Recent Advancements in Mathematical Finance

Gisèle Ruiz Goldstein
University of Memphis

In recent years, major advancements in mathematical finance have grown out of the study of two parabolic partial differential equations, the Nobel Prize winning Black-Scholes stock option equation

\[ \frac{\partial u}{\partial t} = \frac{\sigma^2}{2} x^2 \frac{\partial^2 u}{\partial x^2} + rx \frac{\partial u}{\partial x} - ru \]

and the Cox-Ingersoll-Ross zero coupon bond equation

\[ \frac{\partial u}{\partial t} = \frac{\sigma^2}{2} x^2 \frac{\partial^2 u}{\partial x^2} + (\beta x + \gamma) \frac{\partial u}{\partial x} - xu \]

both on

\[(x, t) \in (0, \infty) \times [0, \infty)\]

with initial condition

\[ u(x, 0) = u_0(x) \geq 0.\]

By studying these problems on suitable weighted sup norm Banach spaces, we show that the \((C_0)\) semigroup governing the Black-Scholes equation is chaotic, and the \((C_0)\) quasicontractive semigroup governing the Cox-Ingersoll-Ross equation admits a new type of Feyman-Kac representation formula (as a limit). We also study problems when the volatility, interest rate, etc. may be time dependent. This is joint work with various coauthors.