
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 6 Number 3 Article 7

2011

Technology Corner: Brute Force Password Generation -- Basic Technology Corner: Brute Force Password Generation -- Basic

Iterative and Recursive Algorithms Iterative and Recursive Algorithms

Nick V. Flor
University of New Mexico

Haile Shannon
University of New Mexico

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Flor, Nick V. and Shannon, Haile (2011) "Technology Corner: Brute Force Password Generation -- Basic
Iterative and Recursive Algorithms," Journal of Digital Forensics, Security and Law: Vol. 6 : No. 3 , Article 7.
DOI: https://doi.org/10.15394/jdfsl.2011.1102
Available at: https://commons.erau.edu/jdfsl/vol6/iss3/7

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol6
https://commons.erau.edu/jdfsl/vol6/iss3
https://commons.erau.edu/jdfsl/vol6/iss3/7
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2011.1102
https://commons.erau.edu/jdfsl/vol6/iss3/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol6%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Digital Forensics, Security and Law, Vol. 6(3)

79

Technology Corner: Brute Force Password
Generation -- Basic Iterative and Recursive

Algorithms

Nick V. Flor, Haile Shannon
Anderson School of Management

University of New Mexico
nickflor@unm.edu, hshannon@unm.edu

ABSTRACT

Most information systems are secured at minimum by some form of password
protection. For various reasons a password may be unavailable, requiring some
form of password recovery procedure. One such procedure is software-based
automated password recovery, where a program attempts to log into a system by
repeatedly trying different password combinations. At the core of such software
is a password generator. This article describes the basic iterative and recursive
algorithms for generating all possible passwords of a given length, which is
commonly referred to as brute-force password generation. The paper ends with a
discussion of alternative password recovery procedures one should attempt before
brute-force password recovery.

1. INTRODUCTION
It is common to forget passwords. A study of Yahoo users found that 2,149 out
of 50,100 users (4.28%) forgot their passwords over a three-month period
(Florencio & Herley, 2007). The same study reported that the average user had
seven distinct passwords that were actively used. Another study of students
reported that one-third of all respondents had forgotten passwords and that the
respondents had an average of 4.45 different passwords, which they used to
access 8.18 different applications (Brown, Bracken, Zoccoli, & Douglas, 2004).
 When a user forgets a password for a system, some form of password
recovery procedure is necessary. Brute-force password generation is one such
procedure. Using brute-force, a program generates all possible combinations of
passwords and attempts to login to the system using these combinations. This
paper presents two algorithms for brute-force password generation. The paper
ends with a discussion of the limitations of brute-force password generation and
outlines other password recovery procedures that should be attempted prior to
trying brute-force.

2. METHOD

Microsoft’s Visual Studio 2010 Express development environment was used to

Journal of Digital Forensics, Security and Law, Vol. 6(3)

80

create two algorithms for automatically generating passwords of a user-specified
length: (1) an iterative and (2) a recursive algorithm. The programming language
used was C#, and the correctness of the algorithms was determined by visual
inspection of the passwords generated for password sizes up to 8 characters. It
should be noted that there are many different ways to implement automated
password generators, and they are not difficult to write. Our goal was to create
short algorithms that were both understandable and easy to modify.

3. RESULTS
There are a number of algorithms for generating all possible passwords when
given both a password length, as well as an allowable character set, e.g., all
upper/lower case letters and numbers. The general strategy is to try all characters
in all positions, and this strategy can be implemented iteratively or recursively.
The following reports both types of algorithms that we developed to generate
passwords.

3.1 The Iterative Password Generator
To implement an iterative password generator one can use what we call the
counting algorithm (see Appendix A for C# code that implements the counting
algorithm). To understand the counting algorithm for automated password
generation, imagine the allowable character set is numbers only (0-9, or ten
character in total), and that the password length is four. Under these conditions,
there are a total of 10*10*10*10 possible passwords (10,000=104). The
passwords would range from 0000 through 9999, or 0 through 104-1. Moreover,
you could generate all those passwords by starting at zero and adding one until
you reached 9999.
To generalize this idea to a character set of size C, with a password length N, you
simply count from 0 to CN-1, and then map the numbers to the characters in the
character set. For example, suppose your character set was capital letters only (26
in all), with a password length of 4. You would write a program that counted
from 0 to 264-1, which is 0 to 456975; then the challenge is to map 0 to AAAA,
456975 to ZZZZ, and to map all the numbers in between to their letter-sequence
equivalents.
To map a number X to its letter-sequence equivalent, first create a character array
of size C, e.g., chars, containing all the allowable password characters. Then,
loop N times, each time applying the operation X modulo C. This operation
yields a number from 0 to C-1 that represents the rightmost character in the
sequence, which you can then use to index into chars to retrieve the actual letter.
Finally, divide X by C and continue with the loop—the division shifts the next
character into the rightmost position. In pseudocode, this mapping looks as
follows (see
Figure 1).

Journal of Digital Forensics, Security and Law, Vol. 6(3)

81

// given:
// X, the number to convert to a password string
// N, the password length
// C, the number of characters in the password
// chars, the array of allowable password characters

Password = “”
For i=1 to N
 ch = chars[X mod C]
 Password = Password + ch
 X = X / C
Next

Figure 1. Pseudo-Code for Converting a Number to a Character Sequence—

See Appendix A for a Complete Implementation in C#

One problem with the counting algorithm is that the maximum integer value in
most programming languages is 232-1. This in turn limits the maximum password
size that the algorithm can generate. For example, suppose that the allowable
character set includes upper and lowercase letters (52), numbers (10), and both a
comma and a period (2) -- for a total of 64 characters. Under these conditions, the
maximum password size that the counting algorithm can generate is five letters,
because 645 = (26)5 = 230, which is < 232-1. However, a 6-character password
would require a maximum integer of (26)6 = 236, which exceeds the maximum
integer in most programming languages.

3.2 The Recursive Password Generator
A recursive password generator can be written that is independent of the total
number of password possibilities. Given an array of allowable password
characters, e.g., chars, loop through each character (ch) in the array, recursively
placing the character in each position (pos), until you have built up a character
sequence (pwd) of the maximum size (siz). The result will be all passwords of a
given size. For example, suppose the recursive procedure is named
GenerateAllPasswords and you wanted all passwords of size eight. You would
call the recursive procedure as follows: GenerateAllPasswords(“”, 0, 8).
Figure 2 depicts the pseudocode for a recursive brute-force password generator.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

82

GenerateAllPasswords(pwd, pos, siz)
 if (pos < siz)
 foreach (char ch in chars)
 GenerateAllPasswords(pwd + ch, pos + 1, siz);
 next
 else
 print pwd;
 end if

Figure 2. Pseudo-Code for Recursively Generating All Passwords (pwd) of a
Given Length (siz) — See Appendix B for a Complete Implementation in C#

4. DISCUSSION

The main problem with any brute-force, automated password generator is that the
number of possible passwords generated is literally astronomical in size. Just to
put matters in perspective, there are reportedly 200 billion stars in our Milky Way
galaxy. If the allowable password characters were the 92 printable symbols on a
keyboard (52 upper/lower case letters + 40 numbers/punctuations), then a six-
character password has more than 600 billion possibilities—more than the
number of stars in the Milky Way! Even with a fast processor, the automated
password generator is limited by the response time of the information system that
it is sending passwords to. Thus, brute-force password generation should be used
as a last resort for all but the shortest passwords.
There are a number of alternative password-recovery procedures to try prior to
brute-force. For example, in their classic paper on password security, Morris and
Thompson (1979) recommended a dictionary list, a name list, dictionary words
spelled backwards, a list of first names from a mailing list, last names, street
names, city names, all valid license plate numbers in a given state, room numbers,
social security numbers, telephone numbers, and other kinds of personal numbers.
More recent research reports that two-thirds of student passwords are designed
around personal characteristics, with the remaining one-third relating to relatives,
friends or lovers; proper names and birthdays form the basis of more than half of
all passwords (Brown, Bracken, Zoccoli, & Douglas, 2004). Thus another
password recovery procedure is to obtain personal information about a user and
attempt various combinations of this information. However, if these procedures
fail, brute-force password generation is the last recourse.

REFERENCES
Brown, A. S., Bracken, E., Zoccoli, S., & Douglas, K. (2004, September).
Generating and Remembering Passwords. Applied Cognitive Psychology,
18(6), 641-651.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

83

Florencio, D., & Herley, C. (2007). A Large-Scale Study of Web Password
Habits. In: Proceedings of the 16th International World Wide Web Conference
(pp. 657-665). Banff, Alberta: University of Calgary.
Morris, R., & Thompson, K. (1979, November). Password Security: A Case
History. Communications of the ACM, 22(11), 594-597.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

84

Appendix A: The Basic Non-Recursive Password Generating

Algorithm

using System;

namespace ConsolePasswordGenerator
{
 class Program
 {
 static void Main(string[] args)
 {
 char[] chars = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M',
 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z'};

 Console.Write("Password Length? ");

 int iPasswordLength = Convert.ToInt32(Console.ReadLine());
 int iPossibilities = (int) Math.Pow((double) chars.Length, (double)
iPasswordLength);
 Console.WriteLine("{0} words total", iPossibilities);
 for (int i = 0; i < iPossibilities; i++)
 {
 string theword = "";
 int val = i;
 for (int j = 0; j < iPasswordLength; j++)
 {
 int ch = val % chars.Length;
 theword = chars[ch]+theword;
 val = val / chars.Length;
 }
 Console.WriteLine(theword);
 }
 Console.ReadLine();
 }
 }
}

Journal of Digital Forensics, Security and Law, Vol. 6(3)

85

Appendix B: The Basic Recursive Password Generating Algorithm

using System;

namespace RecursiveConsolePasswordGenerator
{
 class Program
 {
 static char[]
chars={'a','b','c','d','e','f','g','h','i','j','k','l','m',

'n','o','p','q','r','s','t','u','v','w','x','y','z'};

 static void GenerateAllPasswords(string pwd, int pos, int siz)
 {
 if (pos < siz)
 {
 foreach (char ch in chars)
 {
 GenerateAllPasswords(pwd + ch, pos + 1, siz);
 }
 }
 else
 Console.WriteLine(pwd);
 }

 static void Main(string[] args)
 {
 Console.Write("Password Length?");
 int iPasswordLength = Convert.ToInt32(Console.ReadLine());
 GenerateAllPasswords("", 0, iPasswordLength);
 Console.ReadLine();
 }
 }
}

Journal of Digital Forensics, Security and Law, Vol. 6(3)

86

	Technology Corner: Brute Force Password Generation -- Basic Iterative and Recursive Algorithms
	Recommended Citation

	Technology Corner: Brute Force Password Generation -- Basic Iterative and Recursive Algorithms

