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Introduction
	 Radioactive sources are nuclides that emit 

ionizing radiation. Some of these sources, such 
as uranium-235 (235U) and plutonium-239 
(239Pu), can be used to build nuclear weapons, 
while some others, such as caesium-137 (137Cs) 
and technetium-99 (99mTc), are often used for 
medical or industrial applications. In public areas 
and events, the presence of a radioactive source can 
present a risk to the population, and therefore, it is 
imperative that threats are identified by radiological 
search and response teams. The purpose of this 
project is to build a computational model capable 
of detecting and characterizing radiation sources, 
using machine learning methods and statistical 
analysis. Specifically, the project explores the use 
of signal processing techniques and artificial neural 
networks for the analysis of radiation data.

	 The dataset used to develop and test the 
model was generated by the Oak Ridge National 
Laboratory and is composed of simulated 
environments containing a variety of radiological 
sources. The computational model detects 
unnatural radiation events in urban environments, 
which may have disastrous consequences if 
undetected or ignored. Moreover, the model 
identifies the types of radioactive sources, 

classifying them as innocuous or harmful, and 
discerning between weapons-grade material and 
radioactive isotopes used in medical or industrial 
settings.

	 This project builds on previous research 
conducted by the Pacific Northwest National 
Laboratory (PNNL), a US government laboratory 
managed by the Department of Energy (DoE).  
The dataset used in the project was made publicly 
available in the paper “Data for training and 
testing radiation detection algorithms in an urban 
environment” (Ghawaly, et al., 2020). Moreover, 
some of the deep learning techniques previously 
implemented for radioactive isotope classification 
are discussed by Galib, et.al., in the paper “A 
comparative study of machine learning methods 
for automated identification of radioisotopes 
using NaI gamma-ray spectra” (Galib, Bhowmik, 
Avachat, & Lee, 2021), and by Gomez-Fernandez 
et.al., in the paper “Isotope identification using 
deep learning: An explanation” (Gomez-Fernandez, 
et al., 2021). 
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Data and Methodology
	 The dataset used to build the 

computational model was generated by the Oak 
Ridge National Laboratory (ORNL) using a 
stochastic-simulation code based on Monte-Carlo 
methods, called MAVRIC. The details of the 
simulations used to train and test the model are 
explained by Ghawaly, et.al. in “Data for training 
and testing radiation detection algorithms in an 
urban environment”, the article that made the 
dataset publicly available. The dataset was created 
with a variety of simulated street models, each 
having a different radiological source, building 
layout, and building material. Moreover, the 
shielding of radioactive sources was modified 
for each simulation, so that more possible urban 
radiation scenarios would be covered. The six 
radiological sources included in the dataset are the 
following:

1.	 Highly Enriched Uranium (HEU): 
Uranium (U) is an element often found in nature 
in the form of the 238U and 235U isotopes. 238U 
cannot sustain a fission chain reaction, while 235U 
is the only fissile isotope which exists in nature. 
HEU is an enriched form of Uranium (composed 
of at least 20% of the 235U isotope) and can be 
used to build nuclear weapons (US Department of 
Energy, 2001).

2.	 Weapons grade plutonium (WGPu): 
Plutonium-239 (239Pu) is obtained when a 
uranium-238 (238U) isotope absorbs one neutron 
and decays, which occurs often in nuclear reactors. 
WGPu is composed of at least 93% 239Pu 
(Makhijani, 1997).

3.	 Iodine (131I): Iodine is often used for 
medical applications. Specifically, it is used to 
treat thyroid cancer. The 131I isotope is produced 
through fission in nuclear reactors, and it is widely 
abundant, cheap, and easy to create (Washington 
State Department of Health, 2003).

4.	 Cobalt (60Co): 60Co is produced 
artificially in nuclear reactors. Cobalt is often used 
in medical and industrial applications. Exposure to 
large amounts of 60Co can cause skin burns and 
cancer (National Center for Environmental Health 
(NCEH), 2018).

5.	 Technetium (99mTc): Technetium-99 is 
also a product of nuclear reactors and can be found 
in nuclear waste. 99mTc is a modified isotope of 
Technetium-99. The 99mTc isotope has a very 
short life (5-6 hours) and does not remain inside 
human bodies for long periods of time. Hence, it is 
widely used for medical purposes (EPA, 2017).

6.	 Highly Enriched Uranium (HEU) + 
Technetium (99mTc): A combination of sources 1 
and 5.

	 The simulations in the dataset consisted 
of moving a Sodium Iodide (NaI) radiation 
detector along a simulated street (see Figure 1) 
while collecting energy data. Each simulation in 
the dataset contains a single radiological source. 
Moreover, small or moving objects (i.e., cars, 
people, traffic lights, etc.) were ignored and not 
included in the simulations. The dataset contains a 
total of 25,540 simulations, split between training 
and testing data. In this study, a subset of 4,800 
simulations (800 per source) was used to train 
and test the models.  The dataset files contain data 
of the frequency and strength of the radiation 
events.  Each row in the data files is a radiation 
event described by two features: the time elapsed 
since the last photon was detected, in seconds, and 
the photon energy measured in kiloelectron-volts 
(keV). For the training data, the target time, which 
is the time at which the radiation detector is closest 
to the radioactive source, is also given. 
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Figure 1: 3D & 2D views of a stree-model comprised of brick buildings 
(red), granite (tan), asphalt (white), and soil (green). 

Source: (Ghawaly, et al., 2020). 

	 The task of detecting a radioactive source 
from urban environment data is not trivial. 
Buildings and other surrounding structures 
produce natural background radiation, which 
is predominantly composed of potassium 
(K), uranium (U), and Thorium (T), and is 
commonly referred as the KUT background. 
Urban environments often have high levels of 
KUT radiation. Thus, it is difficult to differentiate 
radiation produced by anomalous sources from the 
natural (KUT) background in such environments 
(Anderson-Cook, et al., 2020).

	 Moreover, when detecting unnatural 
radiation, it is also important to identify the types 
of radiation sources, since some of these sources are 
harmless or do not present a significant risk. For 
example, from the six radiological sources included 
in the dataset, 131I and 99mTc are often used 
for medical purposes. Therefore, it is important 
to recognize such sources as innocuous (at least 
when they are present in low quantities), so that 
people undergoing radiation medical treatment 

are not identified as a threat by an algorithm 
(US Department of Energy, 2001). Furthermore, 
radiation detection algorithms must avoid the 
non-detection of harmful sources (false negatives), 
which can compromise the population’s safety.

	 The goal of an urban radiation detection 
algorithm is to detect, identify, and locate a 
radiological source, while extracting KUT noise 
and minimizing the occurrence of false-negatives 
and/or false-positive alerts. This project explores 
two algorithms to detect and classify radioactive 
events, respectively. The detection algorithm 
utilizes signal processing methods to expose energy 
deviations in the data that indicate the presence 
of a radioactive source, while the characterization 
algorithm uses artificial neural networks to classify 
isotopes.

1.	 Radiation Detection
	 Signal processing is a subfield of electrical 

engineering focused on the analysis of data from 
physical events (Apolinário & Diniz, 2014). 
The subfield is often applied to radiation-related 
domains, such as medical imaging, astronomy, and 
radiation detection (Spieler, 2001). In this project, 
signal processing methods are used to detect 
radioactive sources based on their energy levels. 
Figure 2 shows the four-step process used by the 
model to perform radiation detection.

Figure 2: Radiation detection process using detrending and filtering 
techniques.



Beyond Vol. 5
Computational Models to Detect Radiation in Urban Environments

4

	 The first step in the proposed method 
is the data pre-processing step. As previously 
mentioned, the raw data contains the time elapsed 
since the last photon was detected, in seconds, 
and the photon energy measured in kiloelectron-
volts (keV). Therefore, the raw data is an unevenly 
spaced time series, since the spacing between 
radiation events is not constant. In order to 
allow the signal-processing algorithm to treat the 
radiation data as a signal, the input data needs to 
be converted to a time-series with evenly spaced 
events. Thus, the data pre-processing stage involves 
finding the average photon energy detected by 
the NaI scintillator in each 10-millisecond time 
interval. The resulting dataset contains an evenly 
spaced time-series resembling a 100 Hz signal (100 
radiation events per second, at intervals of 0.01s 
each). 

	 The second step is detrending, which 
consists of removing the trend from the data 
by applying polynomial subtraction. Trends in 
data are usually the effect of external factors 
and should be removed before the analysis. For 
example, in datasets collected over long periods 
of time, detrending is often necessary to remove 
the seasonal/cyclical effects from the data. In the 
case of radiation data, detrending may be useful to 
remove external factors such as KUT background 
or the detector’s built-in noise. By removing the 
trend from the data, it is possible to visualize strong 
deviations from the linear trend that may indicate 
the presence of an unnatural radiation source. 

	 One of the parameters that must be defined 
for detrending is the order of the polynomial. 
In this project, the standard approach of a 
least-squares fitting algorithm with a 1st order 
polynomial is used to remove the trend from the 
1000 Hz signal. Such method is visualized in 
Figure 3.  It is important to note that once the 
data is detrended, the resulting energy signal is still 
measured in kiloelectron-volts (kEv), but rather 
than representing the total energy collected by 
the radiation detector, it represents the energy-
deviation from the best line of fit.  

Figure 3: Example of data detrending using a first order polynomial. 

	 Once the data is detrended, a Butterworth 
filter is applied to isolate frequencies in the 
signal, which can indicate the presence of a 
radioactive source such as technetium or uranium. 
Butterworth filters are a signal processing method 
to attenuate or remove frequencies that are 
above/below a predefined cutoff. Low-pass filters 
attenuate frequencies above the cutoff, while high-
pass filters diminish frequencies below the defined 
cutoff value.  For example, let us consider a 10 Hz 
signal superimposed over a 1 Hz frequency (see 
Figure 4). Upon applying a low-pass Butterworth 
filter with a cutoff of 5 Hz, the 10 Hz frequency 
is removed. Conversely, applying a high-pass 
Butterworth filter with the same 5 Hz cutoff would 
remove the 1 Hz frequency from the signal.



Beyond Vol. 5
Computational Models to Detect Radiation in Urban Environments

5

Figure 4: Overview of low-pass (top) and high-pass (bottom) Butterworth 
filters with a cutoff frequency of 5 Hz applied on a signal of two 
superimposed frequencies (1 Hz and 10 Hz). 

	 High-pass and low-pass filters can be 
combined to create a Butterworth passband, which 
attenuates frequencies outside a specific range, 
rather than cutoff. For instance, in the example 
above, a Butterworth passband with a range 
between 0.5 Hz and 10 Hz would allow both 
frequencies to pass, since both 1 Hz and 10 Hz fall 
within that range, while a passband range between 
0.5 Hz and 5 Hz would only remove the higher 
frequency (10 Hz) from the data. Furthermore, the 
Butterworth filter also depends on a polynomial 
order, which is provided as a parameter. The order 
defines the degree of attenuation of the frequencies 
that fall outside the defined cutoff or range. In 
general, high polynomial orders (i.e., degree 9 
or 10) tend to completely remove out-of-range 
frequencies, while low polynomial orders (i.e., 
1 or 2) attenuate those frequencies to a lesser 
degree. Initially, the proposed model uses a 5th 
order polynomial, a mid-order polynomial that 
attenuates frequencies outside the passband range 
without fully removing them. In order to use 
Butterworth filters, the data must be first converted 
from time to frequency domain, using Fourier 
transforms. The conversion allows the data to be 
analyzed by looking at the frequency distribution 
of the signal, rather than its behavior as a function 
of time. Moreover, when a signal is transformed 
to the frequency domain, it is possible to visualize 
the data in a continuous wavelet transform (CWT) 
plot, also known as a magnitude scalogram. The 
CWT is a tool used to analyze the time-varying 
frequency characteristics of signals (Sadowsky, 
1994). In other words, the CWT displays the 
signal frequency and magnitude as a function of 
time. Figure 5 shows a CWT graph displaying 
the frequency distribution of a Cobalt-60 signal, 
through a period of 180 seconds. Note that by 
visualizing the CWT figure (right) it is possible 
to determine that the signal experienced high 
magnitudes between seconds 95 and 120, especially 
in the lower frequencies. This is not visible in the 
raw data (left) when the simulation is examined in 
the time domain.

Figure 5: Raw data (top) of a Uranium-235 simulation, and its continuous 
wavelet transform plot (bottom). The CWT plots were generated with 
MATLAB's Continuous 1-D wavelet transform function.

	 Continuous wavelet transform plots are 
convenient to determine the specific frequency 
thresholds that define the passband range of the 
Butterworth filter. For example, in the CWT plot 
shown in Figure 5, a passband range between 
0 Hz and 1 Hz would attenuate the noisy 
high frequencies at which the signatures of the 
radioactive source are not visible. Upon filtering 
out those frequencies, the data can be converted 
back to a time-domain and can be visualized in a 
time-energy plot.
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	 The last step of the proposed method is to 
implement a simple moving average (SMA). The 
SMA technique is used to remove small oscillations 
that are not representative of the general trend 
of the signal and is applied mainly for data 
visualization purposes. The resulting plot (Figure 
6) shows a noticeable energy-deviation peak at the 
time when the radiation detector was close to the 
radioactive source (t = 108.4s for the Cobalt 60 
example).

Figure 6: CWT plot with Butterworth cutoff values (top) and the 
resulting time vs. energy plot in the time domain (bottom) upon applying 
the Butterworth filter and a simple moving average (SMA). 

	 The resulting plot can be used to identify 
the time at which the maximum energy deviation 
occurred – or detection time. Since the real time 
when the detector was closest to the source (target 

time) is known for the simulations in the training 
dataset, it is possible to determine the precision 
of the signal processing model by comparing the 
detection and target times, as follows: 

	 Terror was computed for 4,800 simulations 
(800 simulations of each source) to determine the 
effectiveness of the model at detecting distinct 
types of radioactive sources.

2.	 Radiation characterization 
	 Radiation detection algorithms must also 

be capable of identifying types of radioactive 
sources. The threat that each radioactive isotope 
poses to humans is different, and therefore, 
radiation detectors must discern medical/
industrial isotopes from weapons-grade material. 
For example, 131I and 99mTc are often used for 
medical purposes, and thus, radiation detectors 
may indicate the presence of radiation when 
they are close to patients who are going through 
certain medical treatments, like chemotherapy. 
On the other hand, it is imperative for a radiation 
detection algorithm to identify dangerous isotopes 
(e.g., weapons-grade plutonium - WGPu) without 
failure, to avoid catastrophic consequences. The 
method presented in this section uses artificial 
neural networks to identify six types of radioactive 
sources from the dataset. The model uses energy 
spectrum data to identify features that indicate 
the presence of a specific radioactive isotope. The 
purpose of developing a deep learning model is 
to complement the signal processing technique 
previously discussed, and to enhance the detection 
and identification of radioactive isotopes by 
combining both methods.

	 The artificial neural network developed in 
this project uses energy spectrum data to classify 
isotopes. The energy spectrum, or gamma-ray 
spectrum, is one of the key distinctive features 
of radiological sources and it is described by the 
number of photons (count-rate) detected by a NaI 
scintillator during a time interval, as a function of
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photon energy (Ghawaly, et al., 2020). For 
example, if the radiation device detects 40 photons 
with energies between 100keV and 102keV during 
a period of 5 seconds, the count rate for the 100-
102 kEv energy bin would be 8 (40 events divided 
by 5 seconds = 8 per second). Figure 7 shows the 
energy spectra of 60Co and 235U.To train the 
neural network, the original dataset was processed 
to obtain the energy spectrum of each training 
simulation at the time when the radiation detector 
was near the radiological source (target time). A 
window of five seconds before the target time was 
used to obtain the gamma-ray spectrum of each 
source. Moreover, the energy levels were divided 
into 1500 energy bins, each containing the count 
rate of a 2 keV range.

Figure 7: Energy spectrum of Cobalt-60 (top) and High Enriched 
Uranium-HEU (right). 

	

	 The energy spectrum of radioactive sources 
is used for classification tasks because it contains 
features that are particular to each element. For 
example, the 60Co isotope is characterized for its 
two prominent peaks between 1000 and 1500 
keV, which can be visualized in Figure 7. Neural 
networks use such distinctive features to discern 
and classify isotopes.

	 The neural network model created for 
this project was trained to identify six types 
of radioactive sources, using a multi-layer 
architecture. The network takes 1500 data points 
as inputs (x), each representing the count rate 
of a 2 kEv photon-energy bin. The weights and 
bias values, which are the model parameters, were 
obtained by training the neural network with 
3,600 simulations from the dataset, which included 
800 simulations of each radioactive source. The 
output layer of the network contains 6 neurons, 
each returning a probability corresponding to 
a specific radioactive isotope. For any given 
input, the output neuron returning the highest 
probability corresponds to the radioactive source 
identified by the neural network.  The process is 
summarized in Figure 8.

	 Moreover, the neural network was 
complemented with an algorithm that generates 
gamma-ray spectrum data every second 
and delivers it to the deep learning model. 
Consequently, the model can be used to detect and 
identify radioactive isotopes on a rolling basis in 
continuous datasets.
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Figure 8: Radioactive source classification using an artifical neural 
network. 

Results 

	 The signal processing model was tested 
using 4,800 simulations from the data set (800 per 
radioactive source). Upon processing, detrending, 
and filtering the data, the time difference (Terror)  
between the model detection time and the target 
time (real event time) of each simulation was 
computed, using Equation (1). Since the goal of 
the signal processing model is to detect radioactive 
sources in a precise way, low values of  Terror are 

desired since they suggest that the model can 
detect radioactive sources in a timely manner. 
Moreover, large Terror values (i.e., more than 10 
seconds) returned by the model indicate that the 
maximum energy deviation in a simulation was not 
observed near the target time, which implies that 
the radiation event was undetected by the model. 
Thus, simulations with Terror values of less than 10 
seconds were denoted as “detection events”. Table 
1 shows the percentage of detection events, as well 
as their average time error for each radioactive 
isotope.

Source Simulations 
Tested

Detection 
within 10 
seconds of 
target time 
(detection 

events) 

Average 
Terror (s) of 
detection 

events 

Uranium 800 741 (92.6%) 1.27
Plutonium 800 488 (61.0%) 2.62
Iodine 800 429 (53.6%) 2.88
Cobalt 800 728 (91.0%) 1.09
Technetium 800 604 (75.5%) 2.01
HEU+Tech 800 714 (89.3%) 1.42
Total 4800 37094 

(77.2%)
1.88

Table 1: Average time error of the model (detection time minus target 

time) for each radioactive isotope. 

	 In general, the model was accurate at 
detecting uranium, cobalt, and technetium 
isotopes, with more than 75% of the simulations 
being detection events. Conversely, the model 
failed to detect strong energy deviations in 
plutonium and iodine simulations, with only 61% 
and 54% of the radiation events being detected 
within 10 seconds of the target time, respectively. 
Moreover, the results show that the precision of 
the model also varies with the type of radioactive 
source being tested. Out of the 3704 detection 
events, the average time error (difference between 
detection time and target time) was higher for 
plutonium and iodine than for uranium and 
cobalt. This indicates that the model is not only 
more capable of detecting uranium and cobalt but 
can also detect such sources more rapidly.
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	 Another way of visualizing the results is by 
looking at the percentage of simulations of each 
isotope that had a time error (Terror) of less than 
a particular time threshold. Figure 9 shows the 
percentage of simulations that were detected within 
1, 2, 3, 4, 5, and 10 seconds of the target time for 
each of the six radioactive sources.

Figure 9: Radioactive events detected within a particular time (in seconds) 
from the target time. 

	 Once again, Figure 9 shows that the 
precision of the signal processing model depends 
on the type of source. For instance, radiation 
was detected within 5 seconds of the target 
time in 88.4% and 87.4% of 235U and 60Co 
cases, respectively. Conversely, within the same 
time threshold, radiation was detected in only 
40.9% and 49.8% of the Iodine and Plutonium 
simulations.

	 The performance of the neural network 
model was also evaluated. The neural network 
was trained using a 75-25 split of the data, using 
the same 4,800 simulations, 800 per radioactive 
source. Since the main goal of the artificial neural 
network is to classify radioactive isotopes, the 
testing algorithm focused testing if the network 
could find isotope signatures in gamma-ray spectra 
at the target time. Therefore, for testing purposes, 
the original simulations were reduced to include 
only 10 seconds of data around the target time 
(5 seconds before and 5 seconds after). Then, for 
each simulation, the neural network model was 
tested continuously across the 10-second interval. 

The network then returned the 6 probabilities 
corresponding to each radioactive isotope. A 
confidence level of 95% was used as a threshold, 
meaning that if a probability corresponding to a 
certain isotope surpassed 95%, the neural network 
would alert the detection of such radioactive 
source. Conversely, if none of the probabilities 
returned by the model reached the required 
confidence level, the model would indicate the 
absence of radiation. Table 2 summarizes the 
results of the deep learning model in the form 
of a confusion matrix. As seen in the table, most 
of misclassified instances were either uranium 
or technetium events that were identified as 
HEU+Tech (the modified isotope that is composed 
of both elements).

Table 2: Confusion matrix- Neral network isotope classification using 
gamma-ray spectrum data. or see appendix 1

	 Finally, this study aimed to combine the 
signal processing and neural network models, so 
that they could be used complementary to detect 
and identify isotopes. A graphical user interface 
(GUI) was developed to visualize the output of 
both models while processing the same simulation. 
Figure 10 shows the output of the GUI for the 
60Co simulation previously discussed, which has a 
target time of t = 108.4 seconds.
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Figure 10: GUI showing the output of the nerual network model (left) 
and signal processing algorithm (right) while processing cobalt-60 simulation 
with a target time of 108.4s. 

	 The left image shows the output of the 
machine learning model, showing the maximum 
probability computed by the neural network every 
second. When such confidence surpasses the 95% 
threshold, the GUI displays the radioactive source 
identified by the model. Likewise, the right figure 
shows the output of the signal processing model, 
showing energy deviations as a function of time. 
Additionally, the model displays a note every time 
a new maximum energy deviation is found. For 
instance, in the 60Co sample, a maximum energy 
deviation was found at t = 112s, 3.6 seconds after 
the target time (108.4s). Similarly, the artificial 
neural network identified 60Co eight times, 

between t=113s and t=125s.

Discussion 
	 The results of the signal processing 

technique show that the model’s accuracy is highly 
dependent on the type of radioactive source. In 
general, 235U, 60Co and 99mTc are easier to detect 
than 239Pu and 131I. Likewise, the precision of the 
model is source-dependent since some isotopes 
are detected by the model in a shorter time span 
than others. For example, 60Co is detected, on 
average, within 1.09 seconds of the target time, 
while the mean detection time of 131I is almost 3 
seconds. Since the model obtains the detection 
time from the maximum energy deviation (see 
Figure 6), it is possible that radioactive sources 
with low detection rates (e.g., 131I) do not 
generate significant deviations that can reveal the 
presence of radiation. Thus, further work must be 
undertaken to recognize the intrinsic differences 
between radioactive sources that lead to easier 
detection of certain isotopes over others, as well 
as to understand the physical significance of such 
differences.

	  On the other hand, it is important to note 
that the parameters of the Butterworth filter may 
be further optimized to enhance the performance 
of the detection algorithm. One of the parameters 
that can be revised is the filter’s polynomial order. 
The proposed model uses a 5th order polynomial, 
which attenuates frequencies outside a passband 
range without fully eliminating them. The reason 
why a 5th order polynomial is used is that some 
radiation signatures may be present outside the 
defined passband range, and therefore, by using 
a mid-order polynomial, out-of-range radiation 
features are attenuated but not fully ignored. 
However, the model can be further optimized since 
it has not been tested with different polynomial 
degrees. For instance, the order can be increased to 
filter out more noise frequencies (Kim), with the 
downside that frequencies outside the passband 
range (which may have useful radiation signatures) 
will be fully removed by the filter.
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	 Another important input parameter is 
the Butterworth filter’s passband range, which 
stipulates the frequencies that are used to detect 
radiation signatures. The signal processing model 
was initially tested using a passband range between 
0 Hz and 1 Hz, as shown in Figure 6. Such range 
was defined by visualizing a variety of simulations 
in the frequency domain using the continuous 
wavelet transform plots. The lower and upper 
limits of the passband range have a major impact 
in the precision of the algorithm, and therefore, 
further work must be carried out to determine the 
interval that provides the optimal performance. 
Moreover, the model could be improved by 
defining if distinct passband ranges could be used 
for different radioactive isotopes. For instance, 
239U and 60Co were easily identified using a 0-1Hz 
passband range and a Butterworth filter polynomial 
order of 5th degree. However, the performance 
of the model on the 239Pu and 131I isotopes may 
improve if different parameters are used.

	 On the other hand, the neural network 
model was highly accurate at classifying radioactive 
isotopes. In fact, radioactive sources were correctly 
characterized in 92.6% of the cases. Out of the 
7.4% of the misclassified cases, almost 3% were 
235U and 99mTc simulations that were erroneously 
categorized in the 235U + 99mTc class (which is a 
combination of both isotopes), and vice versa. 
Thus, a way to enhance the performance of the 
neural network by 3% is to improve its ability to 
discern between events where a single radioactive 
isotope is present (e.g., 235U) from events where 
multiple sources are being detected by the NaI 
scintillator (e.g., 235U + 99mTc). Such enhancement 
could be feasible with more training data. 
Alternatively, techniques such as data augmentation 
could also provide more training samples without 
the need of running more simulations. Moreover, 
out of the 7.4% of misclassified events, a further 
2% pertained to undetected 99mTc samples. Thus, 
future enhancements of the neural network model 
should also focus on improving the ability of the 
model to identify signatures of the 99mTc isotope 
from the gamma-ray spectra data.

	 Furthermore, a factor that may impact 
the performance of both models is shielding. As 
previously mentioned, isotopes were shielded with 
lead material in some simulations. A radioactive 
source that is shielded may be more difficult to 
detect and identify by an algorithm, since less 
gamma rays will reach the radiation scintillator, 
resulting in a different gamma-ray spectrum. 
However, the original dataset does not contain 
information about the level of shielding which 
isotopes were subject to in each specific simulation. 
Thus, the present study could not determine 
whether the signal processing and neural network 
model’s performance was significantly different 
for shielded radioactive material, as compared to 
unshielded sources.

Conclusion
	 This study presents two methods for 

radioactive isotope detection and identification. 
The first method uses signal processing techniques 
to remove the trend and noise from the data, 
and to expose energy deviations that indicate the 
presence of radiation. On the other hand, the 
machine learning model uses an artificial neural 
network to classify isotopes.

	 The study proposes the use of both 
methods to create an end-to-end model that can 
detect and identify radioactive sources in urban 
environments. The models were trained and 
tested using 4,800 simulations, which included 
radiation events of six different radioactive sources: 
uranium-235 (235U), plutonium-239 (239Pu), 
iodione-131 (131I), cobalt-60 (60Co), technetium-99 
(99mTc), and a combination of uranium-235 and 
technetium-99 (235U +99mTc).

	 The signal processing model was successful 
at detecting certain types of radioactive isotopes, 
such as 235U and 60Co. However, the model did not 
perform well at detecting the 131I and 239Pu isotopes. 
Further work must be done to understand the 
physical differences in radioactive isotopes that 
may lead to a superior performance of the model 
at detecting certain isotopes over others. Moreover, 
the model can be further enhanced by tuning
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the parameters of the detrending and filtering 
algorithms, which include the filter polynomial 
order, the passband range, and the detrending 
technique. Overall, the signal processing model 
detection rate was 77.2%, with most of the 
undetected cases corresponding to 131I and 239Pu 
simulations.

	 On the other hand, the neural network 
model was highly successful at characterizing 
radioactive sources. The model properly 
identified isotopes in 92.6% of the tested 
simulations. The performance of the model may 
be improved by using more training data or using 
a data augmentation technique. In general, the 
neural network’s performance was limited at 
differentiating events with a single radioactive 
isotope (e.g., 235U) from those with a combination 
of sources (i.e., 235U + 99mTc). The model could 
also be further improved by knowing the shielding 
characteristics of each simulation, which are not 
provided in the original dataset. 

	 Finally, this study proposes the integration 
of both models through a GUI, which shows the 
continuous output of the signal processing and 
neural network models in parallel, allowing a 
radiation detector to perform the detection and 
characterization tasks at the same time.
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