

#### National Training Aircraft Symposium (NTAS)

2017 - Training Pilots of the Future: Techniques & Technology

Aug 16th, 8:15 AM - 9:45 AM

#### A Preliminary Comparison of Pilots' Weather Minimums and Actual Decision-Making

Nathan W. Walters Embry-Riddle Aeronautical University, nathanwray187@gmail.com

Mattie Milner Embry-Riddle Aeronautical University, milnerm1@my.erau.edu

Daniel A. Marte Embry-Riddle Aeronautical University, marted@my.erau.edu

Evan A. Adkins Embry-Riddle Aeronautical University, adkinse3@my.erau.edu

Marie Aidonidis Embry-Riddle Aeronautical University, aidonidm@my.erau.edu

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Other Psychology Commons

Walters, Nathan W.; Milner, Mattie; Marte, Daniel A.; Adkins, Evan A.; Aidonidis, Marie; Pierce, Matt B.; Pasmore, Abigail K.; Roccasecca, Angela; Rice, Stephen; and Winter, Scott R., "A Preliminary Comparison of Pilots' Weather Minimums and Actual Decision-Making" (2017). *National Training Aircraft Symposium* (*NTAS*). 32.

https://commons.erau.edu/ntas/2017/presentations/32

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

#### **Presenter Information**

Nathan W. Walters, Mattie Milner, Daniel A. Marte, Evan A. Adkins, Marie Aidonidis, Matt B. Pierce, Abigail K. Pasmore, Angela Roccasecca, Stephen Rice, and Scott R. Winter

This presentation is available at Scholarly Commons: https://commons.erau.edu/ntas/2017/presentations/32

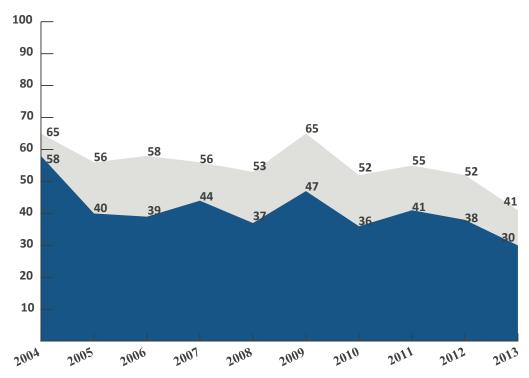


# A Preliminary Comparison of Pilot's Weather Minimums and Actual Decision Making: A Case Study

Nathan W. Walters, M. Nicole Milner, Daniel A. Marte, Evan A. Adkins, Marie Aidonidis, Matthew B. Pierce, Abigail K. Pasmore, Angela Roccasecca, Stephen Rice, & Scott R. Winter



## Problem Statement


• Adverse weather conditions remain a leading cause in aviation accidents.





#### The Problem

- Pilots continue to make poor decisions when flying in severe weather conditions.
- Training and technology have provided little assistance.



WEATHER ACCIDENT TREND

Kenny, D. J. (2016) Eds. Knill, B., Pangborn, T., & Sable, A. 25th Joseph T. Nall Report: General Aviation Accidents in 2013. AOPA Air Safety Institute.

#### EMBRY-RIDDLE Aeronautical University FLORIDA | ARIZONA | WORLDWIDE

## Purpose

| Base ine Personal Minimums |                             |          |          |         |       |  |  |  |
|----------------------------|-----------------------------|----------|----------|---------|-------|--|--|--|
| Weather Condition          |                             | VFR      | MVFR     | IFR     | LIFR  |  |  |  |
|                            | Ceiling                     |          |          |         |       |  |  |  |
|                            | Day                         | 2,500    |          | 800     |       |  |  |  |
| Night                      |                             | 5,000    |          | 999     |       |  |  |  |
|                            | Visibility                  |          |          |         |       |  |  |  |
|                            | Day                         | 4 miles  |          | 1 mile  |       |  |  |  |
|                            | Night                       | 8 miles  |          | 3 miles |       |  |  |  |
| _                          | Turbulance                  | 05       |          | Males   |       |  |  |  |
| _                          | Turbulence                  | SE       | ME       | Make/M  | lodel |  |  |  |
|                            | Surface Wind<br>Speed       | 10 knots | 15 knots |         |       |  |  |  |
|                            | Surface Wind<br>Gust        | 5 knots  | 8 knots  |         |       |  |  |  |
|                            | Crosswind<br>Component      | 7        | 7        |         |       |  |  |  |
|                            |                             |          |          |         |       |  |  |  |
|                            | Performance                 | SE       | ME       | Make/M  | lode  |  |  |  |
|                            | Shortest<br>runway          | 2,500    | 4,500    |         |       |  |  |  |
|                            | Highest terrain             | 6,000    | 3,000    |         |       |  |  |  |
|                            | Highest density<br>altitude | 3,000    | 3,000    |         |       |  |  |  |





#### **Research Questions**

- What is the difference in distance between pilot's stated personal minimums and their actions toward a missed approach during missions where the cloud cover is lower than expected?
  - Distance below personal minimums
  - Distance below federal minimums

## Method & Design

| Participants                                                                                                                                                                  | Equipment                                                                                                                                                                                 | Conditions                                                                                                                                                                                                      | Design                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>35 Instrument<br/>Rated pilots (4<br/>female) from<br/>Embry-Riddle<br/>Aeronautical<br/>University</li> <li>Mean age: 23</li> <li>Compensation:<br/>\$25</li> </ul> | <ul> <li>Elite-1000<br/>flight<br/>simulator</li> <li>Desktop<br/>Computer</li> <li>iPad</li> <li>Aviation<br/>Safety<br/>Attitude Scale</li> <li>Hazardous<br/>Attitude Scale</li> </ul> | <ul> <li>Controlled<br/>Laboratory<br/>Environment</li> <li>Cloud cover<br/>reached the<br/>ground</li> <li>No ability to<br/>detect obstacles<br/>by using visuals</li> <li>Non-towered<br/>airport</li> </ul> | <ul> <li>Simple correlational design</li> <li>Descriptive statistics</li> <li>CITI certified researchers</li> <li>ERAU Institutional Review Board</li> <li>Signed consent by all participants</li> </ul> |



#### By the Numbers – Preliminary Results

Total Participants

35 Instrument Rated Pilots Participants who flew below stated personal minimums (SPM)

24 (69%) Instrument Rated Pilots Participants who flew below federal minimums

22 (63%) Instrument Rated Pilots



## Participants Totals – Preliminary Results

Total Participants

35 Instrument Rated Pilots Average stated personal minimums (SPM): All participants

367 ft. (MSL) Average point "missed approach" executed: All participants

226.59 ft. (MSL)

#### Preliminary results – Stated Personal Minimums (SPM)

24 (69%) Participants flew below (SPM)

On average the SPM of 24 (69%) participants equals 443 ft (MSL) Distance these 24 participants flew below their stated personal minimums

231 ft

Average height at which these 24 participants executed "missed approach"

211.8 ft. (MSL)



Participants who flew below Federal Minimums – Preliminary Results

Federal regulated minimums for ILS

213 ft. (MSL)

22 out of 35 (63%) instrument rated pilots

On average flew 40 ft. below federal regulated minimums Feet (MSL) at which these 22 (63%) pilots executed miss

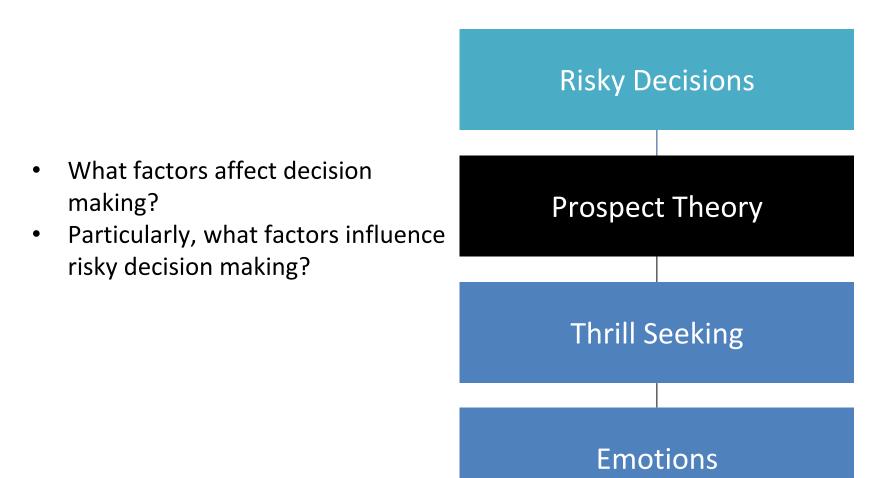
On average these pilots executed missed approach at 173 ft MSL



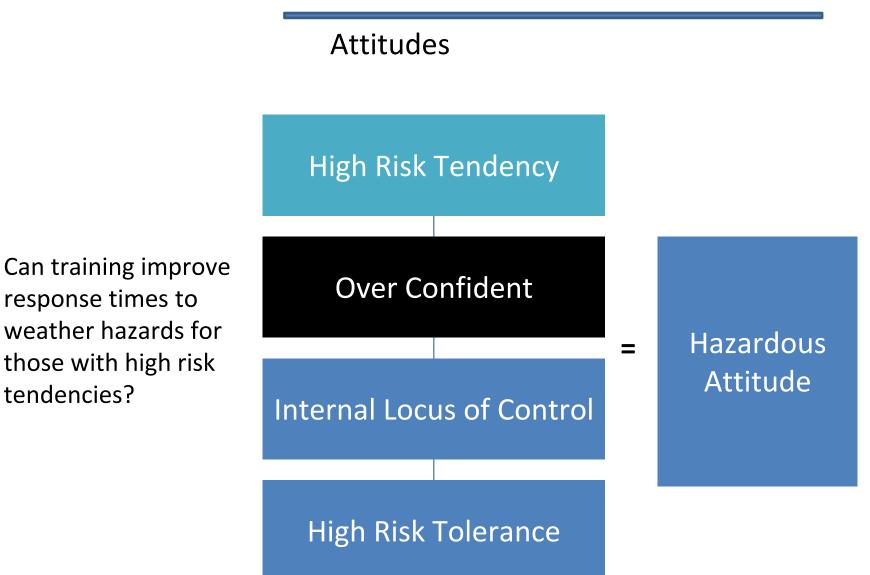
## Discussion






## Weather Ceiling Minimums

 Personal minimums were first introduced in 1996.

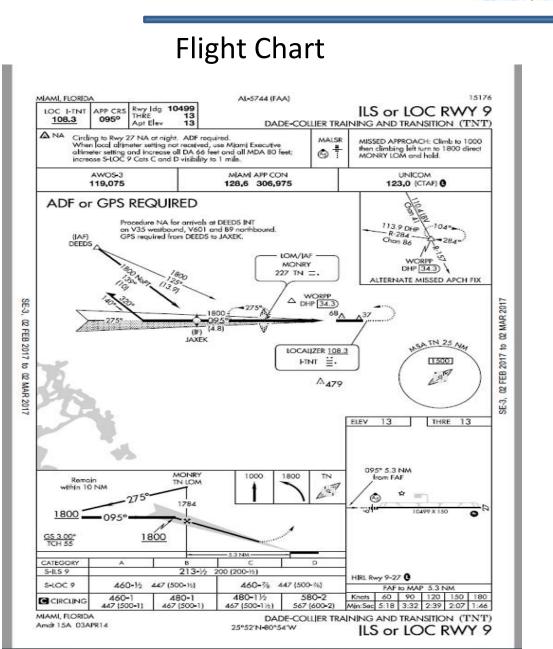





## **Decision Making**







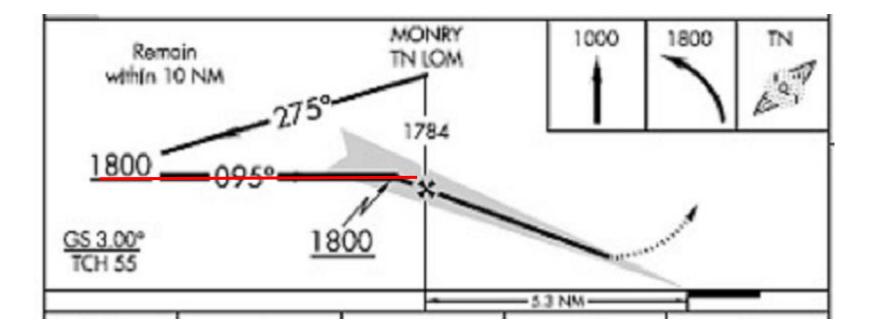



# Case Study: One Example



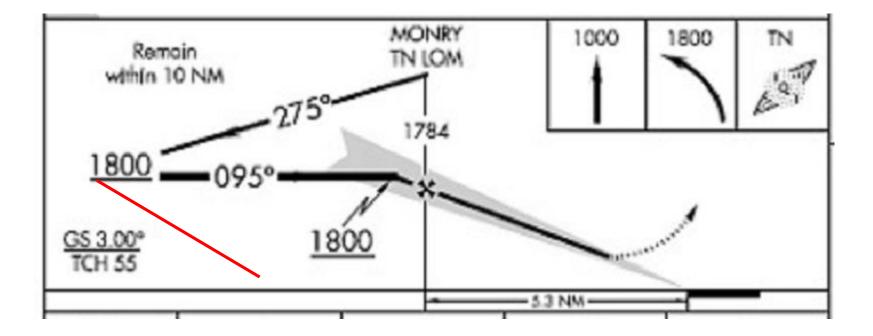
Aeronautical University






#### What Happened?

- ELITE PRO PAN ELITE
- One pilot did not correctly identify the information from his display.




## Normal Flight Path





## **Estimated Participant Flight Path**





# Then this happened!





## Which Led to This!





#### Lessons Learned





#### References

- Arkes, H. R., & Blumer, C. (1985). The psychology of sunk cost. Organizational Behavior and Human Decisions Processes, 35, 124-140.
- Ball, J. (2008). The impact of training on general aviation pilots' ability to make strategic weather-related decisions. Federal Aviation Administration.
- Goh, J. & Wiegmann, D. (2001). An investigation of the factors that contribute to pilots' decisions to continue visual flight rules flight into adverse weather. *Proceedings of the 45th Annual Meeting of the Human Factors and Ergonomics Society, Santa Monica, CA*.
- Ji, M., Lan, J., & Yang, S. (2011). The impact of risk tolerance, risk perception and hazardous attitude on safety operation among airline pilots in China. *Safety Science*, 49, 1412-1420.
- Kenny, D. J. (YEAR) Eds. Knill, B., Pangborn, T., & Sable, A. 25th Joseph T. Nall Report: General Aviation Accidents in 2013. AOPA Air Safety Institute.
- You, X., Ji, M., & Han, H. (2013). The effects of risk perception and flight experience on airline pilots' locus of control with regard to safety operation behavior. *Accident Analysis and Prevention*, *57*, 131-139.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. *Econometrica: Journal of the econometric society*, 47(2), 263-291.
- Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American psychologist, 39(4), 341.
- Renn, O. (1998). The role of risk perception for risk management. Reliability Engineering and Safety Science, 59, 49-62.



## Questions

