
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 7 Number 1 Article 4

2012

Comparing Android Applications to Find Copying Comparing Android Applications to Find Copying

Larry Melling
Virtual System Platform Cadence Design Systems

Bob Zeidman
Zeidman Consulting

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Melling, Larry and Zeidman, Bob (2012) "Comparing Android Applications to Find Copying," Journal of
Digital Forensics, Security and Law: Vol. 7 : No. 1 , Article 4.
DOI: https://doi.org/10.15394/jdfsl.2012.1112
Available at: https://commons.erau.edu/jdfsl/vol7/iss1/4

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol7
https://commons.erau.edu/jdfsl/vol7/iss1
https://commons.erau.edu/jdfsl/vol7/iss1/4
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2012.1112
https://commons.erau.edu/jdfsl/vol7/iss1/4?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Digital Forensics, Security and Law, Vol. 7(1)

55

Comparing Android Applications to Find Copying

Larry Melling
Sr. Product Marketing Manager

Virtual System Platform Cadence Design Systems

USA

phone: 408-944-7432

fax: 408-910-2745

lmelling@cadence.com

Bob Zeidman

President

Zeidman Consulting

15565 Swiss Creek Lane

Cupertino, CA 95014 USA

phone: 408-517-1194

fax: 408-741-5231

Bob@ZeidmanConsulting.com

ABSTRACT

The Android smartphone operating system includes a Java virtual machine that

enables rapid development and deployment of a wide variety of applications. The

open nature of the platform means that reverse engineering of applications is

relatively easy, and many developers are concerned as applications similar to their

own show up in the Android marketplace and want to know if these applications

are pirated. Fortunately, the same characteristics that make an Android application

easy to reverse engineer and copy also provide opportunities for Android

developers to compare downloaded applications to their own. This paper

describes the process for comparing a developer’s application with a downloaded

application and defines an identifiability metric to quantify the degree to which an

application can be identified by its bytecode.

General Terms: Android, Bytecode, Decompiled Code, Identifiability Metric,

Java, Software Copying, Software Forensics, Software Plagiarism, Source Code.

Keywords: Android, BitMatch, Bytecode, CodeMatch, CodeSuite, Copying,

Decompiling, Forensics, Identifiability, Intellectual Property, Java, Metrics,

Plagiarism, Software, Source Code.

1. INTRODUCTION

In this paper we describe how to compare an Android application’s source code

with any downloaded Android application to find signs of copying. Many

Android developers, and Android game developers in particular, are finding their

Journal of Digital Forensics, Security and Law, Vol. 7(1)

56

applications being pirated from the online Android Marketplace (Ciancarini &

Favini, 2009; Hornshaw, 2011).

We had a goal to define a comparison methodology and develop an

“identifiability” metric to quantify how well a downloaded application could be

identified from its bytecode. One purpose of the comparison is to determine

whether a downloaded application was copied from another application, possibly

leading to a copyright infringement charge. One purpose of the metric is to

determine how much of an application’s identifying information can still be

obtained after its source code has been compiled into bytecode. Identifiability can

be a positive or negative characteristic. A program that is easily identifiable after

compilation may be easier to detect when it has been pirated, even if it is

subsequently modified. A program that is difficult to identify after compilation

may hide more of its trade secrets from reverse engineering and theft.

In this paper we present a case study that compares seven different Android

Sudoku games applications and defines a measure called “identifiability” that

represents how well the source code of an application can be identified by its

compiled bytecode.

2. THE COMPONENTS OF AN ANDROID APPLICATION

Some programming languages, like the Java programming language, use a

combination of compilers and interpreters. The Java compiler first turns the

human-readable source code into intermediate code called “bytecode” that is a

combination of computer-readable binary and human-readable text. A “Virtual

Machine” (“VM”) is a kind of interpreter that reads the bytecode and instructs the

computer to perform the appropriate instructions. Android applications consist of

bytecode that is delivered in an Android Package file (APK), a compressed

archive file. Once unpacked the contents of the APK include:

 assets directory: This directory contains an unstructured hierarchy of files,

defined by the app developer, for files that are retrievable as raw byte

streams.

 META-INF directory: This directory stores signature data that allows the

application to verify that the APK download and expansion completed

successfully.

 res directory: This directory is used to store resource files for the

application and includes information for the layout, names, and other

elements used by the application.

 AndroidManifest.xml file: This is a required file that contains the

application name, version, access rights referenced library files, etc.

 resources.arsc file: This is the binary resources file after compilation.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

57

 classes.dex file: This is the Java bytecode file that will run on the Dalvik

virtual machine used by Android and is not compatible with the typical

Java virtual machine.

To find signs of copying, the APK has two categories of files to examine: the non-

software source files (i.e. the AndroidManifest.xml file, the resource files, and the

asset files) and the software bytecode (i.e. the classes.dex file).

3. EXAMINING THE NON-SOFTWARE SOURCE FILES

3.1 AndroidManifest.xml Files

To extract the manifest file in a readable form, we used the apktool (Google Code,

2011b) program. The extracted manifest file content is described in the Android

developer documentation (Android Developers, 2012a):

Among other things, the manifest does the following:

 It names the Java package for the application. The package name

serves as a unique identifier for the application.

 It describes the components of the application—the activities, services,

broadcast receivers, and content providers that the application is

composed of.

 It names the Java classes that implement each of the components and

their capabilities. These declarations let the Android system know what

the components are and under what conditions they can be launched.

 It determines which processes will host application components.

 It declares which permissions the application must have in order to

access protected parts of the Android API and interact with other

applications.

 It declares the permissions that other applications are required to have

in order to interact with the application's components.

 It lists the Instrumentation classes that provide application code

profiling and other information as the application is running. These

declarations are present in the manifest only while the application is

being developed and tested; they're removed before the application is

published.

 It declares the minimum level of the Android API that the application

requires.

 It lists the libraries to which the application must be linked.

We visually inspected the manifest files of different applications to look for

similarities. A utility like WinMerge or Diff can be used to find matches between

two manifest files. We compared manifest files for different applications

OpenSudoku (Google Code, 2011d)0 and Andoku (Google Code, 2011a) and no

similarities were found. It is important to ignore similarities that are due to

Journal of Digital Forensics, Security and Law, Vol. 7(1)

58

requirements of Android or are similar for reasons other than copying, such as

Android APIs (Software Analysis & Forensic Engineering Corp., 2012).

3.2 Resource Files

In addition to the manifest, a res directory of folders and files was also examined.

These files are resource files in XML format. The Android Developer

documentation describes the importance of using resources (Android Developers,

2012b):

You should always externalize resources such as images and strings

from your application code, so that you can maintain them

independently. Externalizing your resources also allows you to provide

alternative resources that support specific device configurations such

as different languages or screen sizes, which becomes increasingly

important as more Android-powered devices become available with

different configurations. In order to provide compatibility with

different configurations, you must organize resources in your project's

res/ directory, using various sub-directories that group resources by

type and configuration.

Altova’s DiffDog (Altova, 2012) utility made it easy to compare two res

directories side by side. The tool automatically aligns directories with the same

name and compares files with the same name. We compared resource files for the

applications OpenSudoku and Andoku and no similarities were found. Again it is

important to ignore similarities that are due to requirements of Android or are

similar for reasons other than copying.

3.3 Asset Files

The assets directory contains a hierarchical directory of files used by the program.

Asset files may be bitmapped images, HTML files, or any other type of file

needed by the application. Not all applications have asset files. For the example

applications, OpenSudoku had no asset files while Andoku did have asset files.

4. COMPARISON METHODOLOGY AND MEASUREMENTS

The bytecode for the application is found in the classes.dex file of the application

APK. There are two approaches we considered for comparing the source code of

one app to the bytecode of the downloaded app: 1) compare the bytecode form of

the downloaded app or 2) decompile the bytecode into source code and compare

the decompiled source code form of the downloaded app (Kalinovsky, 2004;

Paller, 2009; Schulman, 2005a, 2005b, 2005c). We decided to try both

approaches.

Selecting a tool to perform the comparisons was the next step.

4.1 Forensic Tool Selection

Working from bytecode means some information from the original source code

Journal of Digital Forensics, Security and Law, Vol. 7(1)

59

will be lost, so a method to measure how much of the source code information is

retained in the bytecode is important. A tool capable of examining bytecode is

required. This requirement eliminated all but one of the forensic software analysis

tools that are commercially available
1
. CodeSuite® by SAFE Corporation is the

only tool that breaks down software into component elements and provides

metrics on each of the component elements and thereby measures a baseline for

source code coverage (Zeidman, 2006, 2008). It can also compare bytecode to

source code (Software Analysis & Forensic Engineering Corp., 2011).

4.2 Identifiability Metric

We wanted a measure that signifies how easily application code can be identified

after it has been compiled, because a goal of ours was to find out if a downloaded

application was copied from the original application’s source code. Some source

code elements such as identifiers and strings remain in bytecode after source code

is compiled into bytecode, while other source code elements such as statements

and comments are usually removed during compilation
2
. As a basis for an

identifiability measure we wanted to determine the percentage of source code

elements that remain in an application’s bytecode. We also wanted to decompile

bytecode back into source code and again determine the percentage of the source

code elements from the original source code that can be found in the resulting

decompiled source code.

4.2.1 Source code element metrics

Bob Zeidman previously defined a process for examining source code to find

copying that can be boiled down to: divide source code into basic elements, find

all matches between elements of different programs, and then filter out matches

that are not caused by copying (Zeidman, 2011). Based on this information, two

measures for the source code elements were taken, the first is how many total

elements exist and the second is how many of those elements are uncommon.

Uncommon elements are more helpful at determining the identifiability of the

application. Finding these uncommon elements in two different programs is a

strong indicator that one may have been copied from the other (Zeidman, 2006,

2008, 2011).

Obtaining these metrics for an application involves running two CodeSuite tools.

A CodeMatch® comparison of the application’s source code to itself gives a list

of all source code elements in the application. There are three types of elements

that we consider: comments and strings (str), identifiers (id), and statements

(stmt). The total number of source code elements of each type in a particular

11 Note that we required a software forensics tool not a digital forensics tool. Our analysis is not

about recovering data or determining the kind of data, but rather understanding the content of

the data. CodeSuite is one of the few tools that analyze software on this level. See The Software

IP Detective’s Handbook (Zeidman, 2011), Chapter 9, for further clarification.
2 A limitation of CodeMatch is that it lumps strings and comments together. For determining

identifiability it would be better to consider these two source code elements separately.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

60

application is represented as SE(str), SE(id), and SE(stmt). Running

SourceDetective® then determines the number of times each source code element

could be found on the Internet (“hits”). The Internet search hit count h is used to

qualify the counts. In Table 1, these totals returned from CodeMatch and

SourceDetective for the Android game OpenSudoku are shown. The numbers are

taken from spreadsheets generated by CodeSuite. In this case, elements with less

than 25 hits were considered uncommon and good potential indicators of copying,

and elements with 0 hits were considered unique. Future researchers may want to

test a different threshold than 25 hits for labeling a source code element as

uncommon, but this number worked well in these tests and in our experience.

Obviously an element that cannot be found elsewhere through an Internet search

(i.e., has 0 hits) is unique to that application.

CodeMatch Metrics Total SE(str)

+ SE(id)

+SE(stmt)

Comment/

String

SE(str)

Identifier

SE(id)

Statement

SE(stmt)

Total

(SE)

5,913 1,015 1,647 3,251

Uncommon

(h < 25 hits) (SE25)

3,599 684 431 2,484

Unique

(h = 0 hits) (SE0)

3,171 621 324 2,226

Table 1: CodeMatch analysis results of OpenSudoku source

4.2.2 Baseline for comparing bytecode

Next another CodeSuite tool, BitMatch®, was run to compare the application’s

source code with its own bytecode file (classes.dex). Then SourceDetective was

run to generate the report of hits. This information is needed to create a baseline to

quantify our likelihood of identifying copied code because we cannot expect

better results comparing one application’s bytecode to another application’s

source code (or bytecode) than when comparing one application’s bytecode to its

own source code.

Because CodeSuite provides these metrics by element type, it is valuable to define

the identifiability metric by type as well as defining the total identifiability. There

are three types of elements that we consider: comments and strings (str),

identifiers (id), and statements (stmt)
3
. The number of source code elements that

are also found in the application’s bytecode are represented as BE(str), BE(id),

and BE(stmt). The bytecode identifiability IB is the number of elements that can

3 CodeMatch lumps comments and string together. Comments cannot be found in bytecode, so

we refer to them simply as strings. Also, BitMatch extracts some text that it cannot determine to

be strings or identifiers and so considers them to be both.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

61

be found in the application’s bytecode as a percentage of the total number of those

elements in the application’s source code. The Internet search hit count h is then

used to qualify both the element (BEh) and total (SEh) counts so that identifiability

can be determined for elements with h or fewer hits. Source code elements with

high hit counts do not help uniquely identify an application while those with low

hit counts do.

The formulas for calculating the identifiability of an application’s bytecode are:

IBh(str) = BEh(str)/SEh(str)

IBh(id) = BEh(id)/SEh(id)

IBh(stmt) = BEh(stmt)/SEh(stmt)

IBh= (BEh(str)+BEh(id)+BEh(stmt))/(SEh(str)+SEh(id)+SEh(stmt))

Table 2 shows the results for the analysis of the bytecode for the Android game

OpenSudoku. As expected, because the bytecode does not include statements or

comments from the source, the identifiability for statements was 0 and the

comment/string identifiability comes only from strings. However, the

identifiability for identifiers was high, which means that if code was copied, the

comparison of bytecode with source code is very likely to find the copying

(unless all of the identifiers were subsequently renamed). In addition, the

coverage of unique identifiers (~90%) means that the compiling and packaging

process did not eliminate many unique identifiers.

BitMatch Metrics Total String(str) Identifier(id)

Elements (BE) 1,513 227 1,286

Identifiability (IB) 25.6% 22.4% 78.1%

Uncommon matches (BE25) 443 44 399

Uncommon identifiability (IB25) 12.3% 6.4% 92.6%

Unique matches (BE0) 326 34 292

Unique identifiability (IB0) 10.3% 5.5% 90.1%

Table 2: BitMatch analysis results of comparison of OpenSudoku's classes.dex

with its source code

4.2.3 Baseline for comparing decompiled source with original source

We can measure the identifiability of the decompiled bytecode using the same

methodology by comparing the application’s source code to the source code

from its decompiled bytecode.

4.2.3.1 Converting classes.dex to a JAR file

To get source code from the bytecode dex file requires decompiling. The JD-GUI

Journal of Digital Forensics, Security and Law, Vol. 7(1)

62

decompiler (Java Decompiler, 2012) was selected (see section 0 for more

information on the decompiler selection process). The decompiler works with

either a Java archive (JAR) file or bytecode class files. The free dex2jar utility

(Google Code, 2011c) was used to generate a JAR file from the classes.dex file.

4.2.3.2 Decompiling a JAR file

CodeMatch was used to compare the application’s original source code with its

decompiled source code. Then SourceDetective was run and decompiled code

identifiability metrics were calculated. The number of source code elements that

are also found in the application’s decompiled bytecode are represented as

DE(str), DE(id), and DE(stmt). The identifiability ID is the number of elements

that can be found in the application’s decompiled bytecode as a percentage of the

total number of those elements in the application’s original source code. The

Internet search hit count h is then used to qualify both the element (DEh) and total

(SEh) counts so that identifiability can be determined for elements with h or fewer

hits. Source code elements with high hit counts do not help uniquely identify an

application while those with low hit counts do.

The formulas for calculating the identifiability of an application’s decompiled

bytecode are:

IDh(str) = DEh(str)/SEh(str)

IDh(id) = DEh(id)/SEh(id)

IDh(stmt) = DEh(stmt)/SEh(stmt)

IDh = (DEh(str)+DEh(id)+DEh(stmt))/(SEh(str)+SEh(id)+SEh(stmt))

CodeMatch Metrics Total String

(str)

Identifier

(id)

Statement

(stmt)

Elements (SE) 1,831 134 1,267 430

Total Identifiability (ID) 31.0% 13.2% 76.9% 13.2%

Uncommon matches (SE25) 697 52 393 252

Uncommon Identifiability

(ID25)

19.4% 7.6% 91.2% 10.1%

Unique matches (SE0) 572 43 304 225

Unique Identifiability (ID0) 18.0% 6.9% 93.8% 10.1%

Table 3: CodeMatch analysis results comparing OpenSudoku decompiled

source code with its original source code

5. DECOMPILING ANDROID APPLICATIONS

Based on the results above it is clear the decompiler did not fully recreate the

source code, so we wondered how good is the decompiled code? Table 4 shows

Journal of Digital Forensics, Security and Law, Vol. 7(1)

63

the results of compiling the source code generated by the JD-GUI decompiler for

three different applications. These results illustrate that the decompile process

often does not produce source code that can be compiled or executed.

App Compiles? Executes?

Hello World Yes Yes

Notepadv1 No No

OpenSudoku No No

Table 4: Validate JD-GUI decompiled code by attempting to compile and run

Because the decompiled code from JD-GUI does not compile, it made sense to

look at other Java decompilers. The JAD decompiler (Varaneckas, 2001), another

popular open source Java decompiler, was also tested using the same three

applications. The results are shown in Table 5.

App Compiles? Executes?

Hello World Yes Yes

Notepadv1 No (warning class file version 50 not

supported, but generated Java files)

No

OpenSudoku No (errors and crashed decompiling

CommandStack.class)

No

Table 5: Validate JAD decompiled code by attempting to compile and run

Based on this testing, while the JD-GUI decompiler didn’t produce compilable

code, it was selected because it was able to decompile all of the test cases while

JAD failed to generate code in 2 out of the 3 cases tested.

Is decompiling a useful technique for identifying copying when source code is

unavailable? The surprising result seen in Table 3 is that decompiling did improve

the total identifiability. Comparing an application’s source code with the source

code that is decompiled from a suspect application’s bytecode appears to be a

slightly better way to detect copying than to directly compare an application’s

source code to a suspect application’s bytecode. This is because bytecode

decompilation produces source code statements that can then be compared,

increasing the identifiability. And in general, being able to view source code will

give you a better understanding of the context of any matching source code

elements. The case study below can better illustrate how decompiling helps.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

64

6. CASE STUDY: COMPARING DIFFERENT ANDROID SUDOKU

APPLICATIONS

To illustrate the comparison methodology, we selected a variety of Android

Sudoku applications for a case study. The Android Sudoku applications chosen

were:

 Andoku

 Sudoku_bomb

 Enjoy Sudoku

 Mobile Sudoku

 Standard Sudoku

 Sudoku UI

Each of these was compared with OpenSudoku, the application used in the source

code element coverage measures (see Section 0).

6.1 Bytecode to Source Code Comparison

The table below details the number of source code element matches found when

comparing an application’s bytecode with OpenSudoku’s application source code.

Table 6 identifies application Andoku as having uncommon string and identifier

matches with application OpenSudoku. The matched elements are listed in the

CodeSuite report and shown in Table 7.

Because these elements are not commonly used—based upon Internet searches—

the next step is to identify where they occur in the OpenSudoku application

source code and how they are used. Searching the OpenSudoku source files for all

occurrences of the elements shows that the matches occur in important files or

code segments.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

65

Application Total

element

matches
4

String matches

total/uncommon/

unique

Identifier matches

total/uncommon/

unique

Andoku 329 22 / 1 / 0 325 / 4 / 1

Sudoku_bomb 227 6 / 0 / 0 226 / 0 / 0

EnjoySudoku 387 14 / 0 / 0 384 / 0 / 0

Mobile37Sudoku 182 5 / 0 / 0 180 / 0 / 0

StandardSudoku 266 14 / 0 / 0 264 / 0 / 0

Sudoku.ui 204 12 / 0 / 0 202 / 0 / 0

Table 6: BitMatch results for app bytecode to OpenSudoku source code

Matching program elements Search hits

Strings

bad menuInfo 21

Identifiers

DIALOG_RESET_PUZZLE 0

DIALOG_DELETE_FOLDER 1

EXTRA_FOLDER_ID 1

insertFolder 21

Table 7: OpenSudoku to Andoku uncommon matches

The string “bad menuInfo” is used in the OpenSudoku source code for error

messaging.

The identifier “DIALOG_RESET_PUZZLE” is used in the OpenSudoku source

code in a switch statement that controls the appearance of different dialogs based

on a user’s action.

The identifier “EXTRA_FOLDER_ID” is found fifteen times in five different

OpenSudoku source code files, all within the GUI.

This collection of information provides compelling evidence of possible copying

between Andoku and OpenSudoku because it identifies matches in a number of

different code files. Next the decompiled code is used to provide more context to

this possible copying.

4 Note that the total elements is less than the sum of string elements and identifier elements due

to some elements being in both categories because BitMatch cannot be certain whether a single

word is an identifier or string.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

66

6.2 Decompiled Bytecode to Source Code Comparison

Table 8 shows the decompiled code results for all the applications. The analysis

identifies Andoku with uncommon element matches.

App tested Total

Elements

String

matches

total/uncom/

unique

Identifier

matches

total/uncom/

unique

Statement

matches

total/uncom/

unique

Andoku 468 10 / 1 / 0 376 / 5 / 1 82 / 1 / 0

Sudoku_bomb 300 2 / 0 / 0 247 / 0 / 0 51 / 1 /0

EnjoySudoku 417 3 / 0 / 0 337 / 0 / 0 77 / 1 / 0

Mobile37Sudoku 287 4 / 0 / 0 224 / 0 / 0 59 / 0 / 0

StandardSudoku 294 2 / 0 / 0 240 / 0 / 0 52 / 0 / 0

Sudoku.ui 363 7 / 0 / 0 296 / 0 / 0 60 / 1 / 0

Table 8: CodeMatch results for comparing OpenSudoku source code to

decompiled source code

In Table 9, the uncommon matches found between the Andoku decompiled byte

code and OpenSudoku source code are listed.

Matching program elements Search hits

Strings

bad menuInfo 21

Identifiers

DIALOG_RESET_PUZZLE 0

DIALOG_DELETE_FOLDER 1

EXTRA_FOLDER_ID 1

FolderListActivity 1

insertFolder 21

Statements

Import android.widget.SimpleCursorAdapter.ViewBinder 22

Table 9: Uncommon matches between OpenSudoku and Andoku

A comparison of OpenSudoku source code with Andoku decompiled source code

Journal of Digital Forensics, Security and Law, Vol. 7(1)

67

was performed. Even though close examination of the decompiled code revealed

a functional error that would prevent the code from executing, the string “bad

menuInfo” matched, the file name matched, the class name matched, and the

method name matched, indicating that these two code segments have significant

similarity.

We downloaded the actual Andoku source code (Google Code, 2011a) and found

it to be nearly identical to the OpenSudoku source, thereby validating what our

code analysis had flagged.

The other matched items from Table 9 also identified segments of code with

copying. The additional information that the decompiled code provided gave

context to the matched elements, offering more compelling evidence of copying.

7. CONCLUSIONS

In this paper we defined an identifiability metric for a software application that

can give a developer an idea of how easy or difficult it is to identify bytecode as

being derived from an application’s source code. A high identifiability means it

will be easier to detect that another application was derived from or copied from

the application. A low identifiability means that an application's trade secrets are

better hidden.

In this paper, the viability of analyzing Android applications to discover possible

copyright infringement without access to source code is demonstrated. The code

comparison techniques identified uncommon element matches, offering

developers an effective solution to identify code copying. The surprising result

was that it was slightly more effective to use decompiled bytecode rather than

bytecode in the comparison. It seems that decompiling puts information back into

the code that is in the bytecode but difficult to identify.

While any evidence uncovered without access to source code may be compelling

enough to convince a judge that there is reason for litigation, gaining access to

source is ultimately needed to prove the extent of the copying. Because the

techniques demonstrated apply to code that has been compiled and information

has thus been removed, they do not cover 100% of the source code elements, and

thus not finding any uncommon element matches does not disprove copying.

8. ACKNOWLEDGEMENTS

The authors would like to thank Jim Zamiska and Nik Baer for their detailed

reviews and their in-depth discussions about the metrics and methodologies

developed in this paper.

REFERENCES

Altova. (2012). DiffDog - XML-aware diff merge tool for file, folder,

directory, and database differencing. Retrieved April 17, 2012, from

http://www.altova.com/diffdog/diff-merge-tool.html

Journal of Digital Forensics, Security and Law, Vol. 7(1)

68

Android Developers. (2012a). The AndroidManifest.xml file. Retrieved April

17, 2012, from http://developer.android.com/guide/topics/manifest/manifest-

intro.html

Android Developers. (2012b). Application Resources. Retrieved April 17,

2012, from http://developer.android.com/guide/topics/resources/index.html

Ciancarini, P. and Favini, G.P. (2009). Plagiarism detection in game-playing

software. In Proceedings of the 4th International Conference on Fondations of

Digital Games, Port Canaveral, FL, April 26-30, 2009.

Google Code. (2011a). ardorleo-p-andoku: p-andoku - soduko-puzzles clone.

Retrieved April 18, 2012, from http://code.google.com/r/ardorleo-p-andoku

Google Code. (2011b). Android-Apktool: A tool for reverse engineering

Android apk files. Retrieved April 17, 2012, from

http://code.google.com/p/android-apktool

Google Code. (2011c). dex2jar: Tools to work with Android .dex and Java

.class files. Retrieved April 17, 2012, from http://code.google.com/p/dex2jar

Google Code. (2011d). OpenSudoku-Android: Sudoku for Android. Retrieved

April 17, 2012, from http://code.google.com/p/opensudoku-android

Hornshaw, P. (2011, March 18). Game developers struggle with piracy,

malware in Android Market. Appolicious Advisor. Retrieved April 17, 2012,

from http://www.androidapps.com/tech/articles/7177-game-developers-

struggle-with-piracy-malware-in-android-market

Java Decompiler. (2012). Introduction. Retrieved April 17, 2012, from

http://java.decompiler.free.fr

Kalinovsky, A. (2004). Covert Java: Techniques for Decompiling, Patching,

and Reverse Engineering. Indianapolis: Sams Publishing.

Paller, G. (2009). Understanding the Dalvik bytecode with the Dedexer tool.

Retrieved April 17, 2012, from

http://pallergabor.uw.hu/common/understandingdalvikbytecode.pdf

Schulman, A. (2005a, July 1). Finding Binary Clones with Opstrings &

Function Digests: Part I. Dr. Dobbs Journal. Retrieved April 17, 2012, from

http://drdobbs.com/184406152?queryText=Finding+Binary

+Clones+with+Opstrings+%26amp%3B+Function

Schulman, A. (2005b, August 1). Finding Binary Clones with Opstrings &

Function Digests: Part II. Dr. Dobbs Journal. Retrieved April 17, 2012, from

http://drdobbs.com/184406203?queryText=Finding+Binary

+Clones+with+Opstrings+%26amp%3B+Function

Schulman, A. (2005c, September 1). Finding Binary Clones with Opstrings &

Function Digests: Part III. Dr. Dobbs Journal. Retrieved April 17, 2012, from

Journal of Digital Forensics, Security and Law, Vol. 7(1)

69

http://drdobbs.com/tools/184406247?queryText=Finding

+Binary+Clones+with+Opstrings+%26amp%3B+Function

Software Analysis & Forensic Engineering Corp. (2011). CodeSuite User’s

Guide, v4.3. Retrieved April 17, 2012, from http://www.safe-

corp.biz/documents/CodeSuite%20Users%20Guide.pdf

Software Analysis & Forensic Engineering Corp. (2012) Our Process.

Retrieved April 17, 2012, from http://safe-corp.biz/company_process.htm

Varaneckas, T. (2001) JAD Java Decompiler Download Mirror. Retrieved

April 17, 2012, from http://www.varaneckas.com/jad

Zeidman, R. (2006). Software Source Code Correlation. In Proceedings of the

5th IEEE/ACIS International Conference on Computer and Information

Science and 1st IEEE/ACIS International Workshop on Component-Based

Software Engineering, Software Architecture and Reuse (ICIS-COMSAR'06),

August 10-12/2006, Honolulu, HI.

Zeidman, R. (2008). Multidimensional Correlation of Software Source Code.

In Proceedings of the Third International Workshop on Systematic Approaches

to Digital Forensic Engineering, May 22, 2008, Oakland, CA.

Zeidman, B. (2011). The Software IP Detective’s Handbook. Westford, MA:

Prentice Hall.

AUTHOR BIOGRAPHIES

Larry Melling is a research engineer at Zeidman Consulting. He has

over 30 years of executive management and engineering experience

in developing new hardware and software technologies and bringing

them to market. He has been engaged in applications engineering and

marketing of electronic design automation (EDA) tools at major

companies and small startups. He has also been involved in the development of

sophisticated tools for source code and object code analysis for finding

intellectual property infringement.

Bob Zeidman is a Senior Member of the IEEE, the president of

Zeidman Consulting and the president of Software Analysis and

Forensic Engineering. Among his publications are technical papers

on hardware and software design methods as well as four textbooks

– The Software IP Detective’s Handbook, Designing with FPGAs and CPLDs,

Verilog Designer's Library, and Introduction to Verilog. He has taught courses at

engineering conferences throughout the world. Bob holds several patents. He

earned a master's degree in electrical engineering at Stanford University and

bachelor's degrees in physics and electrical engineering at Cornell University.

Journal of Digital Forensics, Security and Law, Vol. 7(1)

70

	Comparing Android Applications to Find Copying
	Recommended Citation

	Comparing Android Applications to Find Copying

