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The evidence shows and it has been recognized in aviation/airline 

industry, academia, and government regulatory and safety agencies that takeoffs 

and landings are singularly the most hazardous flight phases in commercial air 

transportation (FAA, 1994). More than 50% of all commercial aviation accidents 

occur during takeoffs and landings which combined represent no more than 5% of 

the average flight duration. While takeoffs are relatively well defined and the 

initial energy conditions are under full control, landings carry many uncertainties 

regarding the touchdown location and speed (kinetic energy content). Thus, 

landing operational regulations provide larger margins to allow for unavoidable 

variations in environmental, pilot, and aircraft conditions. Although it is desired 

that airplane touch down at a predetermined spot on the runway and at proper 

speeds, the operational experience has demonstrated wide margins in landing 

operations (FAA, 2007). Multiple reasons for that exist which will not be 

specifically discussed in this article.  

 

One scenario rarely discussed and for which only few operators have even 

rudimentary standard operating procedures (SOP) is aborted landing roll and go-

around after touchdown. While touch-and-go landings are quite common in light 

training airplanes (certified under FAR 23), transport category (T-category) 

airplanes (certified under FAR 25) normally never utilize such maneuvers. While 

fatal accidents have occurred after unsuccessful go-around following landing 

touchdown there is no known statistics, at least to this author, on how frequent 

such events are in commercial and business aviation industry.  

 

Attempts of go-arounds after touchdown can be very hazardous and fatal. 

American Airlines Boeing 727-95 N1963 landed long at STT (St Thomas, US 

Virgin Islands) on April 17, 1976 (Job, 1994) which resulted in 37 fatalities out of 

88 on board during unsuccessful landing-roll abort. After prolonged float in 

ground effect, the airplane touched down about 3,000 ft from the threshold of the 

very short 4,650-ft runway. Soon after touchdown and realizing it will not be able 

to stop on the remaining runway, the captain attempted to go around adding 

TOGA (Takeoff Go-Around) thrust. Then realizing that it would be impossible to 

lift off using what was left of the runway, the captain changed his mind again and 

tried to abort go-around and stop. As expected, the airplane exited the runway at 

high speed. Many fatalities occurred in the ensuing crash and fire. 

 

On July 31, 2008, at about 09:45 AM central daylight time, a Hawker 

Beechcraft BAE 125-800A with registration N818MV was completely destroyed 

killing all 8 occupants when it impacted terrain at high speed during aborted 

landing roll and subsequent unsuccessful go-around from runway 30 at the 

Owatonna Degner Regional Airport (KOWA), Owatonna, Minnesota. The non-
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scheduled flight was operating under the provisions of Title 14 CFR Part 135. The 

instrument flight rules (IFR) flight plan had been filed and activated, but was 

cancelled before the landing. Visual meteorological conditions existed at the time 

of landing. However, severe thunderstorms passed through the area with heavy 

rain less than two hours before ill-fated Hawker crash.  

 

Recent final National Transportation Safety Board (NTSB) ruling (ID: 

DCA08MA085) has confirmed that pilots of a Hawker Beechcraft 800A (BAe 

125-800A) registration N818MV in Owatonna (KOWA in MN) on July 31, 2008 

attempted unsuccessfully a go-around after long touchdown and poor braking 

efforts. NTSB final ruling says that pilots did not use brakes for 8 seconds after 

touchdown and simply did not attain the flying speed to escape the ground effect 

during attempted go-around, stalled, and crashed about 1,500 ft beyond the 

runway threshold. A 1,000-ft long impact and crash deceleration distance existed 

beyond 1,500 ft touchdown in the corn field. Eyewitnesses said that the airplane 

tried to takeoff after it already touched down attempting to land. Additionally, 

severe thunderstorms passed through the area shortly before Hawker’s attempted 

landing in KOWA. It was postulated by Daidzic (2008) that the absence of 

braking effort was most likely due to hydroplaning on a short 5,500 ft municipal 

airport runway. The NTSB reported not finding evidence of hydroplaning, but the 

question of why no braking effort was initiated for extended period remains 

unanswered.  

 

Runway distances illustrated in Figure 1 are normally declared by 

respective airport authority following the applicable regulations and can be found 

in FAA’s Airport/Facility (A/F) Directory. Takeoff Distance Available (TODA) 

includes Takeoff Run Available (TORA) plus clearway in which case clearway 

used in calculations cannot exceed 50% of TORA (FAA, 2013, 2014a; Jeppesen, 

2007; Padilla, 1995; Swatton, 2008). Accelerate-Go Distance Available (ASDA) 

includes TORA and stopway while Landing Distance Available (LDA) may or 

may not be equal to TORA (FAA, 2014a). That will depend on the availability of 

displaced threshold and if the stopway is included in LDA. Sometimes 

Engineered Materials Arresting Systems (EMAS) are placed at the far end of the 

runway to slow down and/or stop overrunning airplanes (Daidzic and Shrestha, 

2008; FAA, 2012). EMAS, of course, cannot be a part of stopway or LDA (FAA, 

2012). DeLoach et al. (2009) performed analysis of landing overrun with 

uncertainty analysis for the evaluation of a passive runway arresting system. 

 

Gross or un-factored (ASD, TOR, TOD) and net or factored (ASDR, 

TORR, TODR) takeoff distances are illustrated in Figure 2. Airplane weight must 

be adjusted for existing environmental and atmospheric conditions so that 
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required distances do not exceed available distances. Runways are often 

unbalanced (Balanced Filed Length or BFL) and ASDA is not equal to TODA if 

stopways and clearways of various lengths exist (Swatton, 2008). Factored All-

Engines Operating (AEO) and unfactored One-Engine Inoperative (OEI) takeoffs 

are compared for both dry and wet runways (FAA, 2013; Jeppesen, 2007; 

Swatton, 2008). If no clearway exists TODA restricts accelerate-go takeoff, while 

with significant clearway length, TORA may be more restrictive than TODA. 

 

 
 

Figure 1. Generic layout of airport declared distances. Can vary significantly in 

real life based on airport architecture. Not to scale. 

 

 
 

Figure 2. Regulatory takeoff distances defined. Not to scale. 
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Landing runway requirements for commercial public air transportation are 

spelled out in operational regulations (e.g., 121, 135, etc.). Transport-category 

airworthiness certification rules such as Title 14 CFR 25.125 (FAA 2013) only 

specify gross performance and conditions under which gross landing performance 

was obtained. DLD is gross (un-factored), sometimes also called demonstrated, 

landing distance on dry runway which was derived from the measured 

certification flight tests and averaged for the fleet of particular airplane make and 

models. DLDR is factored or net dry landing distance required accounting for 

operational performance cushions (Daidzic, 2009c; FAA, 2014b). WLDR is the 

required net landing distance for generic wet runways and does not implicitly or 

explicitly include contaminated runways. Damp runways are often treated as wet 

runways, but they may become very slippery under specific conditions. Required 

distances can never exceed available distance. Landing requirements are 

illustrated in Figure 3 (FAA, 2014b). 

 

 
 

Figure 3. Regulatory landing distances defined. Not to scale. 

 

A schematic of the landing decelerate-accelerate-takeoff maneuver with 

the dynamic PNR location is illustrated in Figure 4. Unlike Rejected Takeoffs 

(RTO) and V1 (decision/action) speeds there is no assurance that the landing 

airplane will indeed stop by the end of LDA. Thus a concept of rejected landing 

ground roll is introduced (RLR) with the PNR-speed taking the primary role in 

decision making process. The rejected-landings (decelerate-accelerate) are 

fundamentally different from, and inverse of, the RTO’s (accelerate-decelerate). 

While takeoff maneuver, if done properly, will guarantee that the airplane will or 

fly when OEI or stop by the end of ASDA, no such guarantee exists for the 

landing PNR maneuver and the airplane can get in the situation where it cannot 

go-around nor can it stop on the remaining runway. 

 

The main idea behind runway landing PNR-concept is thus to define a 

speed from which it is still possible, after initial deceleration, to continue OEI go-

around takeoff. Operational regulations may require reaching certain minimum 
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screen height (SH) at departure end of the runway (DER). However, it is almost 

impossible to schedule or plan PNR speeds in line operations as the landing 

maneuver is very dynamic with many variables and uncertainties affecting the 

exact location of touchdown and kinetic energy carried by the aircraft. 

 

 
 

Figure 4. Landing decelerate-accelerate landing-roll go-around maneuver with 

PNR. Nose-gear touchdown (NGTD) typically occurs 3 seconds after main-gear 

touchdown (TD). Not so scale.  

 

The NTSB used designation commit-to-land point for the landing PNR we 

use here. However, PNR can be seen more as a last-chance commit-to-go-around 

point. Not changing anything and just continuing deceleration efforts and 

disregarding runway PNR is a default solution albeit one that does not ensure full 

stop on the runway. It takes a dynamic effort to change both, the human and the 

airplane inertia, and switch from stop-stop to go-go mental attitude (Daidzic, 

2008, 2009a). As it happened in the unfortunate case with B727 in 1976 it is a 

very difficult decision to make and pilots are normally not trained for this 

scenario. There is absolutely no space for confusion or indecision in the cockpit 

when aborted (rejected) landing decelerate-accelerate-takeoff decision must be 

made. 

 

The main purpose of this research article is to provide deeper physical 

insights and deliver a comprehensive novel theory based on the aircraft’s total 

energy. This approach would still result in a reasonably accurate models for 

rejected landing PNR determination as a function of many aforementioned 

variables and parameters. 

 

Literature Review 

 

While touch-and-go landing practice is quite frequent in flight training, 

little was found on equivalent maneuver in commercial air transportation. It seems 

that few operators even consider such an option exists and no SOPs or training is 
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available to guide pilots. No statistical data was found on frequency of landing 

go-arounds. Only those unfortunate and unsuccessful few are well known. 

 

Takeoff dynamics of rigid airplanes is described in various levels of detail 

in several standard and classical aerospace/aeronautics engineering references 

(Anderson, 1999; Asselin, 1997; Davies, 2003; Eshelby, 2000; Filippone, 2006; 

Hale, 1984; Mair and Birdsall, 1992; McCormick, 1995; Padilla, 1996; Roskam 

and Lan, 1997; Saarlas, 2007; Shevell, 1989; Torenbeek and Wittenberg, 2009; 

Vinh, 1993). Blake and Elliot (1991) discuss the final few minutes during airplane 

approach and landing. Authors reported one landing overrun per 3.6 million 

flights. In 1990, that would have been one landing overrun every 3 months in 

USA. However, today, 60 to 80 overruns occur in commercial air transportation 

worldwide utilizing T-category airplanes every year (Daidzic, 2009a). Progress 

achieved in improving approach-and landing safety was discussed by McKinney 

(1999). The author highlighted some recommendations for the reduction and 

elimination of approach-and-landing accidents. But despite all the efforts to 

reduce accidents during landing phase, the same operational errors and difficulties 

stubbornly persist. van Es et al. (2001) discuss the safety aspects of aircraft 

performance on wet and contaminated runways by studying sample of 91 

overruns and veer-offs. Based on a sample of European airports there appeared to 

be four-fold increase in accident risk for aircraft operating on wet and 

contaminated runways. The authors suggest that go-arounds should be considered 

whenever fast and long landings on wet and contaminated runways are expected. 

van Es (2005) performed analysis of landing overrun accidents over the period of 

35 years.  

 

In-depth development of landing dynamics models and computational 

simulations incorporating differing pilot techniques and variable runway and 

environmental conditions was conducted by Daidzic and Shrestha (2008). 

Programs developed from that research can be used for accident investigations 

and solution of inverse problems. Daidzic (2009a, 2009c) provides further 

analysis of braking action on contaminated surfaces accounting for many physical 

factors including anti-skid operation and physics of tire-surface friction forces. 

The calculations of veer-offs on contaminated/slippery runways in the presence of 

crosswind were presented in Daidzic (2009b). van Es (2010) performed a study of 

runway excursions from a European perspective. Both, takeoff and landing 

overruns and veer-offs were analyzed for the runway excursions occurring in the 

period of 1980-2008. The author also discusses some technical solutions by 

Airbus, Boeing, and Honeywell to reduce landing overruns. Daidzic (2011a, 

2011b) further discusses contaminated runways and operations. 
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Takeoff problems on contaminated runways in the presence of crosswind 

that may result in veer-offs and the role of thrust-reversers in such situations were 

discussed by Daidzic (2013a). Takeoff considerations and certification of T-

category airplanes was discussed in Daidzic (2013b). Special takeoff techniques 

such as overspeed takeoffs were considered in Daidzic (2014).  

 

Over the last 60 years many attempts were made to assist pilots with 

takeoff performance monitors (TOPM). Takeoffs are critical for flight safety and 

the airplane is heaviest with smallest performance margins (FAA 1994). All the 

performance measures are based on speeds without actually measuring distances. 

This can only work if the scheduled accelerations (AEO or OEI) are actually met 

in practice. Monitoring acceleration, speed, and distance during takeoffs and then 

predicting future performance is very important, but that has defied engineers and 

designers so far. More details on takeoff performance monitors can be found in 

Wagenmakers (1991). Zammit-Mangion and Eshelby (2005) discussed design and 

integration of a take-off monitor display in cockpit environment. Recently, 

Zammit-Mangion and Eshelby (2006) have studied flight tests of large T-category 

jet and twin turboprop airplanes. Predictive algorithms were developed which 

according to authors were well within the SAE’s aerospace standard AS-8044 

thus warranting adoption in TOPM.  

 

While rejected landing and go-around has been mentioned cursory in some 

older materials, no scientific consideration and discussion was ever conducted. To 

the best of our knowledge the first analytical consideration and computation of the 

PNR speeds, distances and time was given by Daidzic (2008). That analysis 

specifically focused on the Hawker 800A unsuccessful go-around and crash in 

Owatonna, MN in 2008. More in-depth discussion on landing PNR was then 

treated in Daidzic (2009a) and Daidzic (2011b). Most recent contribution toward 

this topic was given by Daidzic (2016) in which also the need for SOPs and 

design of runway energy monitoring and management systems was emphasized.  

Essentially, in all previous analytical studies simpler algebraic rejected-landing 

PNR models were presented with computational methods on how to determine 

landing PNR speed and time for given touchdown conditions.  

 

Mathematical Models and Methodology 

 

The entire dynamics of landing go-around PNR could be simulated with 

differential equations of motion in an appropriate reference systems. Many 

additional algebraic relationships would be required to describe constitutive and 

other relationships. Such large system of strongly nonlinear ODE (Ordinary 

Differential Equations) could be numerically integrated in time to provide the 
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entire history of motion. The model could be made as complicated as one desires 

with probably in excess of 50 simultaneous differential and algebraic equations. 

Due to excessive complexity, we chose to present simpler model based on the 

total energy conservation principle, while taking into account average forces and 

accelerations over finite time intervals. Such exercise will facilitate better 

understanding of the critical influences with still reasonably accurate model.  

 

Landing dynamics 

 

Ideally, transport category airplane crosses runway threshold at a given 

landing screen height (regulatory for certification is 50 ft) and given reference 

airspeed VREF, initiates short flare (roundout) maneuver at appropriate height 

(typically 10-30 ft), touches down and promptly lowers the nose gear 

(recommended within 3 seconds), and initiates deceleration ground roll utilizing 

friction braking and thrust reversers. For all practical purposes aerodynamic drag 

during landing roll can be neglected other than for extremely slippery 

contaminated runways where deceleration levels are so low that even 

aerodynamic drag plays relatively important role (Daidzic and Shrestha, 2008). 

The landing dynamic equations are set in a non-orbiting flat-Earth, approximately 

inertial, frame of reference as the distances are short and non-inertial effects 

negligible (Daidzic and Shrestha, 2008). The fundamental equations of motion in 

horizontal and vertical planes which describe decelerating ground roll at constant 

airplane mass and arbitrary wind, yield: 
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The airborne part (descent-decelerate), flare, main-gear and nose-gear 

touchdown dynamics is not included in above differential model. Almost all the 

terms on the RHS of the horizontal dynamics in Equation (1) are functions of the 

true and ground speed, air density, airplane’s geometry, and aerodynamic 

characteristics. The first term or the (T/W)-ratio can be or slightly positive 
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(residual thrust and no thrust reversers) or significantly negative by using thrust 

reversers and contributing to deceleration. The second term is the aerodynamic 

drag which often is very small compared to other contributions and when then 

really only at higher speeds. The third term is the generally spatially-dependent 

friction braking term and overwhelmingly the most important decelerating force 

on dry runway. Only when the runways are contaminated and significantly 

slippery does this term become small. This coefficient could also take into full 

consideration pilot’s braking efforts and the anti-skid system braking efficiency 

(Daidzic, 2009a, 2011a, 2011b, 2013a). The last term can be both negative and 

positive along the runway designating local runway slope, which for most 

commercial airports/runways can be neglected (less than 2%). Additionally, for 

most nearly-level runways, we can reasonably substitute RWYRWYsin    and 

1RWYcos , with angles expressed in radians.  

 

The air distance covered in flare for which descent angle is assumed 

positive (although it is negative as negative net thrust exists) can be approximated 

by: 
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The aerodynamic efficiency is defined as DLE  . During flare, the 

throttles are typically pulled back to flight idle which in most modern turbofans is 

about 7-10% of the maximum thrust for given air pressure and temperature. 

Landing flare is accelerated maneuver (Daidzic and Shrestha, 2008) during which 

kinetic energy is dispensed to slow down potential energy (height) loss. To 

simplify the problem, in the future landing considerations the landing air distance 

will be a simple input together with the touchdown speed. Details of flare 

dynamics and speed decrement during flare (from threshold crossing to 

touchdown), which often is small unless prolonged floating in ground effect 

occurs, thus need not be considered at all. For details on this see Daidzic and 

Shrestha (2008) and Daidzic (2009a, 2009c). 
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Takeoff dynamics 

 

Expanded basic differential equations of motion of rolling rigid aircraft of 

variable mass on a perfectly rigid surface are (Daidzic, 2014): 
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           (3) 

 

However, other phases of takeoff must be accounted for as well, which 

includes rotation, lift-off and initial climb to SH all of which tremendously 

complicates model analysis. The coupled system of nonlinear ODE presented 

with Equation (3) is valid up to the point of rotation. The reactive thrust 

component (rocket-thrust) is negligible for conventional jet-engine airplanes. The 

complexity of the system which describes sufficiently-well the takeoff ground run 

of rigid airplanes is obvious. Dynamics of many subsystems, such as, shock 

absorbers is not included. The rolling friction coefficient for airplane tires on dry 

concrete or asphalt runways is typically between 0.02 and 0.05 (Asselin, 1997; 

Saarlas, 2007). This rolling friction coefficient is also a function of groundspeed. 

Runway slope changes continuously along runway, but for most applications this 

term is small. Instead of using differential models, such as those presented by 

Equations (1) and (3), we will be using integral algebraic models based on the 

energy conservation principles which tremendously simplifies the analysis. 

 

The crucial difference between takeoffs, which are well defined, and 

landings, which are not so well defined in terms of actual location and energy 

state, exists. Normal takeoff starts from the runway start (Brake Release Point or 

BRP of TORA) and is reduced by mandatory runway alignment corrections 

and/or running-takeoff correction (Swatton, 2008). On the other side, the location 

of aircraft during landing is variable with standard deviations exceeding 500 ft. 

Many studies have shown significant variations in airplane touchdown points 
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during line operations (FAA, 2007; Mair and Birdsall, 1992). It is not uncommon 

for a wide-body jet to touch down past the 3,000-ft runway marker followed by 

frantic braking efforts attempting to rapidly dissipate airplane’s kinetic energy. 

However, as airplane already carries some kinetic energy that may be beneficial if 

subsequent takeoff/go-around after touchdown is attempted. 

  

Using the energy and power conservation law in integral form (Anderson, 

1999; Asselin, 1997; Eshelby, 2000; Hale, 1984; Mair and Birdsall, 1992; 

McCormick, 1995; Saarlas, 2007; Vinh, 1993), yields: 
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This equation can be rearranged to yield: 
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This is particularly useful expression when considering horizontal distance 

covered during airborne (climb-acceleration) part of takeoff (similar to landing air 

run) for which integral results in: 
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The average net thrust-to-weight ratio is essentially an inverse of the 

average angle of climb since we know that approximately (Anderson, 1999; 

Asselin, 1997; Eshelby, 2000; Hale, 1984; Padillla, 1996; McCormick, 1995; 

Saarlas, 2007): 
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           (7) 

 

The SH at DER can be set to an arbitrary value (typically between 0 and 

35 ft) as dictated by operational regulations and safety standards. The SH-speed is 

typically taken to be V2 (takeoff decision speed) and we could use the same 

reasoning by setting VSH=V2 for given weight. Interestingly, for many T-category 
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airplanes V2 will be very close to VREF. However, we allowed for landing 

threshold speeds to be in excess of desired reference speed to account for 

operational problems. 

 

Determination of PNR 

 

Using graphic illustration in Figure 4, the entire landing go-around PNR 

dynamics can be now formulated with a simple algebraic inequality: 

 

LDALLLLLL ABACELCOASTDECELNGTDAIR             (8) 

 

The extremal condition is achieved when the inequality is substituted with 

the equality maximally utilizing LDA. Two main assumptions are made here. 

First, the speed loss in flare is neglected. This is reasonable approximation and 

practice shows that on-average airplanes lose about 3-5 knots in flare other than in 

case of long and extended float (FAA, 2007). Second, the airplane does not lose 

any speed during nose-gear de-rotation which is reasonably decent first 

approximation resulting in VTD=VNGTD. A conventional transport category 

airplane for which aerodynamic braking at high-AOA is negligible touching down 

at about 130 knots may only lose 2-3 knots during de-rotation mostly due to 

rolling friction and aerodynamic drag at high AOA.  

 

Once throttles are applied for go-around, deceleration level will start 

decreasing, but deceleration cannot instantly mutate into acceleration as that 

would require forces of infinite magnitude. This “coasting” phase depends on 

many factors, including, engine acceleration characteristics (Daidzic, 2012a), the 

position and use of thrust-reversers, pilot reaction time, changing airplane drag 

and high-lift configuration, etc.  

 

The entire rejected-landing PNR event can be seen in terms of the total 

energy state as illustrated in Figure 5. Landing aircraft has both potential and 

kinetic energy and must regain both for safe takeoff. The potential energy is 

dissipated upon touchdown and the remaining kinetic energy is supposed to be 

fully dissipated before the end of the LDA. If the kinetic energy cannot be 

dissipated by the end of LDA, an option may exist for which the airplane may use 

remaining runway to gain enough kinetic and potential energy and execute safe 

go-around. Various average acceleration and deceleration levels are shown in 

Figure 5. In the case of deceleration, two extremes exists – dry and contaminated 

(slippery) runways. In the case of acceleration, two extreme acceleration levels 

exist – AEO and OEI. Twin-jets are especially vulnerable to a loss of thrust on 

one engine. That is why their engines are disproportionally larger than in tri-jets 
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or four-jet airplanes as field requirements must be met under reasonable 

conditions when OEI. If the aircraft touched down long and/or fast that will shift 

all deceleration lines to the right leaving less space for rejected landing. For a 

successful go-around, an airline simply must achieve total energy level by the end 

of LDA. Under the assumption that there is no significant speed-loss during nose-

gear de-rotation, we may write conservatively: 

 

NGTDTDNGTD tvL                 (9) 

 

 
 

Figure 5. Average acceleration (AEO and OEI) and deceleration (dry, wet, 

contaminated) levels. Deviations in touchdown location and speed are illustrated 

as well. Not so scale.   

 

Slowing down in landing roll can be described using average deceleration 

values from VTD to VPNR, after which the decision is made to go-around and 

TOGA thrust/power is applied. In order to avoid using negative signs which only 

causes confusion, we just use absolute value of deceleration magnitude: 
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T-category jets typically decelerate at a rate of 1 to 8 knot/s, depending on 

the runway condition and combined braking effort. Similarly to FAR 25.109 

(FAA, 2013) for the determination of ASDR, coasting at VPNR for a given time 

interval (2-4 seconds), during which deceleration changes into acceleration 

(inertia configuration change) is calculated from:  

 

0 COASTPNRCOAST tvL             (11) 

 

The acceleration phase which will be assumed OEI only (decision to go 

coincides with engine failure and OEI continuing takeoff condition): 
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 The acceleration will depend if AEO or OEI and atmospheric conditions. 

Typically, average AEO acceleration is 5-6 knot/s while average OEI acceleration 

is 2-3 knot/s. The last remaining part is the airborne (AB) takeoff phase extending 

from LOF to SH condition. Various takeoff regulations (FAR 25.105 to 25.113) 

for dry and wet runways can be extended to require particular SH at the end of 

LDA (FAA, 2013). Thus we can write using Equation (6): 
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        (13) 

 

Substituting Equations (9-13) into Equation (8) for an identity extremal 

solution and performing required reductions, we arrive at a simple quadratic 

equation for estimation of unknown VPNR speeds: 

 

02  CvBvA PNRPNR             (14) 

 

Where:  
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where: 
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The aerodynamic efficiency for T-category airplanes in takeoff 

configuration is typically between 10 and 12. We assumed the value of 10. In the 

landing configuration the aerodynamic efficiency is closer to 6 (six) for modern 

jetliners with high-lift devices fully deployed. Thrust-to-Weight ( WT ) ratio will 

depend on AEO or OEI condition. Thrust of modern turbofans is a function of 

TAS and density ratio Daidzic (2012a, 2012b). 

 

The coefficient C is critically important in that it defines the specific total 

energy extracted from the available runway for deceleration-acceleration-takeoff 

maneuver. If C < 0, a solution is real and VPNR exists. However, if C is 

sufficiently large negative real number than VPNR > VTD, which means the 

solution is not feasible. If C = 0, one VPNR solution is zero. For all other cases C > 

0, the solution does not exist (complex solutions) and VPNR would be effectively 

less than zero meaning that we can operationally set it to zero. Such is a scenario 

commonly used by light-planes safely conducting touch-and-go landing practice 

on very long runways. Excess of runway implies also that an overspeed takeoff for 

better climb performance could be implemented (Daidzic, 2014). 

 

Regular VPNR could vary between zero and VTD speed. If the runway is 

excessively long it is easy to imagine that an airplane could slow down to a full 

stop and then start from standstill. Such solution is often irrelevant as that would 

imply that the airplane can indeed stop on the runway. A possible utilization of 

such a solution would be if go-around is accomplished for other reasons other 

than weak braking deceleration. An example could be the inability to comply with 

LAHSO instructions after touchdown. The other extreme implies short runway for 

which the airplane must execute go-around instantly after touchdown. If the 

remaining runway is shorter than this condition, the airplane in landing roll cannot 

stop or go on the remaining runway – a very precarious situation. Such situation 

could also arise from a long and/or fast landing even on dry runways. 

 

The airplane carries kinetic energy upon touchdown, which can be used 

toward supplementing total energy required for a safe go-around. Further, we 

assumed for this simple energy-conservation model that: 

 

  112 201151 SSHSLOFSHNGTDTD v.vv.vWvvvv        (16) 
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The two possible real solutions of Equation (14) may be or double 

(identical) real root or two different real roots. Calculating the coefficient C 

represents the most daunting part in solving this nonlinear algebraic equation, for 

which the solution may be written (Spiegel and Liu, 1999): 

 

 roots  Real04
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Only larger positive real solution for the VPNR could be accepted for 

operational use unless other conditions allow for both real positive solutions. If 

one neglects the nose-gear touchdown delay and dynamics, then B=0 and only 

one real (positive) solution exists: 
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vPNR
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              (18) 

 

In another special case for which C = 0, two real solutions exist: 

 

A

B
vv II

PNR

I
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A kinetic energy versus runway length for a generic T-category airplane 

executing go-around after touchdown and initial acceleration is shown in Figure 

6. After nose-gear touchdown an airplane has certain kinetic energy which may or 

may not be dissipated by the end of a runway. Energy dissipation will depend on 

the deceleration rates (deceleration forces and landing mass). If go-around is 

necessary then airplane must gain safe total energy level (kinetic and potential) by 

the end of the runway. The kinetic energy requirements are typically an order-of-

magnitude (or more) larger than potential energy amounts during takeoffs and 

landings.  

 

It follows from Figure 6 that if the initial deceleration is high, an airplane 

can slow down to lower PNR speeds while using less runway before initiating go-

around maneuver. If the deceleration is weak, the PNR speed is higher and more 

runway is used to slow down to it. Clearly as less runway is available to reach 

safe total energy requirements, the airplane must acquire more kinetic energy at 

the moment it rejects landing roll and executes go-around. This implies that: 

   ondeceleratifast ondecelerati slow PNRPNR vv  . 
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Figure 6. Average landing PNR acceleration and deceleration levels. It is inverse 

of the takeoff phase, i.e., it is decelerate-go maneuver. Not so scale.  

 

In order to demonstrate the fundamental difference between the rejected 

landing roll go-around and regular takeoffs, an illustration of takeoff-energy 

versus distance is shown in Figure 7. The specific kinetic energy (per mass) was 

used on the vertical axis. Again, the average acceleration magnitudes are utilized, 

whereas instant accelerations constantly change (jerk or surge). Takeoff is well 

defined maneuver where the aircraft is always assured of continuing takeoff when 

OEI or stopping by the end of ASDA. 

 

The average acceleration or deceleration, which by definition is constant, 

can be used to estimate acceleration distances, according to a simple kinematic 

expression: 

 

00
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             (20) 

 

Results of computations that include typical accelerations and decelerations for 

takeoffs and landings are shown in Figure 8. For average acceleration factor of 
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0.05g about 9,000 ft of runway will be required to stop from groundspeed of 100 

knots. Such scenario may indeed occur on runways covered with thin ice and no 

use of thrust-reversers (Daidzic and Shrestha, 2008; Daidzic, 2009a, 2009c, 

2011a, 2011b). 

 

 
 

Figure 7. Average constant takeoff acceleration and deceleration levels. 

Accelerate-stop and accelerate-go BFL takeoff maneuver. Not so scale.  

  

On the other hand, an airplane experiencing deceleration of 0.4g (4 m/s2 or 

12.8 ft/s2) such as during powerful braking on dry porous asphalt runway with the 

new tires it would only take 1,100 ft to stop from 100 knots. A takeoff utilizing 

maximum thrust AEO acceleration would closely resemble average 0.3g (9.66 

ft/s2) net acceleration requiring about 2,900 ft to accelerate to 140 knots from 

standstill. 

 

Results and Discussion 

 

The mathematical model developed earlier enabled us to compute various 

cases of runway go-around PNRs. That would include short and long runways, 
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contaminated and dry runways, variable environmental conditions, variable 

landing touchdown speed (kinetic energy) and distance from the threshold, the 

effect of airplane weight, etc. To perform exhaustive parametric study of all 

different cases would require the article tenfold in size. Thus, we are only 

presenting more relevant results. 

 

 
 

Figure 8. Acceleration/Deceleration levels and distances versus speed. 

 

As discussed above, one of the main reasons rejected landing roll 

maneuver would be attempted, is to prevent overrun on slippery runways and/or 

after touching down fast and long. Computations of required landing distances on 

dry and wet runways at various touchdown points and speeds are shown in Figure 

9. A time interval of three seconds was used for lowering of nose-gear without 

appreciable loss of speed. The attribute WET was actually used to designate 

combined contaminated runway providing deceleration of about 6.44 ft/s2 (0.2g). 

 

An airplane landing on dry runway (Figure 9) at excessive touchdown 

speed of 160 knots and main-gear touchdown point at 3,500 ft would still be able 

to stop on a 8,000-ft runway utilizing combined 0.35g deceleration (“good” 

braking). However, the same airplane landing on a slippery runway (0.2g 
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combined deceleration - with or without thrust-reversers), and even touching 

down at proper distance of 1,500 ft, would just barely avoid overrun at touchdown 

speed of 160 knots if LDA is 8,000 ft. If the airplane’s main gear touched down at 

3,500 ft runway distance, the overrun would occur even at touchdown speeds as 

low as 131 knot with 8,000 ft runway and about 146 knot with 9,000 ft LDA. 

Reference speed for a given airplane is 125 knots.  

 

The main question arises: if the pilots realized that the landing roll 

deceleration is too weak and likely leading to overrun, could they still execute go-

around and safely take off on remaining runway, while meeting all regulatory 

requirements? In order to answer this important question, results of simulation for 

decelerate-accelerate landing-takeoff maneuver are presented. The results 

presented in Figure 10, provide the relationship between VTD and VPNR, as well as 

times from nose-gear down moment (NGTD) until reaching PNRs (dashed lines) 

at three different runaway touchdown locations.  

  

 
 

Figure 9. Stopping distance on 8,000 and 9,000 ft LDA runways at various 

touchdown distances and speeds for dry and slippery braking conditions.  

 

In these results it is assumed that one-engine suddenly becomes 

inoperative at the moment of reaching PNR and TOGA applications. Thus all go-

around accelerations are with OEI. The coasting dead-time (inertia) is taken as 2 

seconds at PNR speed to be compatible with the FAR 25.109. For example, an 
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airplane touching down on an 8,000-ft LDA runway at 2,500 ft and accounting for 

given rates of deceleration and OEI acceleration could theoretically slow down to 

119 knots before initiation go-around. Pilots will have about 11 seconds from 

nose-gear touchdown to evaluate deceleration levels and make critical decision to 

abandon landing roll and go-around. From the deceleration rate it can be 

concluded that no thrust reversers are used and the runway is very slippery, so 

PNR go-around could be an option to avoid almost certain overrun. 

 

 
 

Figure 10. PNR speed (solid) and time (dashed) on a slippery 8,000 ft runway at 

various touchdown distances and speeds with go-around and given decelerations.  

 

For the same runway, environmental, and airplane conditions as above, 

but having 9,000 ft LDA (Figure 11), the pilots could slow down to 113 knots 

(from 140 knots touchdown speed at 2,500 ft) and will have about 14 seconds to 

make decision to abort landing and execute OEI running takeoff and achieve 35 ft 

and V2 at DER SH. As expected longer runway will give pilots more time and the 

ability to slow down to lower speeds while making decisions to attempt to stop or 

accelerate and take off. Computational results for the case of 9,000 ft runway as 

shown graphically in Figure 11 are summarized numerically in Table 1. At longer 

touchdown points the pilots can only slow down to progressively faster speeds 

and have less time to make decisions to go-around. Longer runways normally 

offer pilots more time and alternatives, but what really counts is the runway 

remaining after touchdown and the available airplane’s kinetic energy level. 

21

Daidzic,: Rejected landing roll PNR

Published by Scholarly Commons, 2016



 
 

 
 

Figure 11. PNR speed and time on a slippery 9,000 ft runway at various 

touchdown distances and speeds for OEI go-around and given decelerations.  

 

Table 1 

 

PNR speeds (knots) and times (seconds) for LDA=9,000 ft and conditions given in 

Figure 11 

 

VTD [knot] 

LAIR [ft] 

1,500 2,500 3,500 

VPNR TPNR VPNR TPNR VPNR TPNR 

120 89.12 16.20 96.79 12.17 103.89 8.45 

125 93.56 16.49 100.88 12.65 107.70 9.07 

130 97.94 16.81 104.96 13.14 111.52 9.69 

135 102.29 17.16 109.02 13.63 115.35 10.31 

140 106.61 17.51 113.08 14.12 119.18 10.92 

145 110.90 17.89 117.12 14.62 123.03 11.53 

150 115.16 18.28 121.16 15.13 126.87 12.13 

155 119.39 18.68 125.19 15.64 130.72 12.74 

160 123.61 19.09 129.21 16.15 134.57 13.34 
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The next two results presented will address the effect of acceleration and 

deceleration magnitudes. Again, 8,000 and 9,000 ft runways will be used with 

unchanged OEI acceleration starting at PNR/TOGA condition. However, this time 

deceleration will be on dry runways with good braking characteristics (combined 

0.4g). Results for PNR calculations on a dry 8,000 ft runway for various 

touchdown points and speeds are graphically presented in Figure 12. It 

immediately becomes clear that airplanes can slow down to much lower speeds, 

but the time available between the nose-gear touchdown and PNR is halved 

compared to slow deceleration case (Figure 10). This may be very misleading as 

the pilots will actually have less time to make critical go-around decisions and 

may be deceived by the high deceleration magnitudes. This could be hazardous 

when landing long and/or fast on dry runway as was the case with the ill-fated 

B727 St. Thomas accident in 1976. Results for PNR calculations on a dry 9,000 ft 

runway for various touchdown points and speeds are graphically presented in 

Figure 13. Values of PNR speeds and times for an LDA=9,000 ft dry runway 

conditions are presented in Table 2. For operational use, the speeds would be 

rounded to the nearest larger integer (e.g., 93.55 knots becomes 94 knots), while 

times could be rounded to nearest lower integer (e.g., 9.32 seconds would become 

9 seconds) for additional safety margins. 

 

 
 

Figure 12. PNR speed (solid) and time (dashed) results on a dry LDA=8,000 ft 

runway at various touchdown distances and speeds for OEI go-around and given 

deceleration magnitude. 
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Figure 13. PNR speed (solid) and time (dashed) results on a dry LDA=9,000 ft 

runway at various touchdown distances and speeds and given deceleration. 

 

Table 2 

 

PNR speeds (knots) and times (seconds) for LDA=9,000 ft and conditions given in 

Figure 13 

 

VTD [knot] 

LAIR [ft] 

1,500 2,500 3,500 

VPNR TPNR VPNR TPNR VPNR TPNR 

120 44.98 9.84 69.41 6.63 86.90 4.34 

125 49.81 9.86 72.53 6.88 89.38 4.67 

130 54.31 9.93 75.61 7.13 91.87 5.00 

135 58.57 10.02 78.66 7.39 94.37 5.33 

140 62.65 10.14 81.68 7.65 96.88 5.65 

145 66.57 10.29 84.68 7.91 99.40 5.98 

150 70.36 10.44 87.66 8.18 101.93 6.30 

155 74.06 10.61 90.61 8.44 104.46 6.63 

160 77.66 10.80 93.55 8.71 107.01 6.95 

 

An ill-fated Hawker 800A Owatonna crash in 2008 was most likely the 

result of too slow deceleration (NTSB) due to multiple known and some 

24

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 3 [2016], Iss. 1, Art. 5

https://commons.erau.edu/ijaaa/vol3/iss1/5
DOI: https://doi.org/10.15394/ijaaa.2016.1110



 
 

undetermined reasons making overrun almost certain. After not experiencing any 

appreciable deceleration while the runway end was approaching rapidly, pilots 

have apparently aborted the landing roll and attempted go-around too late and 

below the PNR speed (past landing PNR). This led to unsuccessful takeoff and 

stall in ground effect resulting in high-speed impact with the terrain just past the 

runway’s departure end. Becoming safely airborne after slowing below runway 

PNR speed is not possible. On the other hand, the main cause for B727-95 

accident was landing too long with essentially no option to stop or to abort 

landing roll and go-around. Unfortunately, such information was not available to 

B727 crew and critical decisions were basically left to captain’s feel. Both of 

these unfortunate fatal accidents are well described by the theoretical 

considerations presented here. 

 

Some operators use simple guideline, which is to commit to landing roll 

deceleration under all circumstances once the thrust reversers are deployed. This 

is certainly common-sense and simple enough rule to follow, but not necessarily 

optimal or best in all situations. One has to consider that jet engine may take up to 

8 seconds to spool up to TOGA thrust from idle. On the other hand, engines in 

reverse thrust will spool up quicker when reversers are re-stowed. One would 

really need to study the operation and dynamics of each particular jet engine to 

establish best practices in both cases – with and without thrust reversers. In any 

case, aborted landing roll and go-around may be an option that could prevent 

some overruns. However, such option only safely exists if initiated before the 

PNR point. 

 

However, the real complication is that landings present very dynamic 

scenarios with many uncertainties as to the exact touchdown speeds and runway 

touchdown points, which cannot be controlled nearly as good as during normal 

takeoffs. Thus it is almost impossible for operators to schedule PNR go-around 

conditions. This is something that must be done in real time and during the actual 

operation in existing conditions. While a go-around after touchdown may be very 

rare in actual line operations, nevertheless it may easily result in fatal accidents if 

performed improperly. On the other hand, overrunning landing runways at high-

speed is also not an option and could be avoided if proper go-around is initiated in 

flight or after touchdown. The problem is that pilots may not know beforehand 

what exactly to expect in terms of decelerations while on approach and can start 

sensing the actual conditions only after the landing roll deceleration started. 

Without the availability of the accurate and efficient airplane-runway energy 

detection, monitoring, management, and information system the point-of-no-

return runway location and speed becomes impossible to compute and depend on. 
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The aviation industry has recognized the need for TOPM long time ago. 

But takeoff performance monitors alone are not sufficient to resolve landing PNR 

and go-around problems. Equally so, and perhaps even more important, are 

landing performance monitors, but such do not currently exist other than in 

rudimentary forms utilizing simple functions with the automatic brake systems. 

 

For that purpose an airplane and runway energy measurement, monitoring, 

management and protection system which monitors, informs, and protects all 

runway operations was developed by AAR Aerospace Consulting, LLC and is 

called TRSSTM. The total energy levels are monitored during takeoffs and 

landings in addition to following the longitudinal and lateral runway tracks and 

predicting motion along the runway based on measured accelerations, energy 

state, known environmental conditions, remaining runway, surface and tire 

condition, etc. It is hoped that such systems will significantly reduce runway 

landing and takeoff overruns, veer-offs, unsuccessful aborted landings, and other 

critical runway operations. 

 

Conclusions 

 

 The decelerate-accelerate-takeoff maneuver in transport category airplanes 

has been discussed. Mathematical model based on conservation of total energy 

has been used to calculate the point-of-no-return on a runway which will still 

enable the airplane to safely execute go-around and achieve regulatory screen 

heights and takeoff safety speeds. After this point has been exceeded or below the 

point-of-no-return speed no go-around should ever be considered. It is better to 

accept overrun which may or may not result in severe crash. Landing long and 

fast and/or decelerating on slippery runways may very well result in an overrun 

which could be prevented if the go-around is attempted before reaching this 

critical runway condition. The point-of-no-return on the runway will depend on 

many factors with most important ones being the levels of deceleration and 

acceleration, remaining runway left after touchdown and touchdown speed, 

airplane configuration change and engine acceleration characteristics, AEO or 

OEI takeoff, use of thrust reversers, and many other more or less important 

factors. It is important that operators develop standard operating procedures and 

train pilots on how to execute such go-around maneuver. The main problem with 

landing go-arounds is that landing cannot be well defined in terms of remaining 

energy and touchdown points. Dynamic conditions exist which without the 

availability of the proper airplane and runway energy measurement, monitoring, 

management, and information system makes the point-of-no-return runway 

location and speed impossible to predict accurately.  
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