
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 5 Number 4 Article 2

2010

Malware Forensics: Discovery of the Intent of Deception Malware Forensics: Discovery of the Intent of Deception

Murray Brand
Edith Cowan University

Craig Valli
Edith Cowan University

Andrew Woodward
Edith Cowan University

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Brand, Murray; Valli, Craig; and Woodward, Andrew (2010) "Malware Forensics: Discovery of the Intent of
Deception," Journal of Digital Forensics, Security and Law: Vol. 5 : No. 4 , Article 2.
DOI: https://doi.org/10.15394/jdfsl.2010.1082
Available at: https://commons.erau.edu/jdfsl/vol5/iss4/2

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol5
https://commons.erau.edu/jdfsl/vol5/iss4
https://commons.erau.edu/jdfsl/vol5/iss4/2
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2010.1082
https://commons.erau.edu/jdfsl/vol5/iss4/2?utm_source=commons.erau.edu%2Fjdfsl%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Digital Forensics, Security and Law, Vol. 5(4)

31

Malware Forensics: Discovery of the Intent of
Deception

Murray Brand, Craig Valli and Andrew Woodward
secau - Security Research Centre

Edith Cowan University
Perth, Western Australia

m.brand@ecu.edu.au, c.valli@ecu.edu.au, a.woodward@ecu.edu.au

ABSTRACT
Malicious software (malware) has a wide variety of analysis avoidance techniques
that it can employ to hinder forensic analysis. Although legitimate software can
incorporate the same analysis avoidance techniques to provide a measure of
protection against reverse engineering and to protect intellectual property,
malware invariably makes much greater use of such techniques to make detailed
analysis labour intensive and very time consuming. Analysis avoidance
techniques are so heavily used by malware that the detection of the use of analysis
avoidance techniques could be a very good indicator of the presence of malicious
intent. However, there is a tendency for analysis tools to focus on hiding the
presence of the tool itself from being detected by the malware, and not on
recording the detection and recording of analysis avoidance techniques. In
addition, the coverage of anti-anti-analysis techniques in common tools and
plugins is much less than the number of analysis avoidance techniques that exist.
The purpose of this paper is to suggest that the discovery of the intent of
deception may be a very good indicator of an underlying malicious objective of
the software under investigation.
Keywords: Malware, anti-forensics, anti-analysis, digital forensics, cyber crime

1. INTRODUCTION

Modern malicious software (malware) employs stealth and deception techniques
in an attempt to remain undetected on computer systems and difficult to fully
analyse (Harbour 2007). Legitimate software can employ anti-analysis techniques
to hinder reverse engineering attempts and to protect intellectual property (IP).
However, software with a malicious intent may be considered to be far more
likely to employ anti-analysis techniques than legitimate software (Vuksan,
Peričin et al. 2009), to the extent that, detection of the presence of anti-analysis
techniques may indicate the presence of malware (Wysopal 2009).
Initial static analysis of code may quickly reveal the presence of obfuscation or
other high level anti-static analysis techniques. However, malware can be so
heavily obfuscated that static analysis alone may reveal very little information of

Journal of Digital Forensics, Security and Law, Vol. 5(4)

32

benefit to the digital forensic analyst. Equally, malware that is executing has
every opportunity to examine the environment it is running in and alter its
behaviour if it detects that dynamic analysis is being conducted. In such cases, it
may use deception to hide its true functionality and intent.
Executing code exhibits complex dynamic behaviour, making the detection of
anti-dynamic analysis techniques more difficult. This is because numerous paths
of execution are available, any of which are generally preceded by conditional
branch logic that alters the path of execution based on the results of preceding
code that may include analysis detection routines. If the preceding code to the
branch contains code used to detect the analysis environment, the alternate path to
deceptive code could very well lead to the path of execution where the true intent
of the code is performed. Such a path could reveal the true intent of the malware.
In addition, an execution path of deception may include any number of
destructive acts that hinder the collection of evidence. The detection of the use of
anti-analysis techniques could assist the digital forensic investigator to reveal
intent.

2. ANALYSIS AVOIDANCE
An extensive array of techniques is available to programmers to hinder attempts at
reverse engineering their code in an endeavour to protect intellectual property
(Falliere 2007; Yason 2007; Ferrie 2008). These very same techniques are
employed by malicious software (malware) to hinder digital forensic analysis.
Malware analysis is core business to the anti-virus (AV) industry, who work to
extract signatures from the malware for the purpose of threat detection, and to
formulate eradication strategies. However, the resultant recognition rules and
signatures may provide very little benefit to the forensic analyst. This is because
the rules of recognition are generally dependent upon a malware analyst having
already extracted suitable recognition rules, whether the rules are signature and/or
heuristics based. Anti-virus software may be of very little benefit to assist the
forensic investigator in the identification of the intent of malware. The detection
performance of AV software has been shown by a number of researchers to be far
less than ideal (Rutkowska 2006; Yin, Song et al. 2007; Yan, Zhang et al. 2008;
Zhou and Meador Inge 2008). If the malware has not been analysed before, then it
is highly unlikely that rules of recognition exist. This is especially true of
malicious, customized malware that is targeting individuals or specific
organisations that is not circulating via the internet. In such cases, the digital
forensic analyst may be required to analyse the malware in detail. Although
online analysis engines exist, it may not be prudent to submit malicious code to
such sites, particularly when confidentiality must be maintained. This is because
online analysis engines typically share submitted samples with AV companies.
Online analysis engines are available that can provide very useful reports such as
detected virus signatures, file activities, registry activities, process activities,
service activities and network activities. Online analysis engines such as Anubis

Journal of Digital Forensics, Security and Law, Vol. 5(4)

33

(International Secure Systems Lab, Vienna University of Technology et al. 2008)
have limitations (Bayer 2009), such as the virtual machines in which the dynamic
analysis is being conducted being detected (Innes and Valli 2006; Smith and
Quist 2006). This is because virtual machines do not perfectly emulate the
operating system, and attackers need only determine small differences in the
environment to detect the presence of a virtual machine. Understandably, online
analysis engines incorporate a time out period to limit the time allocated to
analysis. Malware need only wait a certain period greater than the time out period
to hinder detection by such engines. Since the engines are automated, a simple
check which malware can use to detect it is running inside known engines is to
read the environment and compare the results against known baselines of
common analysis engines. Once the analysis environment has been detected, the
malware can branch to deception code, or choose not to run at all. Another
limitation is that only a single path of execution is executed and alternate,
significant paths of execution that show the intent of the malware may be missed
entirely (Bayer 2009). This is not to say that online analysis engines cannot
provide fruitful results, but the digital forensic analyst needs to be aware of the
limitations of the use of such tools. Commercial analysis engines are available
that may provide the analyst more control over the parameters of analysis than the
online variety. A series of articles by Hudak (2009; Hudak 2009) provides an
introduction to automating malware analysis that can be further customized and
extended by using additional tools and scripts. Advantages of establishing a
customized analysis service for forensic investigation is that the use of analysis
avoidance detection scripts that log deception events can be developed.
Debuggers such as OllyDbg (Yuschuk 2008) and IDA Pro (Hex-Rays 2008) are
commonly used for the analysis of malware. Plugins such as Olly Advanced
(MaRKuS 2006) for OllyDbg and IDA Stealth (Newger 2008) for IDA Pro focus
on hiding the presence of the tool from the software under investigation, in an
effort to avoid detection. Unfortunately, the number of anti analysis techniques
covered by the plugins is far less than the number of analysis avoidance
techniques that are available. In addition, the plugins do not generally log the
detection of analysis avoidance techniques.

3. SPECIFIC DECEPTION TECHNIQUES
The following subsections outline a simple taxonomy of deception techniques,
together with references on how they can be detected and mitigated. It is
important to note that these techniques can be employed in various combinations
and will not likely be encountered in isolation.

3.1 Anti-Emulation
Virtual machines offer many advantages to the forensic analyst such as the ability
to quickly restore images to a known state. A range of techniques exist to detect
that the malware is running inside a virtual machine such as VMWare or Virtual
PC (Innes and Valli 2006; Smith and Quist 2006). The use of these techniques can

Journal of Digital Forensics, Security and Law, Vol. 5(4)

34

be detected and mitigated (Eagle 2004). In critical cases, or where the use of anti-
emulation techniques cannot be mitigated due to various constraints, it may be
prudent to use a real machine rather than a virtual machine.

3.2 Anti-Online Analysis
A variety of online analysis engines are available to the forensic analyst such as
Anubis and Norman Sandbox. An advantage of these engines is that they can give
very good reports on the functionality of the malware. However, there are
limitations that the analyst needs to be aware of. The analysis engine may not
match the desired target environment of the malware, triggering behaviour may
be missed, only single paths of execution are typically examined, analysis is time
limited and a variety of methods are available to detect the analysis environment
(Bayer 2009). Due to confidentiality concerns, it may also not be wise to submit
malware where there is no guarantee that the malware will not be shared with a
variety of researchers and AV companies. Commercial products of some of these
engines are also available that can be purchased and configured in the analysts
premises such that malware need not leave the laboratory (Norman 2009).
However, the focus of the engine may be limited to the reporting of behaviour and
not necessarily on the detection of deception. Tailored, automated analysis
environments can be established (Hudak 2009; Hudak 2009). Such an
environment could be used to include specialised environments that closely
resemble the original targeted environment of the malware together with the same
operating system version, service patch level, installed software, peripheral
equipment, attached subsystems, emulated or real loads and services. An example
of such a tailored environment could be an emulation of a Critical Infrastructure
system.

3.3 Anti-Hardware
Malware can use a variety of techniques to detect if it is being analysed by taking
advantage of the way hardware such as the CPU and registers are used during
debugging sessions. This can include techniques to exploit the way the prefetch
queue works when software is being debugged and by execution timing. The use
of these techniques can be detected by using appropriate techniques (Ferrie 2008).

3.4 Anti-Debugger
A plethora of opportunities exist to malware to determine if it is running in a
debugger and to employ deception if it detects that it is being analysed. These
techniques target the way debuggers work and use this to take control of the flow
of execution of the code. A number of structures are associated with any loaded
program. Bits set in these structures can be examined by running malcode to
determine if it is being debugged (Falliere 2007; Yason 2007; Ferrie 2008).
Debuggers can be scripted to detect the use of these techniques and mitigate them
as the programs are running (Eagle 2008; Seitz 2009). Scripts to perform such
tasks can also be found on a number of reverse engineering websites for a variety

Journal of Digital Forensics, Security and Law, Vol. 5(4)

35

of debuggers in a number of different scripting languages. Techniques employed
in one language can be converted and extended to the analyst’s language of
choice. It is advisable to learn a number of scripting languages to take advantage
of this situation.

3.5 Anti-Disassemblers
These techniques target the way disassemblers work to produce false
disassemblies. Two methods used by disassemblers are linear sweep and
recursive traversal. Linear sweep is used by the disassemblers/debuggers SoftIce
(Compuware 2008) and WinDbg (Microsoft 2008), which conduct disassembly in
a sequential manner. Recursive traversal in contrast (used by OllyDbg and IDA
Pro), follows the flow of each branch and is more tolerant to anti-disassembly
tricks. Linear sweeps can be easily confused with junk bytes, but the recursive
sweep technique can also be fooled with opaque predicates (Eilam 2005). Opaque
predicates are simply code that appears to make a decision that could alter
program flow. But in reality, only one branch of execution is possible to follow.
Detection of the use of this technique can be assisted by comparing the results of
disassemblies from various disassemblers. If the results vary considerably, an
instance of deception may have been discovered. The point of implementation is
likely to be at the point of divergence between similarities testing of resultant
disassemblies.

3.6 Anti-Tools
Tools used by the analyst can be detected by the running malware. If discovered,
the malware may enter a deceptive mode. Malware may even use weaknesses or
vulnerabilities of the tools against themselves to give the malware another
opportunity to employ deception. Packers and protectors can include options to
detect popular tools such as OllyDbg and IDA Pro as well as the popular online
analysis engines (Bayer 2009). Specific techniques can be uncovered by scripting
to search for the use of the techniques or can be discovered by comparing results
from the use of different tools.

3.7 Anti-Memory
Dumping of memory can be useful for the malware analyst after letting
obfuscated programs unpack themselves. This is achieved by catching and halting
the program at the moment the unpacking stops, and then dumping the unpacked
program from memory. This allows the code to then be analysed. Packers can
make this dumping process less useful by deleting a section of code as soon as it
has finished executing. This technique is known as “stolen bytes”. These bytes
must be restored if the dumped program is to be run again.

3.8 Anti-Process
Techniques can be used to target the way processes are handled whilst being
debugged. An example of this is exploiting the way Thread Local Storage (TLS)

Journal of Digital Forensics, Security and Law, Vol. 5(4)

36

is used. This technique is used to change the original entry point of a program to a
different entry point so that an initial check can be made to see if a debugger or
other analysis tools are being run. It changes the Portable Executable (PE) loader
so that the entry point of the program is referenced in Thread Local Storage
(TLS), which is the 10th directory entry in the optional PE header (Falliere 2007).
TLS callbacks can be identified by examining the Data Directory of the PE header
using a tool such as pedump (Pietrek n.d.) because it will show if a TLS directory
is in the executable and these can be examined for malicious intent (Yason 2007)

3.9 Anti-Analysis
Various techniques can be used to target the way analysis is conducted. Deceptive
practices include transformations of the original code to make the resultant code
harder to read. Transformation characteristics include potency, which is the level
of complexity added to the code and can be measured by complexity metrics. This
includes measuring the depth of nesting in a particular sequence and the number
of predicates the code contains. Another characteristic is that the transformation
must be resilient. A highly resilient transformation is hard to undo. Deobfuscators
can conduct data-flow analysis to reverse the transformation. There is also a cost
characteristic of the obfuscation transformation in terms of increased size of the
resultant code and slower execution time (Eilam 2005).

3.10 Packers and Protectors
Packers and protectors make static analysis of software difficult because the
actual code instructions and data is not able to be read until the code has been
unpacked. It is very similar to compression. Unpackers exist for many packers in
the form of scripts and plugins for debuggers. Packed programs can also be
unpacked manually by using a debugger. The unpacked code can then be
analysed with a debugger such as IDA Pro, or Ollydbg. If malware to be analysed
has been packed by an unknown packer, it can often be loaded into memory, and
then process dumped using LordPE (yoda 2005) or any other memory dumping
tool. It should be noted that the code may use techniques to determine if a
debugger is being used and respond by protecting itself using some combination
of the anti forensic techniques that have been discussed in this paper. The analyst
needs to be in a position to statically analyse the executable as soon as it has
unpacked itself, by starting analysis at the Original Entry Point (OEP), otherwise
code can be written over and evidence overlooked. Packer signature detectors
compare the Entry Point of the code against known signatures to try to determine
the type of packer used. However, deception may be employed by incorporating a
false signature, and/or by implementing the real unpacker much further into the
code than the Entry Point. Packers may even use multiple levels of packing.
Measurement of entropy is a very good indicator of packing (Mandiant 2007).

3.11 Root Kits
Windows uses four privilege levels, known as rings, to determine the access level

Journal of Digital Forensics, Security and Law, Vol. 5(4)

37

for access control. Access control determines how hardware can be accessed,
what instructions a process may use, what files may be modified and which areas
of memory can be accessed or changed. Ring 0 is the most privileged level and
Ring 3 has the least amount of privilege. Most applications users run are run in
Ring 3 and these applications cannot access hardware directly and have limited
access to memory. Ring 3 is often referred to as “user land”. Ring 0 applications
run with full system privileges and can perform Input/Output (I/O), memory
management, run device drivers, execute privileged instructions, access all
memory space, access all hardware and access all components of the kernel. This
is often referred to as “kernel land”. A special mechanism exists so that a user
land program can access kernel land in a controlled fashion so that device drivers
(*.sys file) can be installed. Root kits exploit this mechanism so that they can
install their own device driver into kernel land, giving their program full
privileges at Ring 0 and hence control the environment in which other software
runs. In this way, it can avoid detection (Hoglund and Butler 2005).

4. RECOMMENDED ANALYSIS METHODOLOGY
An iterative and recursive methodology that alternately uses static and dynamic
analysis techniques to discover and mitigate anti forensic techniques has been
proposed from the conduct of this research. Essentially it extends a malware
analysis methodology discussed by Zeltser (2007) in which static and dynamic
analysis phases are interspersed with the moulding of the analysis environment
such that the behaviour of the malware can be determined. The proposed spiral
analysis methodology, depicted in Figure 1, extends Zelter’s methodology by
adding focus to the detection and mitigation of anti-analysis techniques. This is
because the use of such techniques could be considered to be precursors of intent
to employ deception in the code and assists in the detection of the use of
deception. It also allows the analyst to zero in on regions of interest more quickly.
Another view of this methodology is presented in Figure 2 in the form of a
process diagram that could be implemented in software. It shows malware under
investigation as the input to the process that employs the spiral analysis
methodology and that a manual, semi-automated or automated analysis control
supervisor as central to the analysis, where recording, processing and reporting is
managed. The supervisor function interacts with each phase by providing control
over the constituent steps in each phase. It also acts as the recipient of data which
is produced by each phase which is required to make decisions on how to tailor
the subsequent phases.

Journal of Digital Forensics, Security and Law, Vol. 5(4)

38

Figure 1 A proposed Spiral Analysis Methodology for determining
whether a program may be malicious, based on obfuscation or other

similar techniques

Figure 2 Process Diagram - Implementation of Spiral Analysis
Methodology

Journal of Digital Forensics, Security and Law, Vol. 5(4)

39

5. CONCLUDING REMARKS

Malware is invariably heavily obfuscated and static analysis may provide little
benefit if conducted in isolation from dynamic analysis. The benefits of dynamic
analysis can also be subverted if the running code is treated as a ‘black box’
where only inputs and outputs are measured and internal inspection of the binary
code is not performed. This is because the malware can detect that it is being
analysed and can use deception techniques to deceive the analyst.
The discovery of deception in software under investigation may be a very good
indicator of malicious intent. Although legitimate software can use the same
techniques to protect intellectual property, malicious software uses anti analysis
techniques so much, that detection of such techniques may prove to be a strong
indicator of malicious intent. The digital forensic analyst may have to perform
analysis of the software under investigation themselves because detection by AV
software may provide less than ideal results. In addition, submission of suspicious
files to online analysis engines may breach confidentiality agreements. This leads
to the forensic analyst having to perform analysis of suspicious files in the lab.
Although this can potentially be a very labour intensive activity, it can be assisted
by the use of an appropriate technique such as the proposed spiral analysis
methodology where anti-analysis techniques are detected, recorded and mitigated
as analysis proceeds.

REFERENCES
Bayer, U. (2009). Anubis A platform the analysis of malicious code. Journal.
Retrieved from http://www.ossir.org/paris/supports/2009/2009-06-
09/ANUBIS-OSSIR-EN-June-2009-v1.1.00.pdf
Compuware. (2008). SoftIce.
Eagle, C. (2004). Honeynet Scan of the Month 32 Analysis. Retrieved
October 19, 2007, from http://honeynet.org/scans/scan32/sols/1-
Chris_Eagle/analysis.html
Eagle, C. (2008). The IDA Book: No Starch Press.
Eilam, E. (2005). Reversing : Secrets of Reverse Engineering. Indianapolis:
Wiley Publishing, Inc.
Falliere, N. (2007). Windows Anti-Debug Reference. Retrieved October 1,
2007 from http://www.securityfocus.com/infocus/1893
Ferrie, P. (2008). Anti-Unpacker Tricks. Paper presented at the 2nd
International Caro Workshop. from http://www.datasecurity-
event.com/uploads/unpackers.pdf
Harbour, N. (2007). Stealth Secrets of the Malware Ninjas. Retrieved October
20, 2007 from https://www.blackhat.com/presentations/bh-usa-

Journal of Digital Forensics, Security and Law, Vol. 5(4)

40

07/Harbour/Presentation/bh-usa-07-harbour.pdf
Hex-Rays. (2008). IDA Pro.
Hoglund, G., & Butler, J. (2005). Rootkits: Subverting the Windows Kernel.
Upper Saddle River, NJ: Addison Wesley Professional.
Hudak, T. (2009a, May 2009). Automating Malware Analysis. Hakin9, 3/2009
(22), pp. 50-57.
Hudak, T. (2009b, July 2009). Automating Malware Analysis. Hakin9, 4/2009
(23), pp. 64-69.
Innes, S., & Valli, C. (2006). Honeypots: How do you know when you are
inside one? Paper presented at the 4th Australian Digital Forensics Conference,
Edith Cowan University, Perth, Western Australia.
International Secure Systems Lab, Vienna University of Technology, Eurecom
France, & UC Santa Barbara. (2008). Anubis: Analyzing Unknown Binaries.
Retrieved October 4, 2008, from http://anubis.iseclab.org/
Mandiant. (2007). Red Curtain. Retrieved October 20, 2007, from
http://www.mandiant.com/mrc
MaRKuS. (2006). Olly Advanced.
Microsoft. (2008). windbg.
Newger, J. (2008). IDA Stealth Plugin.
Norman. (2009). Norman Green Book on Analyzing Malware Executive
Whitepaper 2009. Retrieved 07 Sept 2009, from
http://download.norman.no/whitepapers/sb_executive_folder.pdf
Pietrek, M. (n.d.). PEdump.
Rutkowska, J. (2006). Introducing Stealth Malware Taxonomy. Retrieved
April 12 2009 from http://www.invisiblethings.org/papers/malware-
taxonomy.pdf
Seitz, J. (2009). Gray Hat Python. San Francisco: No Starch Press.
Smith, S., & Quist, D. (2006). Hacking Malware: Offense is the new Defense.
Retrieved July 24, 2007 from
http://www.offensivecomputing.net/dc14/valsmith__dquist_hacking_malware_
us06.pdf
Vuksan, M., Peričin, T., & Milunovic, V. (2009). Fast & Furious Reverse
Engineering with TitanEngine. Black Hat USA 2009, from
http://www.reversinglabs.com/blackhat/TitanEngine_BlackHat-USA-09-
Slides.pdf
Wysopal, C. (2009). Good Obfuscation, Bad Code. Retrieved May 03 2009,
from http://www.securityfocus.com/columnists/498?ref=oc

Journal of Digital Forensics, Security and Law, Vol. 5(4)

41

Yan, W., Zhang, Z., & Ansari, N. (2008). Revealing Packed Malware. IEEE
Security and Privacy 6 (5), 65-69.
Yason, M. (2007). The Art of Unpacking. Retrieved Feb 12, 2008 from
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-
07-yason-WP.pdf
Yin, H., Song, D., Egele, M., Kruegel, C., & Kirda, E. (2007). Panorama:
capturing system-wide information flow for malware detection and analysis.
Paper presented at the Proceedings of the 14th ACM conference on Computer
and communications security.
yoda. (2005). LordPE.
Yuschuk, O. (2008). OllyDbg.
Zeltser, L. (2007). Reverse Engineering Malware: Tools and Techniques
Hands-On. Bethesda: SANS Institute.
Zhou, Y., & Meador Inge, W. (2008). Malware detection using adaptive data
compression. Paper presented at the Proceedings of the 1st ACM workshop on
Workshop on AISec.

Journal of Digital Forensics, Security and Law, Vol. 5(4)

42

	Malware Forensics: Discovery of the Intent of Deception
	Recommended Citation

	Malware Forensics: Discovery of the Intent of Deception

