENTS 

Hill [10] employed a similar technique on the fiberglass/epoxy bottles (analyzed 

herein) to generate a prediction equation for burst pressures. He used the number of high 

energy events (^500 units) as the primary independent variable in the prediction 

equation. Plotting burst pressure vs. high energy AE events (Figure 3.2) yields two 

parallel lines representing the two pressurization schemes used to test these bottles. 

Bottle 78-112 was thought to be an outlier and was not included in generating the 

prediction equation. The burst pressure equation was thus determined to be 

BRSTPRS = 2093 + 46.20 HEEVNTS - 506.1 PRSSCHM (psig). 

This equation predicted burst pressures to an accuracy of ±4.35 percent. 

10 15 20 25 30 

High Energy AE Events (> 500 Unns) Up To 5 17 MPa (< 25 % 01 Design Burst Pressure) 

Figure 3.2 Burst Pressure vs. High-Energy Events [10] 
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3.3 PERCENTAGE OF FADLURE MODE TYPES 

Kalloo [2] used the percentage of amplitude based failure mechanisms to 

determine burst pressures in a series of ASTM 5.75 inch diameter graphite/epoxy 

pressure vessels. Using Rayleigh and Gaussian distributions to model the three failure 

mechanism humps, Kalloo demonstrated that multivariate statistical analysis could be 

used to form a linear equation for burst pressure (Pb) prediction of the following form: 

Pb = pp+P1M1 + P2M2 + P3M3. 

Here P0 is the coefficient for the unflawed pressure vessel strength; Pb (32> P3 a r e the 

coefficients associated with matrix cracking, fiber breaks, and delaminations, 

respectively; and Mls M2, M3 are the event fractions contained within each failure 

mechanism hump. Determining the amplitude ranges of these humps by hand, Kalloo 

generated an equation that predicted burst pressures to within ±1.0% of the expected 

value. Here the AE data up to 25% of the expected burst pressure were used for the 

eleven bottles tested. 

Kalloo determined through experimentation that the first hump in the amplitude 

distribution, which corresponds to the matrix cracking failure mechanism, was best 

modeled as a Rayleigh type curve. The two remaining humps were represented as 

Gaussian distributions. This can be seen in Figure 3.3. 

Kalloo modeled the three humps for each failure mechanism, and then 

determined the percentage of events under each curve. The event percentages for each 

hump were then used to generate the burst pressure prediction equation 
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Pb =4563.3- 1433.6 VI -3661.8 V2 +2864.9 V3 (psig), 

where VI is the percentage of failure mechanisms under the first Rayleigh hump, and V2 

and V3 are the percentage of events under the two Gaussian humps. 
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Figure 3.3 Failure Mechanism Humps 

Kalloo demonstrated that burst pressures could be predicted accurately using this 

technique, but the repeatability of his technique is uncertain. Determining the Rayleigh 

and Gaussian distributions by hand for each amplitude distribution, as he did, would be 

difficult to duplicate let alone automate. The results could vary significantly due to 

slight differences in the modeling of the three failure mechanism humps. An automated 

version of this technique will be employed here in an attempt to predict burst pressures 

for the eleven fiberglass/epoxy bottles being analyzed for this research. 



4.0 NEURAL NETWORKS 

An artificial neural network is an information processing system that has certain 

characteristics similar to biological neural networks. A neural network consists of a 

large number of simple processing elements called neurons or nodes (Figure 4.1). Each 

of these neurons is connected to other neurons by communication links, each with an 

associated weight. The weights represent information being used by the network to solve 

a problem. A neuron has many input paths and combines the values of the input paths by 

a simple summation. The summed input is then modified by a transfer function and 

passed directly to the output path of the processing element. 

Processing 
Element 

Output Path 

Figure 4.1 Building Block of Neural Networks 
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The output path of the processing elements can then be connected to input paths 

of other nodes through connection weights. Since each connection has a corresponding 

weight, the signals on the input lines to a processing element are modified by these 

weights prior to being summed. The processing elements are usually organized into 

groups called layers. Typically a network consists of an input layer, where data is 

presented to the network, and output layer which holds the response of the network, and 

one or more hidden layers for processing as shown in Figure 4.2. 

Output Layer 

Hidden Layer 

Input Layer 

Figure 4.2 Generic Neural Network Architecture 

There are several types of neural networks, but only feedforward backpropagation 

networks will be discussed here. A feedforward network is one that has no feedback 

connections from one layer to another or to itself. Information is passed from the input 

buffer through the hidden layers to the output layer in a straightforward manner using the 

summation and transfer function characteristics of the network. 
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There are two main phases in the operation of a feedforward backpropagation 

neural network, learning and recall. Learning is the process the network goes through to 

adapt or modify the connection weights. The type of learning used in this type of 

network is called "supervised learning." This is when the desired response or output of 

the network is given; in this case, the network is given the actual burst pressure for each 

of the bottles used in the learning phase. Recall refers to how the network processes a 

stimulus presented at its input layer and creates a response at the output layer. Recall is 

part of the learning process where the desired response of the network is compared to the 

actual output of the network to create an error signal. The error signal is then used to 

modify the connection weights throughout the network or "back propagate" the error. 

This technique is demonstrated in the example that follows. 

4.1 ALGORITHM AND EXAMPLE OF BACKPROPAGATION NETWORK 

The training of a backpropagation network involves three stages: (1) the 

feedforward of the input training pattern, (2) the backpropagation of the associated error, 

and (3) the adjustment of the connection weights. Following is the algorithm for a 

sample backpropagation neural network. 

First Stage: Forward Propagation Through Network 

Step 0. Initialization of weights (small random values between 0.0 and 1.0 

or -1.0 and 1.0, depending upon the activation function.) 

Step 1. While stopping condition is false, do steps 2-8 

Step 2. Compute input sum and apply activation function for each hidden layer neuron 

Step 3. Compute input sum and apply activation function for each output layer neuron 



Second Stage: Backpropagation of Error 

Step 4. Compute network error 

Step 5. Compute delta weights 

Step 6. Compute error contribution for each middle layer neuron 

Step 7. Compute delta weights for middle layer 

Third Stage: Adjustment of Connection Weights 

Step 8. Update weights 

Step 9. Test stopping condition 

EXAMPLE: A simple backpropagation neural network with 2 inputs, a single hidden 

layer with 2 neurons, and a single output (Figure 4.3). 

Y i 

Xl 

Y 2 

X 2 

Figure 4.3 Simple backpropagation neural network 

The input vector is Xi = [1.0,0.0], and the target output vector is T, = 1.0. Use a 

learning coefficient LC = 0.25 and a sigmoid activation function (random mitial weights 

between-1.0 and 1.0). 



First Stage: Forward Propagation Through Network 

Step 0: Initialization of weights 

W(J = 0.8 0.5;-0.6 0.3 

Vk =0.7 0.2 

Step 1: While stopping condition is false 

Step 2: Compute input sum and apply activation function for each hidden layer neuron 

y, = (W. JXX. ) + (W21XX2) = (0.8)(1.0) + (-0.6)(0.0) = 0.8 

y2 = (w12)(x,) + (w22)(x2) = (o.5)(i.o) + (o.3)(o.o) = 0.5 

Y1(out) = f(y,)= 1/(1 + e"yl) = 0.69 

Y2(out) = f(y2)= 1/(1+e-^) = 0.62 

Step 3. Compute input sum and apply activation function for each output layer neuron 

Zi = (V„)(Y,) + (V12)(Y2) = (0.7)(0.69) + (0.2X0.62) = 0.61 

Z,(OUt) = f(z,) = 0.65 

Second Stage: Backpropagation of Error 

Step 4. Compute network error 

&w = 8zi = (T,-Z,)*f(z,)*(l - f(z,)) = (1.0 - 0.65)*(0.65)*(1 - 0.65) = .080 

Step 5. Compute delta weights 

AVjk = AV„ = LC*6Z1*Y! = 0.25*0.080*0.69 = 0.014 

AVjk = AV12 = LC*6Z1*Y2 = 0.25*0.080*0.62 = 0.012 

VI1(new) = 0.7+ 0.014 = 0.714 

VI2(new) = 0.2+ 0.012 = 0.212 

Step 6. Compute error contribution for each middle layer neuron 

&« = 6zi*V„*f(yi)*(l-flfo)) 

= 0.080*0.7*0.69*(1 - 0.69) = 0.012 

SY2 = Szl*V2I*f(y2)*(l-f(y2)) 
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= 0.080*0.2*0.62*(1 - 0.62) = 0.0038 

Step 7. Compute delta weights for middle layer 

AW„ = LC*5Y1*X, = 0.25*0.012*1.0 = 0.003 

AW12 = LC*SY1*X2 = 0.25*0.012*0.0 = 0.0 

AW21 = LC*8Y2*X, = 0.25*0.0038*1.0 = 0.00095 

AW22 = LC*Sy2*X2 = 0.25*0.0038*0.0 = 0.0 

W11(new) = 0.8003 

W12(new) = 0.5 

W2I(new) = -0.599 

W22(new)=0.3 

Second Pass Output = 0.652 

4.2 PREDICTION OF BURST PRESSURES USING NEURAL NETWORKS 

Hill, Walker, and Rowell [1] used an artificial neural network to predict burst 

pressures in a series of seventeen 5.75 inch diameter filament wound graphite/epoxy 

bottles. The network predicted burst pressures in this set of bottles with a worst case 

error of- 3.89%. The neural network architecture used for this application consisted of a 

forty-eight neuron input layer, a fifteen neuron hidden layer, and a single output neuron 

for burst pressure prediction. Nine of the bottles were used to train the network, while 

the remaining eight bottles were used to "blind" test the network. Blind testing is used to 

determine the burst pressure prediction accuracy of the network for bottles on which it 

has not been trained. 

A categorical variable for resin type was generated for each of the three sets of 
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bottles. This categorical variable was used as an input for the neural network. This 

allowed the network to easily recognize the different resin types. The categorical 

variable along with the forty-seven integer variables for the AE amplitude distribution 

frequencies were used as inputs to the forty-eight neuron input layer. 



5.0 RESULTS 

Multivariate statistical analysis and artificial neural networks were used herein to 

predict burst pressures (within a desired goal of ±5% error) for eleven 5.75 inch diameter 

filament wound fiberglass/epoxy pressure vessels. Both analyses employed the acoustic 

emission amplitude parameter with the data taken up to 25% of the expected burst 

pressure. 

One source of possible error came from the resolution of the amplitude 

distributions. For example, the data for bottle 72-77 plotted the event frequencies in 

multiples of three, whereas bottle 15-17 plotted the event frequencies in multiples of 

twenty-one (Appendix A). This significant difference in scale could cause errors in the 

prediction routines. 

5.1 STATISTICAL ANALYSIS WITH FADLURE MODE RANGES 

The procedure used for this part of the research is similar to that of Kalloo's 

thesis (section 3.2), where the amplitude distribution was broken up into three failure 

mechanism modes: fiber breaks, delaminations, and matrix cracks. As stated previously, 

the bottles were tested using two different pressurization schemes, at three different 

temperatures, and with two different transducer configurations. These three variables 

were used in the regression analysis as shown in Table 5.1. 
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Table 5.1 Variables Used in the Multiple Regression Analysis 

Dependent Variable Numerical Values 

Burst Pressure (BrstPress) 

Independent Variables 

1. Percentage of Matrix Cracks Failure Mode (FM1) 

2. Percentage of Delaminations Failure Mode (FM2) 

3. Percentage of Fiber Breaks Failure Mode (FM3) 

4. Burst Temperature (Temp) 

a. 32°F 32 
b. 70°F 70 

c. 110°F 110 

5. Pressurization Scheme (PressSch) 

a. load-hold-unload 1 
b. ramp to failure 0 

6. Transducer Configuration (Trans) 

a. transducers 1&4 on polar bosses 1 
transducers 2&3 on cylinder 

b. transducers 1&3 on polar bosses 0 

Kalloo modeled the amplitude distributions using Raleigh and Gaussian 

distributions for the failure mechanism humps and then used the percentage of total 

events under each as inputs for the statistical analysis. Here in order to keep human error 

and judgement out of the testing procedure, it was decided to use specific amplitude 

bands as the cutoff points for each failure mechanism. The cutoff points for matrix 

cracking were approximated to be between 60-79 dB, with delaminations between 80-88 

dB, and fiber breaks between 89-100 dB (Figure 5.1). These same amplitude ranges were 

used for all eleven pressure vessels. The numbers of events for each range were then 

counted and converted into failure mechanism percentages by dividing by the total 
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number of events occurring for each bottle. The percentages of events for each failure 

mechanism were then tabulated (Table 5.2) and entered into the Student Edition of the 

MINITAB software package. 

Bottle 27-28 
700 

560 H 

1420 

5 280 
E 
3 

140 H 

0 

(1) Matrix Cracking 
(2) Delaminations 
(3) Fiber Breaks 

M " " " " I 
I I ^ I " | 

10 20 30 40 50 60 
Amplitude [dB] 

90 10C 

Figure 5.1 Three Failure Mechanism Ranges within the AE Amplitude Distribution 

Table 5.2 Input Data for Statistical Analysis 

Bottle 
Number 

15-17 

8-8 

22-24 

18-20 

27-28 

33-35 

78-112 

165-187 

72-77 

57-66 

39-45 

Burst 
Pressure (psi) 

2257 

2444 

2636 

2773 

2816 

2730 

2754 

2789 

2833 

2887 

2959 

Failure 
Mode 1 
0.925 

0.908 

0.934 

0.938 

0.875 

0.941 

0.958 

0.959 

0.962 

0.960 

0.969 

Failure 
Mode 2 
0.056 

0.065 

0.044 

0.042 

0.086 

0.041 

0.033 

0.031 

0.036 

0.030 

0.027 

Failure 
Mode 3 
0.019 

0.026 

0.022 

0.021 

0.039 

0.018 

0.009 

0.009 

0.002 

0.011 

0.004 

Burst 
TernD-m 

70 

70 

70 

70 

70 

32 

110 

110 

110 

32 

32 

Pressure 
Scheme 

0 

0 

0 

0 

0 

0 

Transducer 
Location 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 



A multiple regression analysis was performed to obtain an equation for burst 

pressure prediction using the subroutine REGRESS (Appendix B). The equation 

generated was in the same basic form as that used by Kalloo, a linear equation for burst 

pressure (Section 3.2). The equation generated using this procedure yielded 

unacceptably large errors (near 25%). Along with high percent errors, the multiple 

correlation coefficient was only 45.9%. This meant that only 45.9 percent of the 

variability in the data was accounted for by the prediction equation. 

The 25% error using the initial failure mode limits was considered to be 

unacceptably large. Therefore, it was decided to perform several iterations with various 

failure mechanism ranges in order to optimize the procedure. The various limits used 

along with the largest percent error and the multiple correlation coefficient values are 

presented in Table 5.3. 

Table 5.3 Failure Mechanism Ranges 

Matrix Cracking 
Range (dB) 

60-79 

60-77 

60-81 

60-76 

60-80 

60-75 

Delamination 
Range (dB) 

80-88 

78-88 

82-90 

77-89 

81-88 

76-86 

Fiber Break 
Range (dB) 

89-100 

89-100 

91-100 

90-100 

89-100 

87-100 

Largest Percent 
Error 

2 5 % 

+ 28 % 

- 33 % 

- 1 8 % 

+ 2 1 % 

- 14 % 

Multiple 
Correlation Coef. 

45.9 % 

40.3 % 

35.8 % 

58.6 % 

50.2 % 

65.0 % 

Changing the matrix cracking limit to 60-75 dB, delaminations to 76-86 dB, and 

fiber breaks to 87-100 dB was found to be optimum for the ranges tested. This resulted 

in the failure mechanism percentages listed in Table 5.4. 
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Table 5.4 Input Data for Optimum Ranges for Statistical Analysis 

Bottle 
Number 

15-17 Def. 

8-8 Def. 

22-24 

18-20 

27-28 

33-35 

78-112 

165-187 

72-77 

57-66 

39-45 

Burst 
Pressure (psi) 

2257 

2444 

2636 

2773 

2816 

2730 

2754 

2789 

2833 

2887 

2959 

Failure 
Mode 1 

0.870 

0.857 

0.890 

0.889 

0.809 

0.909 

0.911 

0.922 

0.927 

0.909 

0.921 

Failure 
Mode 2 

0.102 

0.106 

0.079 

0.083 

0.140 

0.068 

0.075 

0.063 

0.066 

0.078 

0.073 

Failure 
Mode 3 

0.028 

0.037 

0.031 

0.028 

0.051 

0.023 

0.014 

0.015 

0.007 

0.013 

0.006 

Burst 
Temp.(°F) 

70 

70 

70 

70 

70 

32 

110 

110 

110 

32 

32 

Pressure 
Scheme 

0 

0 

0 

0 

0 

0 

Transducer 
Location 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

The equation generated using the last set of failure mode ranges yielded better 

results than the previous ranges. The accuracy of the burst pressure equation improved 

from 25% down to -14%, while the multiple correlation coefficient increased from 

45.9%) to 65%, meaning that 65% of the variability in the data was accounted for by the 

prediction equation. Note that the regression analysis used only the first failure mode 

(matrix cracking) to generate the equation 

BrstPress = - 6066 + 9836 FMl -1.74 Temp + 1046 PresSch - 952 Trans, 

where 

BrstPress = Burst Pressure (psig) 

FMl = Percentage of Failure Mode 1 (Matrix Cracking) 

Temp = Temperature (°F) 

PresSch = Pressurization Scheme Categorical Variable 

Trans = Transducer Location Categorical Variable. 
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In order to determine the effects of the two defective bottles on the statistical 

analysis, the 15-17 and the 8-8 bottles were removed from the testing group. Using the 

same failure mode ranges, a burst pressure equation was generated. The worst case error 

of the burst pressure equation improved from -14% to +10%, while the multiple 

correlation coefficient increased from 65% to 75.8%. The regression analysis used both 

the failure modes for matrix cracking and delaminations to generate the following 

equation: 

BrstPress = - 9953 + 12967 FMl +13824 FM2 1.13 Temp - 83 Trans 

where 

BrstPress = Burst Pressure (psig) 

FMl = Percentage of Failure Mode 1 (Matrix Cracking) 

FM2 = Percentage of Failure Mode 2 (Delaminations) 

Temp = Temperature (°F) 

Trans = Transducer Location Categorical Variable. 

The percent error of this burst pressure equation was slightly better than that of the 

equation generated using the defective bottles. However, the 10% error was still slightly 

higher than the target value of ±5% and much higher than the ±1.0% values obtained by 

Kalloo with his hand-tailored analysis. 

5.2 NEURAL NETWORK RESULTS 

The procedure used for this part of the research was similar to the research 

performed by Hill, Walker, and Rowell (Section 4.2). An artificial neural network was 
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used to form a burst pressure prediction model using AE amplitude distribution data as 

the inputs. The network was formed using the NEURALWORKS PROFESSIONAL 

II/PLUS software by NeuralWare. During this portion of the research, a set of pressure 

vessels were used to "train" the network, while the remaining bottles were used as a test 

set. The actual burst pressures were supplied as target values for the supervised training 

phase. 

Architecturally, the optimized feedforward backpropagation neural network 

consisted of either a 41 or 42 neuron input layer, a single hidden layer, and an output 

layer. In the case of the 42 neuron input layer, the inputs were integer variables 

representing the event frequencies at each amplitude from 60 to 100 dB that occurred 

during the acoustic emission test plus a categorical variable for burst temperature. The 

categorical variable allowed the network to easily recognize the difference in the various 

temperatures. The 41 neuron input layer network was used to determine how well the 

neural network would predict on the bottles if it was not given the categorical variable 

for temperature. 

The number of hidden layers was optimized to a single hidden layer, although 

networks with multiple hidden layers were also tested. The optimum number of nodes in 

the hidden layer was determined through experimentation and varied between 15 and 22 

for each test. The number of nodes in this layer is crucial to the output of the network. If 

too many nodes are employed, the network will fit the training data very closely but will 

not predict well on the test data. Conversely, if too few nodes are used, the network will 

fit neither the training nor the test data well. The number of nodes used was considered 

optimum when the errors for the training set were of the same magnitude of those from 

the test set. 

The output vector was a single variable that represented the predicted burst 



pressure for the bottle. During the training phase, the target output for the network was 

the actual burst pressure. The architecture of the network can be seen in Figure 5.2. 

Temperature 

(If used) 

Freq. @ 60 dB 

Freq. @ 61 dB 

Amplitude 

Frequencies 

Bias 

Freq. @ 100 dB 

Input Layer 

(41 or 42 Neurons) 

Hidden Layer 

(15-22 Neurons) 

Burst Pressure 

Output Layer 

(1 Neuron) 

Figure 5.2 Neural Network for Burst Pressure Prediction 

The parameters used in the NEURALWORKS PROFESSIONAL H/PLUS 

software package were kept the same for each of the networks generated for this 

research. Bias neurons were used to keep the hyperbolic tangent transfer function 

operating at midrange values where learning is the fastest [11]. The optimal learning 

coefficient and momentum for this research were determined to be 0.005 and 0.5 

respectively. The learning rule employed was the normalized cumulative delta, and the 

error was calculated over the entire training set (epoch = 6-8). The learning coefficient 

was multiplied by a factor of 0.5 after every 2500 cycles. A convergence criterion of 

0.15 was used to keep the network from memorizing the training data set. Table 5.5 
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provides a summary of all the neural network parameters. 

Table 5.5 Neural Network Parameters 

Input Layer 

Middle Layer 

Output Layer 

Bias 

Learning Coefficient 

Momentum 

Learning Rule 

Transfer Function 

Convergence Threshold 

41 or 42 

15 22 

1 

Yes 

0.005 

0.5 

Norm. Cum. Delta 

Hyperbolic Tangent 

0.15 

The failure mechanisms, as represented by the AE amplitude distribution, and the 

temperature were assumed to be the primary independent variables for this research. 

Because they were not found to be statistically significant, it was assumed that the 

network would not need categorical variables for either the two different pressurization 

schemes or the two transducer configurations. If the network did not train effectively, 

then a variable for pressurization scheme or transducer configuration could be added at a 

later time. 

Five of the eleven bottles were tested at room temperature (70 °F), three were 

tested at freezing (32°F), and three were tested at 110°F. The neural network was 

trained on a total of seven bottles, while the remaining four bottles were used as a test set 

to evaluate the accuracy of the network in making burst pressure predictions. 

The first network trained used one of the manufactured defective bottles in the 



training set, and the other was used in the test set. The number of hidden layer nodes 

was optimized to 18, yielding a worse case error of + 15.2%o. This can be seen in Table 

5.6. This rather large error was obtained on the tested manufactured defective bottle, 

while the other tested bottles had very low errors (the largest being -3.1 %). 

Table 5.6 Results of Neural Network using Temperature 
(1 Defect in Train; 1 Defect in Test) 

Training 

Set 

Testing 

Set 

Bottle Serial 
Number 

15-17 Def. 

22-24 

27-28 

33-35 

39-45 

78-112 

165-187 

8-8 Def. 

18-20 

57-66 

72-77 

Temperature 
at Burst (°F) 

70 

70 

70 

32 

32 

110 

110 

70 

70 

32 

110 

Predicted Burst 
Pressure (psi) 

2329 

2605 

2812 

2776 

2891 

2753 

2813 

2814 

2687 

2866 

2817 

Actual Burst 
Pressure (psi) 

2257 

2636 

2816 

2730 

2959 

2754 

2789 

2444 

2773 

2887 

2833 

Percent 
Difference (%) 

+ 3.2 

-1.2 

-0.2 

+ 1.7 

-2.3 

-0.1 

+ 0.9 

+ 15.2 

-3.1 

-0.7 

-0.6 

The large prediction error on the defective bottle and the small errors on the 

nondefective bottles indicated that the network was not recognizing the differences 

between the two from the data given. Therefore, the two defective bottles were switched 

such that the 8-8 bottle was now in the training set, and the 15-17 bottle was in the test 

set. This was done to determine if only one of the bottles was an outlier. This network 

was optimized by a 15 node hidden layer. Table 5.7 summarizes the training and test 
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results from this network. 

Table 5.7 Results of Neural Network using Temperature 
(1 Defect in Train; 1 Defect in Test) 

Training 

Set 

Testing 

Set 

Bottle Serial 
Number 

8-8 Def. 

22-24 

27-28 

33-35 

39-45 

78-112 

165-187 

15-17 Def 

18-20 

57-66 

72-77 

Temperature 
at Burst (°F) 

70 

70 

70 

32 

32 

110 

110 

70 

70 

32 

110 

Predicted Burst 
Pressure (psi) 

2490 

2669 

2817 

2708 

2899 

2762 

2802 

2588 

2700 

2896 

2827 

Actual Burst 
Pressure (psi) 

2444 

2636 

2816 

2730 

2959 

2754 

2789 

2257 

2773 

2887 

2833 

Percent 
Difference(%) 

+ 1.9 

+ 1.3 

0.0 

-0.8 

-2.0 

+ 0.2 

+ 0.5 

+ 14.7 

-2.6 

+ 0.3 

-0.2 

Again the defective bottle gave the largest error (+14.7 %) with the other test 

bottles having relatively small errors. This demonstrated that the network was again not 

distinguishing between the defective and nondefective bottles. While, in reality, the 

simulated defects lowered the overall burst pressures of the two bottles significantly ~ 

both being a great deal (400 - 700 psig) lower than the nondefective bottles tested - the 

neural network treated these two bottles as if they had no defects and predicted 

nonconservatively, i.e., both burst pressure predictions on the defective bottles were a 

great deal higher than their actual burst pressures. 

Both of the defective bottles were put into the training set for the third network. 
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It was hoped that this would allow the network to predict on these two bottles with 

greater accuracy The results of this network are given in Table 5 8 

Table 5 8 Results of Neural Network using Temperature 
(Both Defective m Training Set) 

Training 

Set 

Testing 

Set 

Bottle Serial 
Number 

15-17 Def 

8-8 Def 

22-24 

27-28 

33-35 

39-45 

78-112 

165-187 

18-20 

57-66 

72-77 

Temperature at 
Burst (°F) 

70 

70 

70 

70 

32 

32 

110 

110 

70 

32 

110 

Predicted Burst 
Pressure (psi) 

2336 

2549 

2592 

2742 

2801 

2836 

2756 

2796 

2556 

2784 

2772 

Actual Burst 
Pressure (psi) 

2257 

2444 

2636 

2816 

2730 

2959 

2754 

2789 

2773 

2887 

2833 

Percent 
Difference(%) 

+ 43 

+ 35 

- 1 7 

- 2 6 

+ 26 

- 4 2 

+ 01 

+ 03 

- 7 8 

36 

- 2 1 

This network did predict to a greater accuracy on the defective bottles and also 

lowered the worst case prediction error to -7 8%, which was fairly close to the target 

range of ±5 0% The three predicted burst pressures for the test bottles were all below 

the actual burst pressures and were therefore conservative This is probably due to the 

defective bottles biasing the network so that the prediction model would generate burst 

pressures that are lower than the actual pressures 

Hill, Walker, and Rowell [1] did not have defective bottles in their graphite/epoxy 

bottles and generated a prediction model to -3 89% In order to determine whether or not 



the network could predict as accurately on the undefective fiberglass/epoxy bottles, the 

two defective bottles were removed from the training group. The network was then 

optimized to a 22 node hidden layer. Table 5.9 summarized the results of this network. 

Table 5.9 Results of Neural Network using Temperature 
(NO Defective Bottles) 

Training 

Set 

Testing 

Set 

Bottle Serial 
Number 

22-24 

27-28 

33-35 

39-45 

78-112 

165-187 

18-20 

57-66 

72-77 

Temperature at 
Burst (°F) 

70 

70 

32 

32 

110 

110 

70 

32 

110 

Predicted Burst 
Pressure (psi) 

2654 

2822 

2778 

2896 

2763 

2799 

2751 

2893 

2819 

Actual Burst 
Pressure (psi) 

2636 

2816 

2730 

2959 

2754 

2789 

2773 

2887 

2833 

Percent 
Difference(%) 

+ 0.7 

+ 0.2 

+ 1.8 

-2.1 

+ 0.3 

+ 0.4 

-0.8 

+ 0.2 

-0.5 

The network trained and tested extremely well when not using the defective 

bottles with a highest error in the testing of only -0.8% and a highest percent error of 

-2.1% for all the bottles. Each of these errors is well within the desired goal of ±5%. 

The final trained network eliminated the categorical variable for temperature in 

order to determine if the neural network could automatically determine the effect of 

temperature on the AE data and on the burst pressures. This network was optimized by a 

19 node hidden layer. The training and testing sets were the same as for the previous 

network (without using the defective bottles), so that a comparison of the errors for the 
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two networks could be made. The results of the previous network and the non-

temperature network are presented in Table 5.10. 

Table 5.10 Results of Network With and Without Temperature 
(NO Defective Bottles) 

Training 

Set 

Testing 

Set 

Bottle Serial 
Number 

22-24 

27-28 

33-35 

39-45 

78-112 

165-187 

18-20 

57-66 

72-77 

Temperature at 
Burst (°F) 

70 

70 

32 

32 

110 

110 

70 

32 

110 

Actual Burst 
Pressure (psi) 

2636 

2816 

2730 

2959 

2754 

2789 

2773 

2887 

2833 

Percent 
Difference w/ 

Temperature (%) 

+ 0.7 

+ 0.2 

+ 1.8 

-2.1 

+ 0.3 

+ 0.4 

-0.8 

+ 0.2 

-0.5 

Percent 
Difference w/out 
Temperature (%) 

+ 0.2 

+ 0.4 

+ 0.6 

-2.8 

+ 0.4 

+ 1.9 

-1.5 

-0.1 

+ 1.0 

Although the percent differences were slightly higher when the categorical 

variable for temperature was not used, the results show that the network was able to 

automatically determine the effects of temperature on the AE data and on the burst 

pressures. The largest percent error was -2.8% on the bottle that had the highest burst 

pressure of the group. 
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In summary, for the multivariate statistical analysis performed herein, fixed 

failure mechanism bands were applied to the amplitude distributions for all eleven 

fiberglass/epoxy bottles. The optimum failure mechanism bands resulted in a prediction 

equation that had a worst case prediction error of -14% and a correlation coefficient of 

49.9%. When the defective bottles were left out of the analysis, the results improved to a 

+10% worst case error and a 65.0% correlation coefficient. Kalloo [2], on the other hand 

individually fit curves to each of the three failure mechanism humps; as such, there was 

considerable variation in the amplitude bands from bottle to bottle. His results, while not 

directly comparable, since he did not calculate the predication interval, were 

considerably better. 

The neural network results including the defective bottles had the same order of 

magnitude worst case errors. When one of the defective bottles was included in the 

training set and the other in the test set, the errors were +15.2% and +14.7%, depending 

upon which bottle was used for training and which for testing. When the two defective 

bottles were included in the training set, the worst case prediction error decreased to 

-7.8%. Removing the two defective bottles from consideration and performing the 

neural network analysis on the remaining nine bottles led to a worst case testing errors of 

-0.8%> and -1.5%, the former result being with temperature included as an independent 

variable and the latter without; the corresponding training errors were -2.1% and -2.8%, 

respectively. In this case, the training errors were slightly larger than the testing errors 

(but not significantly different). Thus, the neural networks predicted extremely well on 

the nondefective bottles and rather poorly on the defective bottles. However, it did 

appear that the more defective bottles used in the training set, the better the results. 



6.0 CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

The following conclusions can be made from the results of the statistical analysis 

performed herein: 

1. Statistical analysis using fixed failure mechanism bands from the amplitude 

distributions was not able to generate a burst pressure prediction equation with the 

desired ±5% worst case error. 

2. Fixed amplitude intervals probably cannot accommodate the normal variations in 

attenuation that occur between bottles because of transducer placement and therefore 

result in improper modeling of the failure mechanism bands. 

3. The low correlation coefficients for the burst pressure prediction equations 

indicated that either the amplitude ranges were not properly modeling the failure 

mechanisms in fiberglass/epoxy or failure mechanism information is not readily 

discernible from the amplitude distributions. 
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The results of the artificial neural network analysis lead to the following 

conclusions: 

1. Using the amplitude distribution data as input, a neural network was able to 

predict burst pressures extremely well in the nondefective bottles - even without using 

temperature as an independent variable - the largest percent error of-2.8% being well 

within the goal of ±5%. 

2. The neural networks were not able to distinguish the defective bottles on such a 

small test set (two defective bottles out of eleven). More defective bottles would be 

necessary to increase the prediction accuracy. 

3. The neural networks were able to determine the effects of pressurization scheme, 

transducer configuration, and temperature from the amplitude distributions themselves 

without having to explicitly input any of these variables. 

The following general conclusions can be made from the research presented herein: 

1. An artificial neural network could be used to accurately determine the burst 

pressures of filament wound composite pressure vessels while using the data taken at 

proof testing loads of 25% of the expected burst pressure. This has been proven in 

previous research by Hill, Walker, and Rowell [1] on a series of graphite/epoxy bottles 

and the research presented here on a series of fiberglass/epoxy bottles. 



43 

2. The neural networks predicted burst pressures to a greater accuracy than 

multivariate statistical analysis. This could be explained by the fact that the statistical 

analysis generates a linear burst pressure equation, whereas the neural network is not 

limited to linear modeling. 

3. Amplitude distributions may not provide adequate discrimination for burst 

pressure prediction in defective bottles. Additional AE parameters, such as energy or 

duration may be needed to obtain better results for defective bottles. 

4. The use of multivariate statistics required a great deal more intuition as to which 

variables were important in the regression analysis than the use of a neural network, 

which automatically determined what was important and what was not. 

6.2 RECOMMENDATIONS 

The multivariate statistical analysis results could be improved by using a 

Kohonen self organizing map (SOM) neural network to automatically sort the AE data 

into failure mechanism clusters. This would eliminate the need for Gaussian and 

Rayleigh distributions and the human error associated with determining the appropriate 

AE amplitude ranges. A burst pressure prediction equation could then be generated, as 

before, from the percentages of events in the various clusters. 

If a larger sample of defective bottles had been tested, an artificial neural network 

should have been able to identify the defective bottles and predict on the burst pressures 

more accurately. Defective bottles tested at temperatures other than 70°F would also be 

very beneficial in determining whether this hypothesis is correct. Finally, the use of an 
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additional AE parameter (such as energy or duration) as input to the neural network may 

provide the information necessary to accurately predict burst pressures in defective 

pressure vessels. 
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APPENDIX B 

MINITAB REGRESSION ANALYSIS 

Stdev 
3480 
3822 
1.305 
430.7 
291.0 

t-ratio 
-1.74 
2.57 
-1.33 
2.43 
-3.27 

0. 
0. 
0. 
0. 
0, 

p 
.132 
.042 
.232 
.051 
.017 

MTB > Regress 'BrstPres' 4 'HI' 'Temp' 'PresSch' 'Trans'. 

The regression equation is 
BrstPres = - 6066 + 9836 HI - 1.74 Temp + 1046 PresSch - 95 

Predictor Coef 
Constant -6066 
HI 9836 
Temp -1.737 
PresSch 1046.2 
Trans -952.4 

s = 120.3 R-sq = 79.0% R-sq(adj) = 65.0% 

Analysis of Variance 

SS MS F p 
326385 81596 5.64 0.031 
86877 14479 

413262 

SEQ SS 
64925 
9640 

96704 
155116 

Unusual Observations 
Obs. HI BrstPres Fit Stdev.Fit Residual 

1 0.870 2257.0 2463.6 65.1 -206.6 
5 0.809 2816.0 2816.0 120.3 0.0 

SOURCE 
Regression 
Error 
Total 

SOURCE 
HI 
Temp 
PresSch 
Trans 

DF 
4 
6 

10 

DF 
1 
1 
1 
1 

-R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influence. 



55 

Stdev 
3571 
3708 
4827 
94.97 
0.6021 

t-ratio 
-2.79 
3.50 
2.86 
0.87 

-1.88 

0. 
0. 
0. 
0. 
0, 

P 
,069 
,040 
.064 
.447 
.157 

MTB > Regress 'BrstPres' 5 'HI* 'H2' 'Trans' 'PresSch' 'Temp' 

* PresSch is highly correlated with other X variables 
* PresSch has been removed from the equation 

The regression equation is 
BrstPres = - 9953 + 12967 HI + 13824 H2 + 83.0 Trans - 1.13 Temp 

Coef 
-9953 
12967 
13824 
82.98 

-1.1322 

R-sq = 89.6% R-sq(adj) = 75.8% 

Analysis of Variance 

SS MS F p 
61406 15351 6.48 0.078 
7105 2368 
68511 

SEQ SS 
25352 
27665 

12 
8376 

Predictor 
Constant 
HI 
H2 
Trans 
Temp 

s = 48.67 

SOURCE 
Regression 
Error 
Total 

SOURCE 
HI 
H2 
Trans 
Temp 

DF 
4 
3 
7 

DF 
1 
1 
1 
1 
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