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Abstract— We present performance bounds obtained from the 

optimization of the sidelobe levels of aperiodic linear arrays.  The 
antennas comprising these arrays are large compared to the 
distance between neighboring antennas, a case not addressed in 
previously published work.  This optimization is performed in 
pattern-space, and is applicable over a wide range of scan angles.  
We show that grating lobes can be suppressed even when the 
elemental antennas are several wavelengths in size, provided that 
the ratio of the antenna size to the average spacing between the 
antenna center-points does not exceed 80%. 
 
 

Index Terms—Antenna arrays, genetic algorithms 

I. INTRODUCTION 

HASED arrays are sometimes required to have a large 
aperture but a relatively small number of antennas.  

Placing these antennas at periodic intervals exceeding one half 
wavelength creates grating lobes in the radiation pattern and 
limits the usefulness of the array.  Aperiodic placement 
techniques can remove grating lobes and minimize the 
sidelobe level of the array, as shown in Fig. 1 [1]. 

Theories of aperiodic arrays have been described in detail 
[2].  For example, Haupt showed the relationship between the 
unit circle representation and antenna positions for aperiodic 
arrays [3].  However, it is difficult to apply arbitrary 
requirements to arrays generated using this method or other 
deterministic methods [4, 5].  As a result, aperiodic antenna 
positions are often generated with iterative search algorithms. 

The optimization of aperiodic linear arrays using genetic 
algorithms has been studied in great detail (e.g. [1, 6]).  In 
these studies, the elemental antennas are treated as point-
sources or dipoles oriented orthogonally to the axis of the 
array, as in Fig. 2a.  Little attention has been given to the 
design of arrays consisting of antennas that are physically large 
along the axis of the array, as in Fig. 2b.  In this paper, we 
present results from an analysis of arrays consisting of 
physically large antennas.  A genetic algorithm that accounts 
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for the size of the antennas is used as the optimization tool.  
We show that it is possible to effectively suppress grating 
lobes in these arrays, providing that the antenna sizes do not 
exceed 80% of the mean spacing between the antenna center-
points. 

 

II. GENETIC ALGORITHM 

A genetic algorithm, or GA, is an iterative optimization 
algorithm designed to mimic the processes of evolutionary 
biology.  The basic processes of a GA are well known [7] and 
are shown in Fig. 3.  The GA employed in this study 
implements the concepts of mutation and crossover, and 
allows mutation to alter chromosome values by up to 10% 
during each generation.  The GA stores values describing 
antenna positions, as in [6], instead of Boolean values 
describing the presence or absence of an antenna at a grid 
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Fig. 1.  Radiation patterns illustrating grating lobe reduction.  Plotted for an 
array of 15 elemental antennas with 0.4 wavelength spacing (thick-solid), 8 
elemental antennas with 0.8 wavelength spacing (dot) and 8 elemental 
antennas with aperiodic spacings occupying the same aperture (thin-solid). 
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Fig. 2.  (a) Aperiodic array of antennas having a negligible size along the 
axis of the array.  (b) Aperiodic array of antennas that are physically large 
along the axis of the array, pictured as electronically-configured sub-array 
antennas.  Antenna positions are described by the difference between the 
position of an antenna and its proximal grid (δ) or by the distance between 
the center-points of adjacent antennas (Δ). 
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point, as in [1].  The GA terminates after 20 generations 
without any improvement to the best solution, and each trial is 
repeated 10 times to ensure statistical reliability of the results.  
The fitness of individuals within the algorithm was defined by 
the inverse of the maximum relative sidelobe level, or –RSLL 
[1].  The algorithm maximizes the fitness of the population. 

 

III. CALCULATING THE MAXIMUM SIDELOBE LEVELS 

A. Determining Sidelobe Levels 
Because of the complexity in predicting the SLL exhibited 

by an array (the metric of performance), an efficient method of 
analysis is required.  Simplistically, this requires determining 
the radiation pattern and finding the maximum value exclusive 
of the main lobe.  For a linear array, the pattern is optimized at 
a maximum selected scan angle resulting in optimization at 
smaller angles down to broadside [6, 8].  However, because 
the width of pattern lobes changes as a function of angle, a 
simple algorithm can erroneously report the main lobe as a 
sidelobe, as shown in Fig. 4.  The finding in [6] that linear 
arrays cannot be optimized for endfire pointing was probably 
due to this error.  Uniform sampling of the pattern as a 
function of angle [6] also causes oversampling of the endfire 
lobes and reduces the speed of the algorithm. 

B. Using a Pattern-Space Representation 
A more efficient method, which has been used in previous 

studies, is to represent the radiation pattern in pattern-space.  
The pattern-space representation is obtained by examining the 
mathematical form of the beamformer.  For a linear array 
distributed on the y-axis, the beamformer is given by 

 

( )
1

exp sin sin ,
N

i
i

jkY φ φ
=

′⎡ ⎤= −⎣ ⎦∑y  (1) 

 
where y  is the output beam, 2k π λ= , and iY  represents the 
position of the thi  elemental antenna out of N  total antennas.  
The angle φ  represents the angle of arrival of a signal, and φ′  
indicates the steering direction of the array. 

The pattern-space is obtained through the substitution 
sin sinφ φ′Ψ = −  [9], which has the range ( )sin 1φ′Ψ = − ±  for 

a total range of 2± .  The magnitude of (1) is symmetric about 
the main beam at 0Ψ = . 

The optimization algorithm evaluates (1) between 0Ψ =  
and 1 sinφ′Ψ = + , where φ′  is the maximum scan angle, as 
shown in Fig. 5.  The substitution of Ψ  improves the speed of 
the algorithm and eliminates the varying lobe sizes.  The 
pattern-space beamwidth of the main lobe is estimated from 
the aperture size, ( )1BW NS≈  [9], where S  is the mean 
spacing between antennas.  

 

IV. ARRAY MODELS AND RESULTS 

A. Basic Array Models 
With an understanding of the optimization and analysis 

methods, we now proceed to the array models and 
optimization results.  Two linear array models were examined.  
The first is the defined-aperture model, shown in Fig. 2a, 
which is similar to the model presented in [6].  The antenna 
positions are optimized with respect to their proximal grid 
points, which are distributed throughout the aperture at 
intervals of S .  A minimum spacing filter forces the antennas 
to maintain a minimum distance from their neighbors and is 
used when the elemental antennas are large, such as in arrays 
of electronically steered subarrays or dish antennas [10, 11] 

In the minimum spacing model, shown in Fig. 2b, each 
antenna’s position is optimized relative to that of its nearest 
neighbors.  This model is useful when the proximity of 
adjacent elemental antennas is restricted but the aperture size 
is unrestricted.  Optimizing the minimum spacing model 
determines the best aperture size for a given minimum spacing. 
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Fig. 4.  Radiation pattern as a function of angle for a linear array.  The main 
lobe of the endfire-pointed array extends past the allotted window (shaded). 
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Fig. 3.  Genetic algorithm processes. 
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Fig.5.  Pattern-space representation for a linear array.  Scan range limits 
indicated for endfire optimization (a) and broadside optimization (b). 
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B. Linear Array Results 
Figures 8 through 9 contain plots of the sidelobe levels of 

the arrays for the linear array models discussed above.  Fig. 8 
shows the sidelobe level versus scan angle for the defined-
aperture model with S λ=  and the results are consistent with 
the conclusions of Section III.  The remaining plots are 
optimized for 0Ψ =  to 2, or an equivalent scan angle of 90° . 

Fig. 9 shows data from a defined-aperture model 
incorporating the minimum spacing requirement.  Arrays using 
this model are characterized by their aperture ratio, defined as 
the minimum spacing between antennas divided by the average 
spacing between antennas.  For aperture ratios less than 40%, 
the effect of the antenna size is negligible on the optimized 
sidelobe level.  The sidelobe level increases slightly for 
aperture ratios between 40% and 60%, and increases 
significantly for aperture ratios above 80%.  This data is 
consistent for arrays having different numbers of antennas and 
also different aperture sizes, as shown in the figure. 

The ‘x’ marks in Fig. 9 indicate the optimized aperture ratio 
from the minimum spacing model for minimum spacings 
between 1.75λ  and 3.75λ  for arrays with 8 and 16 antennas.  
The optimized aperture ratios are grouped between 0.6 and 
0.75.  For a given minimum spacing, larger ratios represent 
smaller apertures but less optimization freedom.  Smaller 
ratios represent more freedom at the cost of a larger aperture. 

Fig. 10 shows that the incremental increase in sidelobe 
levels with increasing aperture size decreases as the aperture 
becomes large.  Sidelobe levels are slightly increased when a 
given aperture size is found by the minimum spacing model. 

 

V. CONCLUSIONS 

Results from the optimization trials indicate some 
performance bounds for aperiodic linear arrays of physically 
large antennas.  Most importantly, it was found that aperiodic 
placement techniques can effectively suppress grating lobes, 
even when the elemental antennas are more than several 
wavelengths in size.  However, these techniques require a 
portion of the array to be reserved for the empty space 
between antennas, as is indicated by the aperture ratio.  
Finally, the sidelobe penalty incurred by the antenna size 
(found by the increased sidelobe level as compared to a similar 
array of isotropic antennas) was less than 2 dB for optimized 
aperture ratios using large antennas, as shown in Fig. 10.    
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Fig. 8.  Sidelobe level versus scan angle for aperiodic arrays.  The defined-
aperture model for small antennas is used. 
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Fig. 10.  Sidelobe levels versus antenna spacing for the linear array models. 
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Fig. 9.  Sidelobe level versus aperture ratio for the defined-aperture model 
with the minimum spacing requirement.  Marks (x) indicate aperture ratios 
obtained from the minimum spacing model.  The scan angle is 90°. 
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