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As American and international space policy decisions continue to focus on crewed, 

lunar exploration missions, it will be necessary for space mission operators to prepare 

for significant risks that may occur outside of the Earth’s magnetic field. Such risks 

include coronal mass ejections and other similar solar events, which can expose 

astronauts to dangerous radiation dosages. In a long-duration mission, ample 

warning is required to give astronauts time to seek shelter. However, the capabilities 

of current detection systems are limited and cannot identify active solar regions. This 

system can be improved by utilizing a Heliocentric satellite. The primary objective of 

this project is to design a 12U Heliocentric CubeSat, to utilize a white light 

coronagraph and extreme ultraviolet imager to provide real-time monitoring and 

alert capabilities for solar energetic particles. 

Nomenclature 

A    = Albedo 

a   = Semi-major Axis 

B    = Magnetic Flux 

D   = Distance Between Earth and the Sun 

d    = Diameter 

e   = Eccentricity 

F    = View Factor 

G    = Antenna Gain 

I    = Moment of Inertia 

i   = Inclination 

K    = Controller Gain 

M    = Gear Module 

m    = Magnetic Dipole 

P   = Power 

Q    = Heat Energy 

q    = Solar Flux 

R   = Antenna Far-Field Line-of Sight 

r   = Solar Radius 

S    = Area 

T    = Temperature 

z    = Gear Tooth Number 

α    = Rotational Acceleration 

η    = Efficiency 

θ    = Angular Resolution 

λ    = Wavelength 

σ    = Boltzmann’s Constant 

τ    = Torque 

Ω   = Longitude of the Ascending Node  

ω   = Argument of Periapsis 
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I. Introduction 

The proposed 12U CubeSat concept, also known as the SCORCH (Solar and Coronal Observation of Radiation 

and Catastrophic Events to Humans) spacecraft, is designed to monitor potentially harmful solar events by identifying 

active regions, solar flares, coronal holes and Coronal Mass Ejections (CMEs). Observation of active regions can aid 

in predicting these hazardous phenomena. 

 These solar radiation behaviors affect the electronics of spacecraft and expose astronauts to detrimental levels of 

radiation. The active regions of the Sun, which include 

geomagnetic storms, have two solar sources: coronal 

holes and CMEs. Coronal holes, shown in Fig. 1, are large 

dark regions of lower-density plasma in the Sun’s corona, 

which cause strong solar winds. CMEs, shown in Fig. 2, 

are regions of the Sun where significant amounts of 

plasma laced with magnetic field lines are ejected from 

the corona into the interplanetary atmosphere, reaching 

the magnetic field of the Earth. CMEs are blown away 

from the Sun, often during strong, long-duration solar 

flares and prominent solar eruptions1. Solar flares are 

higher-density regions of plasma and are more commonly 

observed than CMEs. 

  Effective observation of these target solar behaviors 

enables the spacecraft to engage a warning system for 

humans working in space. This will be accomplished 

through two imaging methods: a white light coronagraph 

and a series of extreme ultraviolet filters. The coronagraph 

observes the sun in white light and uses an occulter to 
block the sun’s primary disk, thereby providing an image 

of the corona. The EUV filters view the Sun’s surface 

through different wavelengths, creating contrasting 

images that make active regions more distinct. In 

conjunction, these two data sources make SCORCH an 

asset in monitoring, analyzing and predicting solar events.   

  Several of the driving factors in the development of 

this spacecraft pertain to the optical systems. Both 

imagers must be able to resolve the Sun, which has a 0.5° 

angular diameter, or apparent size, as seen from Earth.  In 

addition, both employ a Complementary Metal-Oxide 

Semiconductor (CMOS) imager as a pivotal part of the systems. Currently, SCORCH is targeting the usage of a 

Richey-Chretien Cassegrain reflector to serve as the optical system for the white light coronagraph due to its lack of 

spherical aberrations, coma errors, and use in similar satellite payload designs3. For the extreme ultraviolet imager, 

the optical system will consist of a focusing optic and filter wheel. Based on heritage data from the SOHO spacecraft, 

the proposed filter wheel is targeting 30.4, 28.4, and 17.1nm wavelengths4. 

II. Flightpath 

For the SCORCH CubeSat to constantly check for space weather dangers, its flight path must allow a permanent 

view of the sun. To prevent obstruction from the Earth or Moon, it must be placed in a heliocentric orbit. Current 

NASA plans propose to deploy 6U and 12U CubeSats during Artemis II on a lunar flyby5. While we assume a launch 

during this mission, various orbital parameters do not currently exist. As a result, the launch location, date, and basic 

orbital path were assumed. The resulting flight path was analyzed using System Tool Kit (STK). 

 Initial NASA documents indicated an Artemis II launch of late 2022 or early 20236. A specific date and time is 

not included, however, and is assumed to be February 1, 2023, at midnight. The Kennedy Space Center is the chosen 

launch selection. For the flight path simulation, the center of Earth is used as a reference point.  

  
Figure 2. SOHO CME Photo Taken on Feb. 27, 

20002. 

  
Figure 1. Coronal Hole Photo Taken on Jan. 8, 

20022. 
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During the flight, a low Earth orbit burn will send 

payloads towards the Moon. Six hours following the initial 

launch, SCORCH will reach an altitude of approximately 

70,000km7. At this point, it will be ejected from the Orion 

Stage Adapter (OSA) and begin its detumbling maneuver. 

The control system will slow the rapid rotations of the 

satellite and solar panels will deploy. On February 10, 7:13 

AM UTC, the CubeSat will be at its closest approach with 

the Moon, thus beginning the scientific phase of the 

mission as the SCORCH satellite starts tracking the Sun. 

Fig. 3 displays the cislunar trajectory, with the red curve 

representing the lunar approach, and the green curve 

showing the scientific phase trajectory. Despite the 

Moon’s location and effect on the flight path, the 

SCORCH CubeSat will not lose sight of the sun. 

After leaving cislunar space, the satellite will enter a heliocentric orbit. Using a solar reference frame, the initial 

distance is 1.4875+E8 km or 0.994 AU. The heliocentric 

flightpath also has a greater inclination than the Earth’s 

orbit, as shown in Fig. 4. The pink curve represents the 

satellite, while the yellow curve displays the Earth’s orbit. 

Also, other parameters of the flightpath were determined 

through STK and are displayed in Table 1. 

 

III. Design Specifications 

A. Payload 

 

1. Design Overview 

While the CubeSat is taking image data from the Sun, an internal filter wheel is powered by a motor. To reduce 

the rotation speed, torque from the motor is applied to the filter wheel via gears. Both of which will be custom 

constructed from Aluminum 7075, which is low-cost and responds minimally to thermal stress. The filter wheel and 

motor gear have a module of 0.32, a pressure angle of 20°, and a pitch of 5 mm. The reference, tip, and root diameters 

are determined using Equation (1), Equation (2), and Equation (3), respectively. 

 

𝑑𝑅𝐹 = 𝑧𝑀 (1)8 

  

𝑑𝑇𝑃 = 𝑑 + 2𝑀 (2)8 

  

𝑑𝑅𝑇 = 𝑑 − 2𝑏 (3)8 

 

Table 2 shows the geometries of both gears and the calculated design diameters. The filter wheel is powered by a 

RH-U17-1 stepper motor, which has been selected due to its low cost and size, yet moderate performance. The motor 

has a mass of 4.04 g and rotates the filter wheel at a higher rotational velocity than the required rate to decrease 

measurement times.   

 
Figure 4. SCORCH Heliocentric Orbit. 

Table 1. Heliocentric Orbital Parameters. 

Variable Value 

a 1.5049+E8 km 

e 0.0370 

i 23.8197° 

ω 266.12° 

Ω 358.81° 

 

Figure 3. Flightpath in Lunar Vicinity. 
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 The size of the other components in the optic system depends on 

the design requirements of the coronagraph. Its aperture diameter is 

calculated with Equation (4).  The upper limit wavelength is assumed 

to be 700nm, while the sun’s angular diameter, at roughly 1 AU, is 

equal to 0.5 rad.  

 

𝑑𝐶𝑂 = 1.22 (
𝜆

𝜃
) (4) 

 

Solving Equation (4) gives a design diameter of 9.79E-2 mm. This would imply that an optic with a diameter of 

9.00E+3 mm at the same wavelength would be able to resolve objects with an angular size of 1.96”, well within the 

pointing and science requirements for SCORCH’s solar-observing requirements. 

Another fundamental driver of the optical system relates to the occulter size for the coronagraph. It will have the 

same angular size as the Sun; however, the distance from the CMOS imager is vital to the functionality of the occulter, 

and consequently, the coronagraph. An estimate for the occulter can be obtained by calculating the arc length between 

the CMOS imager and occulter and using the Sun’s angular diameter as the angle. Because the maximum distance 

between the imager and occulter in a 12U CubeSat is 20 cm, the occulter is 1.745 mm7. 

 For the camera, a CMOS imager was selected due to its low price, low power usage, and high data transfer rate, 

compared to a charge-coupled device9.  For the CubeSat, an Imperx C5180 CMOS 25 MP Cheetah Ruggedized camera 

is installed directly in-line with the telescope and a single filter in the wheel. 

 

2. Data Collection  

Data provided from the payload is directly taken from a C5180 CMOS 25 MP camera. The high-speed version of 

the camera has a maximum frame rate of 80 frames per second. The active pixel frame is 5120 x 5120 with each 

square pixel being 4.5 μm wide. The image data is accessed through 32 10-bit LVDS channels and transferred at a 

rate of 720 Mbps, per each Low Voltage Differential Signaling (LVSD) channel10. The image data is provided directly 

to the CCD image sensor and stored in the satellite’s memory.   

The exposure times of the camera must be compatible with both the coronagraph and extreme ultraviolet filters. 

For the SCORCH camera system, exposure times are similar to cameras on heritage vehicles. During the coronagraph 

experiment, the camera will be configured for a 5 second exposure time. This baseline coincides to design slides from 

the Next Gen Formation Flying Solar Coronagraph mission from NASA Goddard Space Flight Center11. The extreme 

ultraviolet imaging spacecraft calls for changing exposure times to adjust for imaging of different features. The ESA’s 

SOHO used a CCD imager with a minimum exposure time of 140 milliseconds, which could be increased in 31-
millisecond increments. A typical lowest exposure, which provides a baseline exposure time for SCORCH extreme 

ultraviolet imaging, was 1.5 seconds11. Heritage vehicle NOAA’s GOES-12 Solar X-ray Imager focused on four 

classifications of solar regions: solar flare sites, active surface regions, coronal loops, and coronal hole boundary. 

When imaging these specific features, the exposure setting is adjusted accordingly. Images of solar flare sites utilized 

exposure times less than 10 milliseconds. Active region imaging is less than 100-millisecond exposures, coronal loop 

imaging used exposures less than 1 second, and coronal hoop boundaries used exposure times of 10 seconds or less12. 

An entire data cycle, which includes the turning of the filter wheel and exposure time will take 15 seconds. 

 

3. Payload Subassembly 

To showcase the payload and demonstrate the placement of its components, an exploded view diagram and 

corresponding legend can be seen in Fig. 5 and Table 3, respectively. 

Table 2. Payload Gear Variables. 

Variable Filter Wheel Motor Gear 

z 25 10 

dRF 80.0 mm 32.0 mm 

dTP 86.4 mm 38.4 mm 

dRF 72.0 mm 24.0 mm 
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B. Communications 

The communications subsystem is composed of two main components: the transceiver and antenna. The 

transceiver used is the PULSAR-XTX, while the antenna is the PULSAR-XANT. Both of which can be acquired from 

AAC Clyde Space. For communicating between the ground station and the satellite, a frequency within the X-band 

range is used. In particular, the SCORCH CubeSat uses a radio frequency of 8.45 GHz ± 50 Hz, gain of 7.75 ± 0.5 

dB, radio wavelength of 35.4 mm, and a transmission signal-to-noise ratio less than 20 dB13. The antenna transmitter 

power measurement is 40.76 dBm and is calculated using the Friis Transmission Equation14, shown as Equation (5). 

 

𝑃𝑡𝑥 =  
𝑃𝑟𝑥

𝐺𝑡𝑥 + 𝐺𝑟𝑥 + 20 log10((
𝜆

4𝜋𝑅)
2

)

 (5)14 

 

The transmitter power can then be used to calculate the Effective Isotropically Radiated Power (EIRP)  14, shown 

as Equation (6), which is the actual power given to the transmitting antenna. This gives an EIRP of 48.51 dBm. 

𝐸𝐼𝑅𝑃 =  𝑃𝑡𝑥 + 𝐺𝑡𝑥 
(6)14 

 

Because the SCORCH CubeSat is transmitting images back to the ground station, the downlink rate is large and 

is approximated to be in a range of 10-50 Mbps15. Communication with the satellite must also be reliable and consistent 

at large distances, making a high gain antenna necessary.  

C. Command and Data Handling 

The Command and Data Handling (CDH) subsystem includes an ISIS On-Board flight computer (OBC) as its 

central processor to handle major satellite operating calculations. It operates KubOS Linux as its operating system and 

C as its programming language, which is consistent for the other computing devices in the SCORCH CubeSat. The 

OBC features a 400MHz 32-bit ARM9 processor and a daughterboard architecture. The overall architecture is 

centralized, where all subsystems are connected to the main processor. The SCORCH command system is shown in 

Fig. 6. Since the architecture is centralized, power consumption and cost are low. 

The OBC contains a built-in external watchdog timer, real-time clock, an image sensor interface, and four storage 

units. The external watchdog timer autonomously resets the operations of the CubeSat to prevent software failures. 

Other components in the OBC include a real-time clock, an image sensor interface, and four storage units. These units 

store memory and are briefly described in Table 4.  

  
 

Figure 5. SCORCH Scientific Payload. 

 

 

 

 

 

 

Table 3. Part Numbers in Payload Assembly. 

1 Telescope 

2 C5180 CMOS 25 MP Imager 

3 Filter Wheel 

4 RH-U17-1 Motor 
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The daughterboard contains three components: Error-

Correcting Code memory (ECC), subsystem interfaces, and 

communication watchdog. The ECC is a computer data storage that 

detects and corrects internal data corruption such as flipping bits. 

Subsystem computational devices such as the Guidance, 

Navigation, and Control (GNC) computer, connects directly to the 

OBC. The final component is an additional watchdog. 

 

D. Structural Design and Analysis 

  The structural bus of the CubeSat must not only house and 

protect all internal components during the mission but survive the 

intense body loads applied during the launch. For the SLS, a maximum 

acceleration of 3.8 g’s will be applied7. The OSA, which carries the 

SCORCH CubeSat as a payload, keeps the satellite at a pitch angle of 

30°. The bus must also fit within a launch envelope of 20 x 20 x 30 cm7. 

Along with surviving the initial launch acceleration, the bus must 

survive vibration and vacuum tests. All three can be simulated in Solid 

Edge supported by NX NASTRAN. The frame is comprised of high 

strength - low weight material, Aluminum 6061-T6, which has a yield 

stress of 248.211 MPa16. Four, thick rails make up the long edges of the 

bus and are used to prevent undeployed solar panels from striking the 

OSA walls. Thin, rectangular frames connect the rails and a circular 

subsection at the front is cut out to give the telescope clearance. Fig. 7 

shows a trimetric view of the bus design. 

 The SCORCH CubeSat bus was analyzed using Solid Edge. Any 

surfaces of the CubeSat which make contact with the OSA were fixed in the simulation. An interior mass of 20kg is 

placed in the bus to simulate payload weight acting on the exterior frame. 20kg is also the maximum allotted mass for 

a 12U CubeSat in the SLS. The frame’s stress and maximum deflection when the body force is applied are shown in 

Fig. 8 and Fig 9. respectively.  

 

  
Figure 8. CubeSat Bus Stress under Body Load. Figure 9. CubeSat Deflection under Body Load. 

 

 According to the results, the bus undergoes the most stress in the beams which connect to the circular telescope 

frame. The greatest deflection occurs at the center of the bus. Although the simulation shows some weak points in the 

design, the stress is significantly lower than the yield stress of Aluminum 6061. The deflection is also too small to be 

significant. 

 A final analysis is done after assembling all the components shown in Fig. 10 along with solar panels, to understand 

the actual behavior of the CubeSat under the maximum acceleration applied. After the analysis, it can be said that the 

 

Figure 6. Command & Data Handling 

Architecture 

Table 4.  Memory Storage Devices. 

FERAM 256kB Critical Data Storage 

SDRAM 64MB Volatile Memory 

NOR Flash 1 MB Code Storage 

SD Card 2x2 GB for Fail Safe Data Storage 
 

Figure 7. Trimetric View of CubeSat Bus.  
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total deflection is significantly less than the overall dimension of the CubeSat and poses no threat to the components 

during the launch. 

 

Figure 10. Isometric View of Complete CubeSat. 

E. Thermal Control 

To ensure the CubeSat will not become damaged due to extreme radiative heat absorption, thermal analysis is 

incorporated into the design. This is especially important considering the SCORCH CubeSat will be constantly Sun-

pointing. Currently, the analysis does not consider all subsystems’ placement and heating. To determine the range of 

temperatures of the bus, the temperature differences were calculated using Equation (7). 

 

𝑆𝑆𝑂𝐿𝑞𝑆𝑂𝐿 + 𝐹𝑆𝑆𝐴𝑇𝜎�̅�𝐸
4 + 𝐹𝑆𝑆𝐴𝑇𝐴𝑞𝑆𝑂𝐿 + 𝑄 = 𝑆𝑆𝐴𝑇𝜎�̅�4 

(7)17 

 

Equation (8) solves for the Earth’s equilibrium temperature to determine the amount of heat added to the bus from the 

Earth’s albedo. 

 

𝑇𝐸 = 𝑇𝑆𝑂𝐿𝐴𝑅 √1 − 𝐴
4

√
𝑟𝑆𝑂𝐿𝐴𝑅

2𝐷
 

(8)17 

 

Equations (7) and (8) can be combined to form Equation (9), solving for the equilibrium temperature of the bus. 

 

�̅�4 =
𝑞𝑆

𝜎
(

𝑠𝑆𝑂𝐿

𝑠𝑆𝐴𝑇
+ 𝐹𝐴) + 𝐹𝑇𝐸

4 
(9)17 

  

 By meshing the bus in MATLAB and solving for a steady-

state of the system, Fig. 11 is produced, showing the 

temperature gradients. It is expected that the bus will increase 

in temperature when an external skin is added to the bus and 

when the internal components are added. Furthermore, devices 

such as flight computers produce heat, which can be transferred 
throughout the aluminum frame. 

 Exterior components such as the solar panels are expected 

to add negligible heat to the bus. Heat could be added to the bus 

through the expenditure of excess energy produced by the solar 

panels. In the event of overheating, however, an active thermal 

system can be used to distribute energy through radiators. 

 

 

F. Power 

The power subsystem is formed by three primary sections: generation, distribution, and storage elements. Power 

generation is carried out by a set of four 16 x 28 cm solar panels placed on each 20 x 30 cm surface on the CubeSat. 

During deployment, each panel rotates about a hinge at the fore-edges of the bus until the surfaces are normal to the 

Sun-pointing direction. 

 
Figure 11. Steady-State Temperature (°C).  
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The deployment takes place using the “Mini Frangibolt” manufactured by 

Ensign-Bickford Aerospace and Defense (EBAD). This device is a non-explosive 

bolt-breaking actuator designed with different configurations for small-scale 

aerospace projects. The CubeSat will be using the “FD04” shown in Fig. 11, an 8g 

device capable of supporting a maximum load of 667N. This actuator operates within 

50-70° C, requires 6-8V DC and draws 9 watts of power. The solar panel will be 

spring-loaded and bolted down into the frangibolt with .036 kg m of torque before 

deployment. Upon activation, the device will apply torque to the bolt until it exceeds 

its tensile strength ultimately breaking the bolt and releasing the solar panel from its 

locked down position18. 

 Distribution of power is handled by a modular, off-the-shelf system produced 

by ISISPACE consisting of a battery, conditioning, and distribution units. The 

storage system is composed of four Lithium-Ion 

battery cells.  

Solar panels are employed in SCORCH’s 

design as a result of the long-term power 

requirement imposed by the mission lifespan. 

Due to a lack of commercially available, space-

rated solar panels fitting the launch envelope 

requirement, the SCORCH CubeSat employs 

Alta Devices triple-junction gallium arsenide 

solar cells, which produce 1.2W per 40 x 80mm 

cell19. To size the solar panels, the power draw 

of each subsystem was added together and 

organized in Table 5. 

 Because some energy may be lost between 

the solar panels and the CubeSat systems due to 

heat, it is assumed the satellite will have a path efficiency of 85%3. The required power draw is calculated through 

Equation (10). 

 

𝑃𝑅 =
𝑃𝑆

𝜂𝑃
 

(10)3 

 

This raises the total potential power draw from 

59.6W to 70.1W. As a result, 56 solar cells were 

selected for the design, to form four equally sized solar 

panels. Combined, they produce 67.2W. The minor 

discrepancy is allowable as peak loading will not be 

reached at any point in the mission. To cut down on 

weight and volume, peak power usage was minimized 

by analysis of which systems would be operating 

during specific phases of the mission. A four-cell 

lithium-ion battery solution was identified as a feasible 

option when identifying the total power that would be 

required for SCORCH to operate at capacity during all 

phases of flight. Due to the complexity of conditioning 

and distributing power, an existing modular 

commercial solution is employed. A 4-channel input, 

24 channel output device, which is in line with system 

requirements, has been selected to form the core of the 

power system. 

 

With primary components of the power subsystem combined, the design of the subsystem is shown in Fig. 12. 

 

 

 
Figure 12. Power Subsystem Component Layout. 

Table 5. Subsystem Power Draw 

Subsystem Power (W) Distribution (%) 

Payload 22.6 37.92 

Communications 22 36.91 

CDH 0.004 0.007 

Structural Design 0 0 

Thermal Control 0 0 

Power 9 15.10 

GNC 6 10.07 

TOTAL 59.60 100 
 

Figure 11. Mini 

Frangibolt actuator. 
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G. Guidance, Navigation, and Control 

Due to high required pointing accuracy for the payload, the SCORCH CubeSat will utilize a variety of components 

to create a 3-axis stabilization control system. This requires at least three reaction wheels, detumbling components, 

attitude sensors, and more. The CubeSat must also have enough reaction control devices to reorient itself after a 

perturbance or other resistance torques are applied. The greatest of which occurs during the detumbling maneuver 

after the CubeSat is ejected from the OSA. The satellite’s reaction wheels can be sized by calculating the required 

rotational acceleration and determining the moment of inertia. 

𝜏 = 𝐼𝛼 
(11)20 

The SCORCH CubeSat is assumed to spin at a rotational velocity of 5 rotations a minute, about the axis with the 

greatest moment of inertia in a worst-case scenario. For orienting the spacecraft properly, three CubeWheel S’s, with 

2.30E-3 Nm of torque each will be utilized.   

 Although the reaction wheels may be effective in slowing down the spacecraft during detumbling, they will slowly 

begin storing momentum overtime3. This can lead to momentum saturation. Because the CubeSat is well within the 

Earth’s magnetic field during detumbling7, it can utilize magnetorquers for momentum dumping. In the case of the 

SCORCH CubeSat, a HMC2003, 3-axis magnetic sensor and 3 NCTR-M012 magnetorquers will be included. To 

determine the gain of the torquers, Equation (12) is used. 

𝑚 = −𝐾�̇� 
(12)20 

Equation (13) is used to calculate the torque produced by the magnetic field and torquers. 

𝜏 = 𝑚 × 𝐵 
(13)20 

 In addition to actuators, two additional sensors will be used. These include a nanoSSOC-A60 analog sun sensor to 

keep the CubeSat Sun-pointing and a STIM202 gyro to measure rotations about all axes. An AT91SAM9260 

microcontroller will serve as a flight computer. A 

diagram of the control system components is shown 

in Fig. 14.  

 The reaction wheels will be placed on the principal 

axes, which intercept the Center of Mass (COM). The 

distance from the approximated COM of the CubeSat 

from the structural frame COM and moments of 

inertia are shown in Table 6. The X-axis is set as the 

sun-pointing direction. 

 These variables only consider immovable 

components such as the structural bus, scientific 

payload, and solar panels. Other components 

including batteries, the OBC, etc. are not considered 

and can be placed in the CubeSat accordingly to move 

the satellite COM closer to the structural frame COM. 

 

 
The dynamics of the motion of the satellite are defined by Euler’s equations of motion as a two-part two-body 

problem. The non-linear system of equations is adjusted for every transfer of orbit, change of frame of reference, and 

initialized based on the orbital parameters, in the computer program. Apart from satellite body reference dynamics, 

the sun sensors, solar panels, and antennas are modeled and programmed separately to point in the direction of the sun 

and the earth, respectively. This system is represented as a state space and linearized over 0.1 second time step and 

the solution to the linear system is used as the initial and subsequent current state estimates to propagate through the 

Table 6. SCORCH CubeSat Control Variables 

Axis COM (mm) I (kg·m2) 

X 0.568 0.073 

Y 2.626 0.071 

Z -2.331 0.049 

 

 
Figure 14. GNC Subsystem Component Layout.  
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continuous time dynamic model and discrete time sensor data. The covariance of estimates and the Kalman gain used 

to construct the control law are updated through every time step based on the sensor measurements with measurement 

matrix H = [1 1 1 0 0 0] and discrete time update laws. The Kalman filter is so implemented to achieve the accuracy 

of expected position and velocity with the standard deviation of 0.08 such that the outputs from gyros are used as the 

sensor feedback for the comparison of estimates with the true state of the satellite and the computationally efficient 

code improves the covariance with time.  

   The alternative solutions to design the control for proposed dynamics are model-based adaptive control for real-

time integration as well as state and gain estimation. This control is however computationally expensive and slower 

as compared to the Kalman filter. The non-linear least squares approach is the most suitable mean of modeling and 

controlling the non-linear satellite dynamics given proper stabilization criteria of the body based on its mass properties.  

The implementation of this dynamic model and control is planned to bring about using Simulink real-time 

workshop and auto-code generator. The actuators are activated with the appropriate voltage using the modeled state-

flow logic developer in Simulink.  

 

IV. Conclusion 

 
With the inevitable crewed exploration beyond Low Earth Orbit, developing methods of detecting or mitigating 

radiation risks to astronauts will become a priority. Creating architecture capable of predicting space weather risks, 

such as CMEs or coronal holes, will significantly decrease the present risk. The SCORCH CubeSat is designed to act 

as not only part of this architecture, but as an alert system. Although the preliminary design of the satellite is 

completed, additional structural and thermal testing will be required to make it flight-ready. Vacuum, vibration, 

radiation, and magnetic testing can also be undertaken with fabricated components, with the end goal being to deploy 

a network of these spacecraft to monitor solar weather. 

 

Acknowledgments 
 

The AIAA student branch at Embry-Riddle Aeronautical University in Daytona Beach, FL and the following people 

are thanked for their involvement with and continued support of the S.C.O.R.C.H. design project going back to 2019. 

 

Advisors Guidance, Navigation, & Control Subsystem Power Subsystem 

Dr. Jennifer Smith Rasika Kale Josephine Moore 

Dr. Dongeun Seo Mustapha Khawaja Venesh Pershaud 

Brennan McCann Arthur Shune Jovon Thomas 

   

Leadership Structural Design & Analysis Subsystem Communications Subsystem 

Andrew Beres Asa Barringer  Grant Mathews 

Sean Harrison Rubendry Cruz Henry Mejias 

Alex Horvath Joshua Jones  

Raymond C. Picquet Nicholas Juganu  

Katrina Ternus Utsav Shah  

Paul Winner Harry Shrager  

 Michael Tomaso  

   

Payload Subsystem Command & Data Handling Subsystem  

Tobey Bautista Kyle Overton  

Thomas Burghardt Daynah Rodriguez  

Michael Daven   

Sarah Ketchersid Thermal Control Subsystem  

Kiana Zarandi Taylor Stark 

 

 

 

 

 

 

 



   

 

11 

 

References 

 
1Hill, S. M., Pizzo, V. J., Balch, C. C., Biesecker, D. A., Bornmann, P., Hildner, E., ... & Vickroy, J. (2005). The NOAA Goes-12 

solar X-ray imager (SXI) 1. Instrument, operations, and data. Solar Physics, 226(2), 255-281. 
2Garner, R. (2017). Solar Storm and Space Weather – Frequently Asked Questions. [online] NASA TV. Available at: 

https://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html 
3Wertz, J. R., & Larson, W. J. (1991). Space mission analysis and design. Dordrecht: Kluwer Academic Publishers. 
4Delaboudiniere, J. P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier, F., ... & Kreplin, R. (1995). EIT: 

extreme-ultraviolet imaging telescope for the SOHO mission. In The SOHO Mission (pp. 291-312). Springer, Dordrecht.  
5Hill, D. (2019). NASA’s CubeSat Launch Initiative Opens Call for Payloads on Artemis 2. [online] NASA TV. Available at: 

https://www.nasa.gov/feature/nasa-s-cubesat-launch-initiative-opens-call-for-payloads-on-artemis-2-mission 
6Hambleton, K. (2019). NASA’s Deep Space Exploration System is Coming Together. [online] NASA. Available at: 

https://www.nasa.gov/feature/nasa-s-deep-space-exploration-system-is-coming-together 
7NASA. (2019). Artemis 2 Secondary Payloads 6U &12U Potential CubeSat Accommodations. [PDF] NASA Marshall Space 

Flight Center. 
8Basic Gear Terminology and Calculation. (n.d.). Retrieved from https://khkgears.net/new/gear_knowledge/abcs_of_gears-

b/basic_gear_terminology_calculation.html   
9Chromey, F. R. (2017). To measure the sky: an introduction to observational astronomy (2nd ed.). Cambridge: Cambridge 

University Press.  
10Shah, N., Davila, J., Chamberlin, P., Calhoun, P. Next-Generation Formation Flying Solar Coronagraph. Proceedings of iCubeSat 

2014, 3rd Interplanetary CubeSat Workshop, Pasadena, CA, USA, May 27-28, 2014  
11Delaboudiniere, J. P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier, F., ... & Kreplin, R. (1995). EIT: 

extreme-ultraviolet imaging telescope for the SOHO mission. In The SOHO Mission (pp. 291-312). Springer, Dordrecht.  
12GOES I-M Data Book (1996) NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., p. 196.  
13AAC Clyde Space, “PULSAR-DATA” Datasheet, Website PULSAR-DATA. (2020).[PDF] AAC-Clyde Space. Available at: 

https://www.aac-clyde.space/assets/000/000/105/PULSAR-DATA_original.pdf?1565702890. 
14Shaw, J. (2013). Radiometry and the Friis Transmission Equation. [PDF] American Journal of Physics. 
15Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H. Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors. [PDF] Carnegie Mellon University. 
16Department of Defense. (2003)) Metallic Materials and Elements for Aerospace Vehicle Structures: MIL-HDBK-5J. [PDF]. 
17Dinh, Dai. Thermal Modeling of Nanosat. Master's Theses. 4193. https://doi.org/10.31979/etd.cx59-auuj 
18“TiNi™ Mini Frangibolt® Actuator,” Ensign-Bickford Aerospace & Defense Available: https://www.ebad.com/tini-mini-

frangibolt/#erm-e250749d-007b. 
19Alta Devices. (2017). Lightweight, High-Performance Solar Cells for High Power-to-Weight and Deployable Solar Arrays. [PDF] 

Hanergy. 
20Gravdahl, J., Eide, E.,Skavhaug, A., Fauske, K., Svartveit, K., & Indergaard, F. (2003). Three Axis Attitude Determination and 

Control System for a Pico-Satellite: Design and Implementation. Norwegian University of Science and Technology. 

https://doi.org/10.31979/etd.cx59-auuj

	Space-Weather Monitoring, 12U CubeSat Design
	Nomenclature
	I. Introduction
	II. Flightpath
	III. Design Specifications
	A. Payload
	1. Design Overview

	While the CubeSat is taking image data from the Sun, an internal filter wheel is powered by a motor. To reduce the rotation speed, torque from the motor is applied to the filter wheel via gears. Both of which will be custom constructed from Aluminum 7...
	2. Data Collection
	3. Payload Subassembly

	B. Communications
	C. Command and Data Handling
	The Command and Data Handling (CDH) subsystem includes an ISIS On-Board flight computer (OBC) as its central processor to handle major satellite operating calculations. It operates KubOS Linux as its operating system and C as its programming language,...
	The OBC contains a built-in external watchdog timer, real-time clock, an image sensor interface, and four storage units. The external watchdog timer autonomously resets the operations of the CubeSat to prevent software failures. Other components in th...
	The daughterboard contains three components: Error-Correcting Code memory (ECC), subsystem interfaces, and communication watchdog. The ECC is a computer data storage that detects and corrects internal data corruption such as flipping bits. Subsystem c...
	D. Structural Design and Analysis
	The structural bus of the CubeSat must not only house and protect all internal components during the mission but survive the intense body loads applied during the launch. For the SLS, a maximum acceleration of 3.8 g’s will be applied7. The OSA, whic...
	The SCORCH CubeSat bus was analyzed using Solid Edge. Any surfaces of the CubeSat which make contact with the OSA were fixed in the simulation. An interior mass of 20kg is placed in the bus to simulate payload weight acting on the exterior frame. 20k...
	According to the results, the bus undergoes the most stress in the beams which connect to the circular telescope frame. The greatest deflection occurs at the center of the bus. Although the simulation shows some weak points in the design, the stress ...
	A final analysis is done after assembling all the components shown in Fig. 10 along with solar panels, to understand the actual behavior of the CubeSat under the maximum acceleration applied. After the analysis, it can be said that the total deflecti...
	E. Thermal Control
	To ensure the CubeSat will not become damaged due to extreme radiative heat absorption, thermal analysis is incorporated into the design. This is especially important considering the SCORCH CubeSat will be constantly Sun-pointing. Currently, the analy...
	F. Power
	G. Guidance, Navigation, and Control

	IV. Conclusion
	References

