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     With the advent of small UAS (sUAS) into the National Airspace System 

(NAS), it is imperative that safety analysis play a fundamental role in the 

identification of hazard source potentials, the understanding of the underlying 

causal factors, the likelihood assessment of these factors, the severity evaluation of 

the potential consequence(s) of mishaps, and the prioritization of mitigations.  A 

sound system-level safety analysis relies heavily on properly identifying the key 

elements of the area of interest. In particular, the identification of potential hazard 

sources and sub-sources within the systemic structure of the problem domain 

should be considered as a fundamentally important step in system safety analysis. 

Furthermore, since semantics play a crucial role while defining the domain 

variables, a systematic hazard taxonomy that balances fidelity and generalization 

provides a solid foundation for a meaningful and relevant system safety analysis. 

System-level safety analysis relies heavily on accurately identifying the key 

elements from a socio-technical perspective of the area of interest that includes the 

human/machine interface and cyber-physical aspects.  UAS hazard identification 

and safety risk modeling especially need to be performed within the context of 

operational scenarios.  Hayhurst et al. (2015a) contend that design and performance 

criteria supporting the development of UAS airworthiness standards need to be 

examined “in tandem” with a specific UAS concept of operations (p. vii). 

 

Significance 

 

     A significant challenge in modern aviation system safety practice is the 

analytical modeling of emergent operations in the NAS that include the use of a 

new generation of air vehicles and supporting systems, such as very light jets, 

reusable launch vehicles, unmanned aircraft systems, among others.  Since these 

air vehicle operations are new, accident and incident data are extremely rare, so 

alternative modeling approaches to conventional fault tree and event tree logic are 

required to understand the impact of the introduction of these operations into the 

NAS.  A novel safety risk modeling approach that proposes the use of Bayesian 

Belief Networks (BBNs) to develop nonlinear, probabilistic risk models, at a 

systems level, of the socio-technical interactions of hazards, causal factors and 

mitigations is investigated. 

 

                                         Problem Statement 

 
     The problem examined is to determine if a probabilistic system safety model 

could be used to evaluate the efficacy of alternative configurations of a 

geofencing mitigation for sUAS from a socio-technical perspective. 
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                                              Literature Review 

  
Hazard Identification 

 
     Hazard identification precedes safety risk modeling (Ericson, 2005). To 
facilitate hazard identification in the aviation domain, a taxonomy, termed the 
Hazard Classification and Analysis System (HCAS), was developed for identifying 
sources of hazards for aircraft operations in the NAS (Luxhøj, 2009). The HCAS is 
a systems-level taxonomy that comprises the four main hazard sources of UAS, 
Airmen, Operations and Environment and their interactions as well as the 
constituent sub-sources. The underlying hazard approach builds upon the concepts 
previously presented in Hammer (1972) and Raheja and Allocco (2006).   In 
discussing hazard analysis, Hammer presents concepts of initiators, contributors, 
and primary hazards.  There is typically not a single hazard leading to an accident 
or incident, but rather multiple hazards activated by some triggering mechanism.  
Ericson (2005) presents the notion of a “hazard triangle” that involves defining the 
hazardous element, specifying the triggering mechanism, and identifying the target 
or threat.  Raheja and Allocco (2006) further extend Hammer’s approach to develop 
the Scenario-Driven Hazard Analysis (SDHA) process.  The SDHA may be used 
to understand the dynamics of either an actual or hypothesized accident.  When 
operational experience matures and incidents occur, the HCAS may be used to 
systematically classify the event data into hazard sources that will connect to a high 
level grouping of causal factors.  Currently, there are approximately 125 system 
“elements” comprising the hazard taxonomy.  Figure 1 provides a high-level 
notional diagram of the HCAS and its interactions while Figure 2 displays the 
current version of the HCAS taxonomy. 

 

Safety Risk Modeling 

 

     The HCAS may be used for hazard identification when considering a possible 
aviation-related mishap scenario.  From the hazards, a creative process is then 
initiated to use language to translate hazards into risk factors that are causal to the 
undesired event.  Harkleroad et al. (2013) present a recent review of “state of the 
art” risk-based modeling approaches, with special emphasis on tools that are 
potentially useful during the concept development phase for the Next Generation 
Air Transportation System (NextGen).  Six different current risk-based models are 
reviewed.  These authors categorize the models along a spectrum of “influence-
based” versus “event-based” with the mid-point on the spectrum being models that 
are equally influence- and event-based.  Influence-based risk models include 
system-wide factors such as management oversight, training, maintenance, among 
others, that will influence the likelihood of discrete events.  Event-based models 
treat risk as the result of various possible event sequences or  
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Figure 1.  High-level Notional Diagram of the HCAS (Source:  Luxhøj and 

Öztekin, 2009). 

 

transitions between system sates.  Harkleroad et al. (2013) note that an exemplar of 
a more influence-based risk model is the Systems-Theoretic Accident Model and 
Processes (STAMP) developed by Leveson (2004, 2011) and Leveson et al. (2006) 
that is also reviewed in Netjasov and Janic (2008).  STAMP intends to integrate 
varied aspects of risks, including organizational and social issues.  STAMP uses 
general concepts from control theory to support the building of shared mental 
models of complex system behavior and especially focuses on the role of explicit 
constraints in safety management. Harkleroad et al. (2013) note that an exemplar 
of a more event-based risk model is The Traffic Organization and Perturbation 
Analyzer (TOPAZ) that is also reviewed by Netjasov and Janic (2008). The TOPAZ 
method uses scenario analysis and Monte-Carlo simulation for safety risk 
assessment of Air Traffic Control (ATC)/Air Traffic Management (ATM) 
operations.  

 

     While Monte Carlo analysis supports broad uncertainty quantification by 
sampling from alternative probability distributions, a criticism of Monte Carlo 
simulation is that it has a narrower range than “what if” scenario analysis as “what 
if” analysis provides equal weighting to all scenarios while the Monte Carlo method 
seldom samples rare events in the very low probability regions.  TOPAZ also aims 
to include organizational, environmental, human-related and other hazards, as well 
as their combinations, in an integrative risk assessment. With its focus on 
ATC/ATM operations, the primary goal of TOPAZ is to identify safety bottlenecks 
that can then be used to guide improvements to the operations (Blom et al., 2002).  
A recent article by Wallace and Loffi (2015) examines the emergence of security 
issues, threats and defenses associated with UAS technology.   
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Figure 2.  Hazard Classification and Analysis System (HCAS) Taxonomy (Source: 

Luxhøj, 2014a). 

 

     Harkleroad et al. (2013) and Griffin et al. (2105) report on a risk-based method 

for integrative aviation safety risk modeling and analysis developed and refined by 

Luxhøj (2003) termed the Aviation System Risk Model (ASRM).  Harkleroad et al. 

(2013) position the ASRM as an exemplar of a risk-based method that is equally 

influence- and event-based.  The ASRM can be used to evaluate the causal factors 

linked to a hypothesized scenario involving an air vehicle and/or the NextGen 

systems and procedures that led to an unsafe state and the interactions among these 

factors that contributed to the safety risk.  The ASRM, a first generation socio-

technical model, can also assess the projected impact that new vehicle design 

changes and/or NextGen systems and procedures may have on potentially reducing 

the likelihood of significant causal factors.  The ASRM uses the flexible, 

probabilistic approach of Bayesian Belief Networks (BBNs) and influence 

diagrams to model the complex interactions of aviation system risk factors.   

  

Hazards 
related to… 
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     The ASRM is viewed as complementary to both the STAMP and TOPAZ 

methods since all three methods focus on an integrative safety risk assessment.  

However, the ASRM may be considered to be at a more macro-level than the 

STAMP and TOPAZ methods and may be more appropriate for operations that are 

completely novel where statistical data do not exist, such as for the sUAS 

application under study.  Thus, the ASRM was identified as the risk-based method 

to investigate for possible use as a decision support tool for this sUAS study.  

Accidents are seldom, if ever, the result of a single hazard. Combining the 

individual hazard assessments inherent in a complex system to arrive at an overall 

level of system risk is a difficult challenge, especially for emergent flight operations 

with obvious data limitations.   

 
     The ASRM process, as described in Luxhøj (2003), involves systemically 
following six steps: 

 

1. Selecting and analyzing a scenario. 

2. Identifying the case-based causal factors. 

3. Constructing an influence diagram depicting causal factor interactions. 

4. Building a Bayesian Belief Network (BBN). 

5. Inserting mitigations and value functions (optional). 

6. Evaluating the relative risk associated with the insertions. 

 

Geofencing 
 

     There is growing research in the use of autonomy for UAS, especially as 

missions become more complex (NRC, 2014; How et al., 2009).  However, there 

are a number of issues confronting autonomous operations for UAS that deal with 

safety and latency (McKinlay, 2014; Wagner, 2008).  How et al. (2009, p. 43) 

contend that “a critical component for networks of autonomous vehicles is the 

ability to detect and localize targets of interest in a dynamic and unknown 

environment”.  Typically, the architecture for a system of autonomous vehicles 

involves an onboard vision module (OVM), an onboard planning module (OPM) 

and an autopilot module (APM) that work together to perform the sensing, planning 

and control of each vehicle as shown in Figure 3.  A geofence, one component in 

the move towards UAS autonomy, uses the Navstar Global Positioning System, or 

herein referred to as simply GPS, to check that a UAS is within its designated area 

of operation.  If the UAS approaches or exits this area, a return-to-operating area 

instruction is automatically executed to bring the UAS back inside its designated 

area of operation that is defined by minimum and maximum altitude as well as by 

lateral latitude and longitude constraints (http://itlaw.wikia.com/wiki/Geofencing).  

GPS performance parameters include availability, continuity, integrity and 

accuracy (GPS, 2008).  The Wide Area Augmentation System (WAAS) provides 
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an augmentation signal to GPS that provides correction and integrity information 

intended to improve positioning, navigation and timing (PNT) service over the US 

and portions of Canada and Mexico (WAAS, 2008). Badura (2004) presents a 

general discussion of mitigations for GPS vulnerabilities.  There remain a number 

of challenges for the integration of UAS into the NAS but autonomous operations, 

if certified, could provide a progressive step towards routine use of UAS in the 

NAS (Dalamagkidis, et al., 2008; NASA Tech Briefs, 2016). 
 

 
Figure 3.  Basic Components of an Autonomous System (Source: How et al., 

2009, p. 44). 

 

Methodology 

 

Building a Bayesian Belief Network (BBN) 

 

     When constructing causal models, one of the most important factors that should 

be considered is the impact of uncertainty.  In essence, probability theory derives 

solutions from reasoning under uncertainty in the face of limited information. In 

recent years, Bayesian Belief Networks (BBNs) have emerged as the principal 

methodology for numerous problems that involve reasoning under uncertainty in 

complex decision making arenas (Fenton and Martin, 2013). Belief networks 

provide symbolic representations of probability models combined with efficient 

inference algorithms for probabilistic reasoning (Jensen, 1996).  An Undesired 

Event (UE) is not deterministic so any modeling effort needs to capture the 

probabilistic nature of multiple causalities as shown in Figure 4. A BBN is a 

graphical approach that allows the “quantification” of safety risk models by using 

conditional probability theory.  It is in this step where the conditional probability 

of one causal factor given the presence of other factor(s) is estimated using the 
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“beliefs” of subject matter experts.  While BBNs have also been combined with the 

Analytic Hierarchy Process (AHP) (Ha & Seong, 2004, Ahmed et al., 2005; Park, 

et al., 2014) to assist in the probability quantification of accident precursors in some 

cases, the AHP is not used in this initial UAS geofencing study due to resource 

constraints.  The gathering of the AHP data presents another elicitation burden and 

only offers an indirect method of obtaining the desired conditional probabilities.    

 

     Aviation accidents are rare events so it is challenging to obtain hard data to 

quantify the models, particularly in the case of UAS.  An event tree could possibly 

be used to obtain some numerical “seeds” for the model, but an event tree is not an 

influence diagram and the interpretation of the numbers is not the same.  With the 

BBN approach, the numbers in the Conditional Probability Tables (CPTs) 

essentially represent the strength of the belief in the conditional causality as 

assessed by the expert for the scenario under study.  A similar approach was used 

by Ang and Buttery (1997) in their risk assessment study of nuclear power plants.  

The approach involves moving up the systems ladder a bit and necessitates that the 

subject matter experts rely upon their mental model repository of similar cases. 

With a systems expansion viewpoint, the experts establish some basic boundary 

conditions, such as a towered airport, moderate traffic density, time period, etc. to 

set the conditioning context.  This systems interpretation is consistent with the 

conceptual notion of “analytic generalization”.  These conditional probabilities 

serve to baseline the safety risk model. 

 

Alternative Geofencing Configurations 

     Luxhøj (2015) presents a UAS precision agriculture application that involves 

the analysis of a geofencing mitigation. In that paper, the geofence is considered as 

a decision node with Boolean state variables (i.e., either present or absent). Atkins 

(2014) proposes alternative geofencing configurations, such as using a single 

onboard processor that integrates the datalink, autopilot and geofencing functions 

vs. the use of a separate processor solely for the geofencing function.  As Atkins 

(2014) proposes, a single onboard processor as conceptually shown in Figure 5 

could handle all nominal functionality plus geofencing.  If other software on the 

shared processor fails, the geofence will also fail suggesting a fault tree logic OR 

gate.  As in Atkins (2014), a second configuration conceptually depicted in Figure 

6 is where the “geofence software is pulled onto a separate (micro)processor with 

the sole purpose of ensuring that the vehicle remains within its designated operating 

area” (Atkins, 2014, p. 11).  A third configuration suggested by Atkins (2014), 

involves full redundancy as conceptually depicted in Figure 7 where the processors 

use “independent servo connections and inertial  navigation sensors as well as logic 
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such as a watchdog-triggered bypass for servo output source selection” (Atkins, 

2014, p. 11). 

 

Analytics: Bayesian Belief Networks (BBNs)

Decision Nodes
(i.e., Mitigations)

The approach uses qualitative, probabilistic 

reasoning about the interactions of risk 

factors (chance nodes) and mitigations

(decision nodes) to make inferences.

Bayes Theorem:

P(X2|X1) = P(X1|X2)P(X2) / P(X1)

Directed Causal Link
(i.e., with underlying 

Conditional Probability 

Table (CPT) – indicates 

influence “strength”)

Chance Nodes
(i.e., Causal Factors)

X1

D2

D3

X2

X7

X3

X5

X4

X6

D1

UE

UE: Undesired Event

 
Figure 4.  BBN Analytics where UE is the Undesired Event (Source: Luxhøj et 

al., 2012). 

 

 

     With the BBN approach, the alternative geofencing configurations may be 

modeled as separate “objects” or sub-nets in a fault tree-type analysis.  Once 

created, these sub-nets are re-usable in other models.  The sub-net for the 

geofencing configuration is then linked to the main model using the instance node 

capability in the Hugin BBN software (Jensen, 1996). By explicitly labeling the 

output node in a sub-net (note the interior shading in the output node), this output 

becomes the input to a top-level model via the use of an “instance node”.  The 

instance node provides interfacing functionality.  Thus, the prototype demonstrates 

the features of an Object-Oriented Bayesian Network (OOBN).  Such an approach 

facilitates decomposition at the sub-system level yet enables synthesis at a higher-

order systems level.  It is essentially a System of Systems (SoS) approach.  

Hierarchical or OOBNs are further discussed in Fenton and Neil (2013) and Luxhøj 

(2014b).  The geofencing fault tree analyses can then be iteratively linked with the 

top-level network to comparatively assess the efficacies of the alternative 
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geofencing configurations on reducing the likelihood of a mid-air collision between 

the sUAS and the GA aircraft.  Probabilities for the components in the geofencing 

objects or sub-nets mainly come from Reimann (2013).  Thus, rather than Boolean 

geofencing failure in the BBN decision (i.e., mitigation) node as in the previous 

research by Luxhøj (2015), the alternative configurations allow for degradation in 

the geofencing failure probabilities. 

 

     It is suggested that the safety risk model may also be used to strategically assess 

alternative “assured containment” concepts as posited by Hayhurst et al. (2015b).  

An assured containment system as described by Hayhurst et al. (2015b) is a 

“localization system, independent of the unmanned UA autopilot system, which 

acts to keep the UA within given bounds” (p. 261).  An assured containment system 

involves more than just hardware and consists of the “hardware, software and 

operational procedures as well as the evidentiary material (e.g., safety analysis, 

reliability data, proofs, etc.) that demonstrate the system performs its intended 

containment function” (Hayhurst et al., 2015b, p. 265).  Thus, the proposed system 

safety modeling approach of the ASRM with its inherent hazard clustering from the 

HCAS taxonomy is consistent with notion of “hazard partitioning” (Hayhurst et al., 

2015b, p. 261) and could be used to support the assessment of an assured 

containment system.   As Hayhurst et al. (2015b) state “In the assured containment 

concept, flight is confined exclusively within a predefined volume of airspace such 

that hazards outside of that volume (e.g., related to harming persons or property on 

the ground and interfering with air traffic) have been partitioned from other hazards 

inside of the volume” (p. 261). It is suggested that the safety risk model may also 

be used to strategically assess alternative “assured containment” concepts as 

posited by Hayhurst et al. (2015b).   

 

Notional Scenario 
 

     Wind power in the U.S. is becoming increasingly popular in the United States 

and abroad (Frangoul, 2015).  For example, the Block Island Wind Farm off the 

coast of Rhode Island will be a 30 megawatt five-turbine facility that will provide 

the island with most of its power (Frangoul, 2015).  However, numerous challenges 

remain as the environmental conditions may be harsh.  The Alaska Village Electric 

Cooperative has plans to construct a wind turbine farm for St. Mary’s and Pitkas 

Point near the Yukon River in Alaska.  The Pilot Station airport is nearby the site 

of the wind turbine farm. In the proposed notional scenario, suppose that a small 

fixed wing UAS, such as ScanEagle, is being used in the siting of the wind farm 

and is taking aerial photography.  There are numerous environmental conditions to 

confront, such as the strong wind gusts, so there are sensors placed on the ground 

to gather time-dependent wind data, such as wind velocity and turbulence intensity.  
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It is known that the sensors may be faulty leading to inaccurate measurements.  

Suppose that a young, low flight hour pilot is aware of the UAS mission and decides 

to fly his Cessna from the Pilot Station airport to be near the UAS flight operation 

for observation.  A number of scenario assumptions are provided in Figure 8.   
 

     To further develop the causal narrative, some “what ifs” are proposed: 

 

 What if there are local radio frequencies (RF)/power levels that interfere 

with the continuous connectivity required of the communication and control 

links? 

 What if there is a loss of data link from the Ground Control Station (GCS) 

to the UAS? 

 What if the GCS transmission disruption is due to faulty maintenance? 

 What if there are strong wind gusts and turbulence intensity that contribute 

to the loss of separation between the UAS and the piloted aircraft? 

 What if there is a power system malfunction on the piloted aircraft leading 

to a human factors issue that causes the aircraft not to maintain separation? 

 What if the waypoints for the ScanEagle are incorrectly programmed? 

 
Figure 5.  Geofencing with Single Processor (Source: adapted from Atkins, 

2014). 
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Figure 6.  Geofencing with Multiple Processors and Partial Sensor Redundancy 

(Source: adapted from Atkins, 2014). 

 

 
Figure 7.  Geofencing with Multiple Processors and Full Sensor Redundancy 

(Source: adapted from Atkins, 2014). 
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Figure 8.  Notional Scenario Assumptions. 

 Vehicles – UAS - ScanEagle, Gross Takeoff Weight (GTOW) approximately 44 lbs. 

               –  GA - Cessna 

 Who sees what: 

– GA aircraft and UAS vehicle seen by ANSP via ADS-B. 

– GA aircraft and UAS vehicle seen by the UAS pilot (ADS-B reports via net-centric 

system). 

– GA aircraft sees the UAS vehicle (short range ADS-B on UAS vehicle).  

 Sense and avoid: 

            –    The UAS pilot senses a potential conflict and uses a conflict avoidance processor  

                   capable of providing multiple avoidance maneuvers and transmits an avoidance  

                   maneuver to the UAS. 

            –    The GA aircraft pilot can also sense (using ADS-B IN) and avoid the UAS vehicle. 

 Avionics: 

– Manned aircraft –  

 ADS-B IN and OUT. 

 VHF communications. 

– UAS 

 Low power ADS-B OUT. 

 Communications link with the UAS pilot that allows the UAS pilot to “fly” 

the UAS vehicle. 

 A system that senses loss of pilot control and allows the UAS to go to pre-

programmed waypoint (typically back toward the launch waypoint). 

 The UAS vehicle ADS-B signal includes a code that will indicate that it is 

no longer controlled by the UAS pilot. 
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     While the sUAS scenario in this study is notional, the BBN approach was used 

in a previous system safety study for analyzing causal factors contributing to Loss 

of Control (LOC) accidents for commercial aircraft. For the Loss of Control 

Accident Framework (LOCAF) BBN study, following the calibration/adjustment 

of the raw data supplied by the experts, Ancel et al. (2014) report that the LOCAF 

model was compared with the results obtained from two different datasets. The first 

dataset used to compare the LOCAF baseline results was the original 54 accident 

cases which were used to develop the LOCAF model. This dataset depicts that 

System Component Failure (SCF) occurred in 50% of the accidents (27 SCF cases) 

and environmental-related causes were present in 31.5% of accidents (17 cases).  

Following the insertion of these values at the top-level LOCAF BBN, the model 

indicated 15.92% LOC probability versus 13.81% historical LOC (2.11% higher). 

A similar effort was performed to replicate the LOC probabilities in the dataset 

given in Evans (2007). This dataset indicated that within all commercial aircraft 

(i.e., parts 121/135) accidents (total of 1962 cases, from 1988 to 2004), SCFs were 

encountered in 20.8% of the cases and environmental factors were present in 

14.37% of the accidents. These values were manually inputted to the LOCAF 

model and the LOC probability was calculated as 10.11%, where the dataset 

indicates a historical 12.84% LOC occurrence (2.73% lower) (Ancel & Shih, 2012).     

 

Safety Risk Model 
 

     The Hugin BBN software (Jensen, 1996) is used to construct the model and to 

perform all probability calculations based on the Lauritzen-Spiegelhalter (1988) 

algorithm that is embedded in the software.  The topology or structure of the BBN 

shown in Figure 9 is characterized by 31 nodes with 264 CPT values.  The CPT 

values are generated from combinations of using modeling segments or causal 

factor sub-nets from other similar BBN models based on knowledge engineering 

sessions with Subject Matter Experts (SMEs) (Luxhøj 2013, 2014a,b; Luxhøj et al, 

2014) that are proportionately scaled for the specific scenario under study.  It should 

be noted that each causal factor or “node” in Figure 9 has the binary states of 

“present” or “absent” with their corresponding probabilities in the CPTs.  The 

“weighting factors” for each of the nodes is based on the Bayesian probability 

computations as determined by the embedded Lauritzen-Spiegelhalter algorithm 

(1988). For example, for the node “Degraded Operating Environment”, the 

computed baseline unmitigated probability is 0.10.  The key unmitigated nodal 

probabilities for this geofencing study are shown in Table 1.  For purposes of this 

model, the Collision Volume is defined as 5 nmi horizontal distance and 1,000 ft. 

vertical distance, a Loss of Separation (LoS) as when two aircraft are in the collision 

volume at the same time, a Near Mid Air Collision (NMAC) as when two aircraft 
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come closer than 500 ft. horizontally and 100 ft. vertically, and  a Mid Air Collision 

(MAC) as when two aircraft are at the same location at the same time.  

 

Results 

 

Baselining the Safety Risk Model 

 

     Once the BBN is constructed and the CPTs populated, the model is executed 

using the Lauritizen-Spiegelhalter (1988) algorithm that is embedded in the Hugin 

software (Jensen, 1996).  The unmitigated baseline probabilities are provided in 

Table 1.  The mitigated probabilities for the three alternative geofencing 

configurations are provided in Table 2.  Note that while there is a marginal gain or 

improvement with the full redundancy option, there would be an additional cost for 

such a configuration.  The marginal benefit may not exceed the marginal cost in 

this case.  Option 2 with partial redundancy for the sensors appears to be the most 

promising of the three geofencing configurations that are evaluated. 

 

Table 1.  Baseline Safety Risk Values without Geofencing Mitigation. 

 
 

 

Unmitigated 
baseline probability   

P(Mid-Air Collision, MAC)  0.00007 

P(Loss of Separation, LoS) 0.00345 

P(Separation Assurance Function on the ScanEagle  Fails)  0.01 

P(ScanEagle Leaves Area of Operations) 0.039 

 

Table 2.  Safety Risk Values for Modeling Segment with Alternative Geofencing 

Mitigations. 
 

 

 

Geofencing Failure 

Probabilty 

P(Separation Assurance 

Function on the ScanEagle Fails) 

P(LoS) P(MAC) 

Single Processor (SP) 0.0075 0.005 (-50%) 0.00326 (-5.5%) 0.000065 (-7.1%) 

Multiple Processors – 

Partial Redundancy (MP-P) 

0.0066 0.00452 (-54.8%) 0.003246 (-5.9%) 0.00006491 (-7.3%) 

Multiple Processors –                 

Full Redundancy (MP-F) 

0.0014 0.004468 (-55.3%) 0.003243 (-6.0%) 0.00006487 (-7.43%) 
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Figure 9.  BBN shown with the Single Processor Geofencing Mitigation. 
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     The Logic Risk Ratio (LRR) is a metric that is used in the MIT Lincoln Labs 

study of the Terrain Collision Avoidance System (TCAS) and also in EuroControl 

studies of the international version of TCAS – the Airborne Collision Avoidance 

System (ACAS) (Arino et al., 2002; Kuchar et al., 2007). The Logic Risk Ratio is 

computed as follows: 

 

                                                           P (with Mitigations) 

              Logic Risk Ratio (LRR) =  ------------------------------  . 

                                                          P (without Mitigations) 

 

     The risk ratio is not an absolute measure but can be used in a relative way to 

assess the efficacy of mitigations.  A risk ratio of 0.10 means that that risk is reduced 

to 10% of that which existed if no mitigations were inserted (or in other words, 

there was a 90% reduction in risk due to the mitigation).  The lower the risk ratio, 

the more the risk is reduced. The LRRs are assumed to be 0.1, 0.01, and 0.001, 

respectively, for the mitigation effect of the geofencing on the node “ScanEagle 

Leaves Area of Operations” for the SP, MP-P, and MP-F configurations, 

respectively.  The LRRs in these mitigation cases are based on qualitative reasoning 

of the effect of the technical improvement in the geofencing configuration upon 

reducing the likelihoods in the CPT for the “ScanEagle Leaves Area of Operations” 

node. 

 

Hazard Clusters 

 

     The ASRM hazard cluster output is provided in Figure 10.  To create this figure, 

the following process is followed: 

 

 “Evidence” (e) is entered into the BBN by removing uncertainty and 

changing probability of a Causal Factor (CF) to 1. 

 Probabilities of all causal factors in each respective HCAS Hazard Cluster 

(HC), i.e. UAS, General Aircraft, Environment, and Operations are changed 

to 1. 

 The Likelihood Multiplier (LM) for a Node =                               

 

 

 

for all node precursors.  Note that a Likelihood Multiplier (LM) of 1 

indicates no impact, and a higher LM indicates a stronger influence of the 

hazard cluster relative to the baseline probability of the MAC in this case.  
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The LM is a relative safety metric that is platform/scenario dependent and, 

as such, it has meaning within a scenario to help identify the most promising 

mitigations. 

 

 

 

 

 

 

 

 

 

Figure 10.  Likelihood Multipliers for the Primary Hazard Clusters Relative to the 

MAC Baseline, p(MAC) = 0.00007. 

 

     As expected, the Environment hazard cluster is the most predominant in the 

notional scenario of a sUAS being used for aerial surveillance in the siting of a 

wind turbine farm near the Yukon River in Alaska.  Should all the Environment-

related causal factors be “present” (i.e., their probabilities changed to 1), then it is 

16 times more likely that a MAC will occur.  The UAS hazard cluster is also 

significant, thus the interest in evaluating a geofencing mitigation. 

 

Model Calibration 

 

     Clignan (2007)  reports that the overall ScanEagle accident rate  varies from 

4.67 accidents / 1,000 FH  = 0.00467 accidents/FH to 2.0 accidents / 1,000 FH = 

0.002 accidents/FH.   However Lum and Waggoner (2011) suggest that these rates 

are overly pessimistic as they account for more than just crashes, so they suggest 

1.0 per 1,000 FH (0.001 accidents/FH) is a more reasonable assumption and use 

this number in their safety risk model.  The accident rate is not the MAC rate.  For 

piloted aircraft, Gambold (2011) reports that 3.6% of the accidents in 2010 were 

NMACs and MACs. Using this percentage, we obtain the approximation of 

(0.001)(0.036) = 0.000036 MACs/FH.  A recent Academy of Model Aeronautics 
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(AMA) report of an analysis if FAA drone sightings and encounters contends that 

the drone-piloted aircraft near miss incident rate is approximately 3.5% (AMA, 

2015).  Assuming a UAS mission duration of 2 hours, the estimated failure 

probability is then approximated as (0.000036 MACs/FH)(2.0 hrs.) = 0.000072.  

From the Hugin BBN, the ASRM unmitigated MAC failure probability is computed 

as 0.00007.  Using the MAC estimate based on the literature calculations, there is 

an approximately -2.8% difference between the Hugin BBN estimate and the 

literature estimate. While there are a number of underlying assumptions in the 

literature estimate, the small difference suggests that a plausible safety risk model 

has been calibrated for the given scenario. 

 

Conclusions 

 

     The integration of sUAS into the NAS offers significant benefits; however, the 

safety risk needs to be understood and managed.  A strength of the ASRM BBN 

method compared to traditional fault or event trees is that it provides a visual, non-

linear systems-level framework for the integration of socio-technical hazards 

related to the UAS, the piloted aircraft, operations and the environment.  The 

population of the CPTs, however, is challenging given the sparse data for sUAS.  

However, as experimental operations become more frequent, data from the FAA 

UAS test sites, for example, offer promise in probability quantification.  

Geofencing or establishing a “virtual barrier” in the sky, offers one mitigation 

strategy in the avoidance of mid-air collisions.  As is demonstrated, the ASRM may 

be used to evaluate the efficacy of alternative geofencing configurations using a 

socio-technical systems perspective that probes interaction effects.   

 

                    Recommendations for Research 
 

     Future research study will focus on identifying the most predominant hazards in 

each hazard cluster in the notional scenario and demonstrate both forensic and 

prognostic system safety analyses with the safety risk model.  Future research will 

investigate the use of time-dependent Bayesian modeling to support real-time 

system safety analyses.  For example, the time-dependent causal factors associated 

with wind velocity need further investigation as to their impact upon the MAC. It 

may be insightful to decompose the accident rate based on whether the accidents 

occurred during operator control (mid-flight) or during unaided launch/recovery. 

Luxhøj & Morton (2011) develop a time-phased BBN that captures UAS phase-of-

flight modeling segments with phase-of-flight weights determined by experts that 

could enhance the current geofencing system safety model.  Where possible, more 

detail will be added to the components in the geofencing configurations.  Sensitivity 

analyses of the CPTs will also be performed.  More efficient methods to ease the 
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CPT elicitation burden with BBNs still need to be developed (Luxhøj et al., 2014). 

Finally, the use of utility nodes added to the geofencing mitigation will facilitate 

the inclusion of costs and will support a cost/benefit analysis. 
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