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Planning test points for highly constrained flight tests is a lengthy and iterative process 

which requires a structured, methodical approach using scientific test and analysis techniques 

(STAT) including: design theory, multi-objective optimization, and uncertainty analysis. 

Flight test engineers can spend anywhere from a week to a month determining ideal test 

points, only to have unforeseen problems arise during the week of testing that can invalidate 

these points. Genetic algorithms can play a key role in point selection for two common types 

of tests: model verification and validation (V&V) testing and operational test (OT) design. 

This paper outlines the methodology behind building a program to quickly identify a set of 

optimal test points for the trade space. The tool will allow test planners to have confidence in 

their test point design prior to the test as well as to make on-the-fly adjustments to testing 

locations during the event based on actual performance. There are a wide variety of 

parameters captured in the overall evaluation criteria (OEC) that give the planner great 

flexibility in tailoring the genetic algorithm outcomes for their purpose. The paper will begin 

by going through the steps behind planning a test and in defining the trade space and 

underlying uncertainty. Then, it will cover the parameters of the genetic algorithm and future 

work and recommendations.   

I. Nomenclature  

SAM  =  Surface-to-Air Missile 

RFCM        = Radio Frequency Countermeasures 

MOE   =   Measures of Effectiveness  

DOE  =  Design of Experiments  

OAR   =  Open Air Range   

OT  =  Operational Test  

V&V  =  Verification and Validation  

𝐶𝐼𝑎𝑑𝑗  =  Confidence Interval   

𝑛𝑎𝑑𝑗  =  Number of trials in binomial experiment  

𝑝𝑎𝑑𝑗  =  Probability of success on an individual trial  

𝑧𝛼/2  

  

=  Standard score  

II. Introduction  

The process of planning test points is an overly constrained, intractable problem that can often lead to 

suboptimal designs and inefficient, wasteful use of resources without the use of a design framework to scope and 

optimize the test. For a flight test engineer, the work can be broken up into four main steps: point identification, 

selection, repetitions and ordering. The primary objective of this research is to investigate the uncertainties of testing 

and provide clear metrics for the selection of one test point over another. Two types of flight tests will be examined: a 

model verification and validation (V&V) case and an operational test (OT) design case. In order to analyze each step 

of the point planning process, the following will be done:   
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Table 1   Analysis Techniques and Approaches Used for Each Planning Step  

  

Test Planning Step  Analysis  

Point Identification  Bayesian framework applied to a beta distribution to 

capture uncertainty   

Point Selection  Genetic Algorithm with cost function for optimization  

Point Repetitions  Adjusted Wald distribution to find confidence intervals  

Point Ordering  Scoring combinations of an optimal set of points  

  

III. Background  

The test point planning study will be framed using a self-protection scenario. A friendly aircraft is engaged 

against a ground-based threat utilizing radar and surface-to-air missiles (SAMs) [1]. The aircraft will use radio-

frequency counter-measures (RFCM) such as chaff to avoid being hit by the threat. Figure 1 shows an overview of the 

test. There is a potential threat system being tested against, a self-protection model built from a variety of inputs, and 

an output of the model showing locations where the aircraft is expected to be hit or missed by the SAM. The trade 

space is defined as the hit-miss diagram output by the self-protection model that will be used for test planning.  

  

 
  

Fig. 1   Overview of Notional RFCM Engagement and Underlying Models 

  

The two types of tests being examined in this paper include V&V and OT design planning. Both tests are 

related to self-protection. In the V&V case, points are chosen to validate the model’s correctness in the hit-miss 

diagram shown in Figure 1. The goal of the V&V case is simply to validate the model. The OT design case is more 

involved: a second model would be created that shows the new hit-miss regions when a candidate chaff program is 

implemented. The difference of the baseline case and candidate case would show how much the hit regions are 

potentially reduced with the use of the new chaff program. One goal of the OT case is to test at locations where there 

is a difference in model output between the old and new case to ensure that the locations are correctly identified. 

Another goal is to measure the effectiveness of the candidate chaff program over the baseline through a variety of 

parameters like reduction in lethality and chaff bundles expended. 

For the V&V test case, the predictive models will go through an iterative cycle to bring them closer to 

accurately modeling the real world. This helps validate the models such that the overall operational effectiveness is 
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proven: not just for a select few OT points but for the whole model. A study done for the U.S. Army used this iterative 

approach in creating the Helicopter Mission Survivability Model (HELMS) [2]. An overview is provided in Figure 2.   

  

   
 

Fig. 2   Cycle of Self-Protection Model Development 

  

IV. Test Planning  

  Planning a test for high-cost military systems is typically done months before the actual test event. These tests 

are driven by a need to gather experimental data that a computer model can’t provide. Figure 3 provides a rudimentary 

outline of the steps that go into planning a test [3]. This paper will focus on the final step of the outline: test plan 

development. These steps can be applied to the RFCM example and two test types mentioned in the background 

section. The following subsections discuss each step.    

  

  
  

Fig. 3   Test Planning Hierarchy 

 

A.  Point Identification   

Point identification is a balance between understanding the expected results and knowing the measures of 

effectiveness (MOEs) going into the test. Test planners need to ensure that selected test points are consistent with the 

original goals of the test. A large portion of point identification is recognizing which points can and cannot be tested 

at due to external constraints. Table 2 shows a list of possible constraints that may be imposed on the trade space by 

planners. These constraints will end up eliminating a large portion of the trade space from being eligible for selection.  

 

Table 2   Trade Space Constraints Limiting Feasible Regions  

  

Trade Space Constraints  

Airspace Size  

Aircraft Deconfliction   

Terrain Avoidance  

Protected Habitats/ 

Environmental Concerns  

Climate 
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B.  Point Selection  

After suitable regions of the trade space have been identified, individual points within these regions need to 

be selected. A design of experiments (DOE) approach is used to evaluate points against one another and pick the 

optimal set within the feasible region. The DOE process needs to manage multiple variables and their possible settings 

in order to create a draft parameter set table used to build the test design. Table 3 contains an example parameter table:  

  

Table 3   Notional Draft Parameter Table   

  

Altitude 

(A)  

Aircraft Movement 

(B)  

Environment  

(C)  

Range from 

Threat  

(D) 

Low Straight and Level Day Short Range 

Medium Hot Weave 

Maneuver 

Night Medium Range 

High Cold Weave 

Maneuver 

 Long Range 

  

The distribution of point placement will also vary between the V&V and OT cases. While the goal of the 

V&V case is simply to validate the model, the OT case has an additional goal of validating the effectiveness of the 

candidate program being implemented across the entire design space. Table 4 shows different considerations in point 

locations for the two cases. The relevance of the point patterns will largely influence the optimization problem, which 

will be discussed later.  

  

Table 4   Differences in Point Placement Considerations Between V&V and OT  

  

Examples of Point Patterns V&V  OT case  

Identifying asymmetrical patterns and opposing locations   X    

Points that show a difference between baseline program and 

candidate program   

  X  

Points that do not show a difference between baseline 

program and candidate program   

 X 

Points on inflection between region of hits and misses    X  X  

Points distributed across many tactically relevant aspects (i.e. 

at least one point in each quadrant)   

X  X 

Points at consistent range from center  X  X  

  

C.  Point Repetitions  

Once the optimal set of points have been selected, the test planners need to determine the number of 

repetitions they will do at each test point. Constraints on repetitions are shown in Table 5.   

  

Table 5   Constraints on Maximum Number of Test Repetitions  

  

Repetition Constraints  

Time  

Budget  

Fuel  

Test Expendables   

Weather   
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There is a difference between how repetitions are determined for the two test cases. In the V&V case, planners 

attempt to reach a target confidence level with the number of repetitions they set. Due to the high expense of flight 

tests, the sample size for each test point can vary from as few as four to as many as fifteen samples at a point. Because 

of the limited sample size, it is imperative that the number of repetitions are sufficient to reach the target confidence 

level. Table 6 compares the inputs and outputs of the two test cases.    

  

Table 6   Inputs and Outputs of V&V and OT cases  

 

 
  

D.  Point Ordering  

After the set of optimal test points and their repetitions have been found, the sequence which the points are 

tested are determined for the flight pattern. The largest factors for this step are aircraft deconfliction, terrain avoidance, 

and the time it will take to fly through all of the points. For RFCM testing of chaff, there is an additional aspect to the 

time constraint: enough time must be allowed for chaff dispersal before that test point can be flown at again.   

  

E.  Summary  

It is clear that the test planning process is a complicated and overly constrained problem. There are a very 

limited number of test points available that are trying to answer too many different questions. The four steps of the 

process require going through multiple iterations to reach the ideal solution. Unfortunately, all of the planning may be 

for naught when unforeseen situations arise that can invalidate test points or test locations. The following sections will 

walk through how uncertainty is being captured in the trade space. This will allow planners to have greater confidence 

in the points they select before a test and quickly identify alternates should they need to during the test event.      

  

V. Defining the Trade Space  

Of equal importance to defining the test planning process is to define the trade space that is being studied. 

Test events are held at open-air ranges (OARs), which are typically located in restricted airspaces around the 

continental United States. For the RFCM example, the threat will be set up at specific locations within the OAR. The 

test planning team will select points to test at around this threat based on the self-protection model. The goal is to 

understand which areas around a threat are truly safe and how unsafe regions can be reduced.   

An example trade space is displayed below to clarify the terminology. Figure 4 shows a notional OAR with 

a threat at the center. The blue triangles represent a test point and the green triangles represent the direction that the 

aircraft will fly straight-in through the test point. The red circle represents the limits of the missile’s kinematic envelope 

outside of which is a sure miss.   
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Fig. 4   Notional Trade Space Centered on Threat 

 

The green triangles are determined by hit-miss diagrams created by the self-protection model. In Figure 5, 

the blue dots represent miss points and the red dots represent hit points by a SAM. The black box represents the threat. 

In the hit-miss diagram, the aircraft is assumed to be flying from right to left for reference. The points will then be 

rotated into the geographic coordinate system as seen in Figure 5. This allows for reduced set-up time in testing at 

different azimuths against the threat. 

 

 
                              

                                        (a) Geographic Frame                           (b) Model Frame 

 

Fig. 5   Example of Points in Geographic Reference Frame and Model Reference Frame 

 

These graphs are crucial for allowing planners to go through the point selection and optimization process. 

When selecting points, it is common to choose locations that are both abeam and fore/aft of the point to fully explore 

the trade space. As described earlier, an important part of OT testing is understanding how the trade space changes 

between the baseline and candidate program. The green and orange points in Figure 6 represent a change that occurred 

in the self-protection model going from the baseline to the candidate case. Note that each of these depictions assumes 

the same initial ground speed from the fly-in location and a fixed altitude relative to the ground for a given set of 

environmental and terrain conditions. 

 

 
            (a) Baseline           (b) Candidate             (c) Difference 

 

Fig. 6   Notional Model Output Centered on Threat for OT Comparison 

  

A.  Uncertainty Analysis and Risk Mitigation  

Self-protection models are likely to possess errors and are not a perfect representation of the final results. 

Thus, test planners must account for this uncertainty in their process. In order to isolate model error, test planners must 

account for and control test error to the best of their abilities. Figure 7 shows a breakdown of the possible events that 

may happen when the model determines the outcome of a point.  
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Fig. 7   Possible Events that May Occur at each Test Point in Model 

  

  Risk mitigation is critical in building confidence in test design and avoiding Type I errors. By controlling test 

uncertainty through analysis, one additional portion of the experiment is controlled that ensures the data collected will 

be useable. After the experimentation is done, the model can be validated with test data to uncover errors present and 

correct them for future tests. This quantified uncertainty will be a useful input for the genetic algorithm. Table 7 

provides a brief overview on some of the most prevalent sources of uncertainty in RFCM testing.  

  

Table 7   Inputs and Outputs of Two Test Types  

  

Sources of Uncertainty  

Weather  

Terrain Clutter  

Operator Error (Threat or Aircraft)  

Technology  

Chaff Dispersal   

  

 In order to capture the underlying probability of each point within the trade space, statistical distributions  

are used to build a “probability grid” that determines which areas of the trade space are more likely to be correct. To 

construct this probability grid, a beta distribution coupled with Bayes’ theorem is applied to the entire trade space. A 

beta distribution is chosen because the model can self-update over many iterations and move to a more accurate 

estimate of the true mean with a reduction in variance [4]. Figure 8 shows the flow of the beta distribution. However, 

this beta distribution is only a placeholder. In future work, a Monte Carlo simulation will be applied to the self-

protection model to better estimate the uncertainty distribution of the trade space.   

  

 
  

Fig. 8   Flowchart of Beta Distribution with Bayesian Framework 

  

Building an underlying probability grid allows for uncertainty in the trade space to be captured in a succinct  

and clear manner. It attempts to correct for the fact that the model will not be 100% accurate and that there are some 

“known unknowns” out there that can only be found through experimentation. Understanding which points are more 

or less likely to be correct is useful for both the V&V test case and the OT design case, where a test planner would 

want to know the likelihood that points are correct or incorrectly identified. Figure 9 shows how the probability grid 

is the foundational piece for having confidence in selecting the right test points.   
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Fig. 9   The Interdependency of Point Selection and the Underlying Probability Grid 

  

VI. Creating the Genetic Algorithm  

  Point selection is the second step. Several optimization techniques were explored, but the technique that 

yielded the best result was the genetic algorithm (GA). The GA provided a rapid way to search through the entire 

design space and avoid getting stuck in local optimum solutions. The following paragraphs will discuss the setup of 

the GA and the cost function that governs the optimization process.  

Figure 10 shows the general outline for how the GA proceeds. Within a particular chromosome, a set of N 

test points is randomly chosen in a 20x20 trade space and certain metrics (discussed below) captured on the group of 

N points. From there, the top 10% of chromosomes are selected to reproduce and create the new generation through 

single point crossover. The top 10% are carried through in each new generation, ensuring that the algorithm keeps 

improving on point selection. Within each new generation, 0.2% of the generation is allowed to mutate via single point 

mutation, which prevents the algorithm from getting stuck in a local optimum solution and instead strive for the 

absolute optimum. The entire process continues to iterate through new generations until the solution converges below 

a specified limit or the algorithm detects a stagnation in the change in the cost function [5].  

 

 
 

Fig. 10   A Notional Model of Hits/Misses with Underlying Probability Grid  

  

  Within a chromosome, each gene is comprised of a single “(x, y)” point. This point represents a value on the 

trade space. Relevant point patterns for the case under study are identified using the DOE analysis discussed earlier. 

The number of genes in a chromosome is user-defined. Figure 11 provides an overview on the chromosome setup and 

the metrics that are captured for a particular chromosome. By gathering data on the genes (i.e. points), the cost function 

determines which chromosomes are better than others. 
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Fig. 11   Breakdown of the Chromosome Structure and Calculated Metrics  

  

  The best chromosomes are selected through the cost function using the residual sum of squares difference 

between a single chromosome score and an optimal set of metrics, which are user-defined. The optimal metrics relate 

back to the DOE analysis and will differ for the V&V and OT case. A relative weighting scheme, which is also user-

defined, is applied to each metric and will greatly affect the outcome of the final solution. When the best chromosomes 

are selected from the population, single-point crossover is used to generate a new set of offspring that makes the next 

generation. The best chromosomes are automatically carried through into the next generation. An example of the single 

point crossover technique is shown in Figure 12:  

 

 
  

Fig. 12   Using Single Point Crossover to Create Offspring 

  

After the offspring are created, point-mutation is introduced in order to prevent the GA from getting stuck in 

a local optimum solution. A mutation is considered as changing either the “x” or “y” value of a single gene. Figure 13 

shows how the point-mutation is carried out:    
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Fig. 13   Using Point Mutations within a Gene  

    

An example output of the convergence behavior of the cost function is shown in Figure 14. More work still 

needs to be done in weighting each of the error terms and changing their relevancy based on the test case under review. 

The final output of the GA is a chromosome that contains the N testing points that should be selected.   

  

  
  

Fig. 14   Number of Generations vs. Cost Function Value of Best Chromosome  

   

A.  Determining Point Repetitions  

  The third step in the test design process involves determining the number of point repetitions. For the case of 

the V&V test, this repetition number is dictated by a target confidence level. In the OT case, the number of repetitions 

is instead dictated by the fuel and time available. Despite these differences, the number of repetitions is an important 

output that is common to both test designs. The following sections will provide an overview on the calculations behind 

building confidence in test using an adjusted-Wald distribution.   

As discussed in the uncertainty analysis section, there is a binomial set of outcomes for whether the point is 

correct or incorrect in the model. The two most widely known ways to find the binomial confidence interval (CI) are 

through the Clopper-Pearson Exact method or the Wald method [6]. These are both practical methods when the sample 

size is fairly small (i.e. less than 30). The adjusted Wald method combines these two to provide the closest CI interval 

to the true solution and is simple to calculate. Eq. 1 shows how the CI is calculated using the adjusted Wald method.   

 

 

        (1) 

 

 

  Table 8 shows the results of setting an 80% confidence level with a historic success rate of 80%. The 

important metric captured is the CI width and the number successful given a certain number of repetitions. Note that 

the probability does not directly increase with increasing sample size, but peaks slightly around seven repetitions. 

  

Table 8   Adjusted Wald Calculations for Determining Point Repetitions of a Single Point  

  

Sample Size  Successful  
Percent 

Successful  
CI Width  

3  2  66.7%  0.290  

4  3  75.0%  0.252  

5  4  80.0%  0.222  

6  5  83.3%  0.198  

7  6  85.7%  0.178  

8  6  75.0%  0.188  

9  7  77.8%  0.173  
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B.  Determining Point Ordering  

  The final step in the test design process is the point ordering process. Parameters like aircraft deconfliction, 

total time available, and terrain avoidance are important for figuring out the best ordering. Although further work 

should be done regarding this phase, the general approach is outlined below.  

When the GA identifies an optimal set of test points, it will hand off the set of test points to the ordering 

algorithm. The ordering algorithm will iterate through the list of test points, setting one test point as the “start point” 

in each iteration. From this start point, all the combinations of ordering will be scored based on the constraints imposed. 

If any combination violates a test constraint, the combination will be invalidated. The highest scoring combination 

among the set of iterations will be deemed the best solution. Note that this ordering is the same regardless of repetition 

number and assumes a single aircraft test scenario. Figure 15 shows the process.   

  

  
  

Fig. 15   Flowchart of Point Ordering Algorithm  

  

VII. Future Work and Recommendations  

  The steps discussed in this paper are intended to be a framework for future research. For one, historical data 

needs to be gathered to properly validate the results of the GA with real-world data. This will allow better estimates 

for the weighting schemes in the cost function. Secondly, the “on-the-fly” aspect needs to be addressed. This could 

allow for adaptive DOE and blocking for each iteration over several days of test. Thirdly, multi aircraft scenarios need 

to be built into the framework for representation of true flight tests. Implementation of these steps will improve 

usability, confidence, and adaptability with the test point planning process.  

  

VIII. Conclusion  

While the combination of statistics and flight testing is not a new concept, it can be used to improve current 

metrics in test planning that enable clearer point-to-point comparisons. Design theory and uncertainty analysis are 

methods that allow for risk mitigation and confidence in point selection. Genetic algorithms can capitalize on the 

uncertainty analysis to enhance the selection of optimal points. Although there is still work to be done in fleshing out 

the framework, this application is well on its way to enabling a faster, clearer, and more flexible test design process.    
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