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Integrating Situation Awareness Assessment Into Test 
and Evaluation 

Cheryl A. Bolstad, Ph.D. and Haydee M. Cuevas, Ph.D. 
SA Technologies, M arietta, Georgia 

To guarantee the success if network-centric operations, waijighters need the ability to extract 

and share critical task-relevant information to develop and maintain the situation awareness 

that is so critical far effective team pe1formance. A s such, the design if emerging technologies and 

systems must adopt a "user-centric" approach, with consideration for human iiifonnation 

processing capabilities and limitat ions. I n turn, to ensure that these technologies and systems are 

meeting their design objectives, test and evaluation must similarly be expanded to include 

metrics that assess how well system fea tures and fimctions ai·e supporting critical human 

cognitive processes such as situation awareness and decision-making. In this article, we address 

this issue, focusing specifically on situation awareness. We discuss how situation awareness 

assessment, at both the individual and team level, can be integrated into test and evaluation. 

We also cite examples from our own research to demonstrate the diagnosticity afforded by 

situation awareness assessment. 

Key words: D ecision- making, diagnos tics, human cognition, information technology, 

network centric warfare, team performance. 

etwork centric warfare promises to 
provide revolutionary command, con­
trol, and communications capabili­
ties. W ith this increased network-N centricity, the state of current mili tary 

operations is shifting from trad itional large command 
and control centers to small groups working together in 
a distributed manner through the use of information 
technology. Although advances in info rmation tech­
nology are enabling this drive toward network­
cen tricity through the development of networked 
databases, greater bandwidths, and more sophisticated 
collaboration tools, the deciding factor is how human 
operators will be able to work collaboratively to 
capitalize on th is enormous volume of available 
information (Lawlor 2005). 

To guarantee the success of network-centric oper­
ations, warfighters need the ability to extract and share 
critical task-relevant information to develop and 
maintain the situation awareness (SA) that is so cri tical 
for effective team perfo rmance. As such, the design of 
emerging technologies and system s must adopt a use1'­
centric approach, with consideration for human infor­
mation processing capabilities and limitations. I n turn , 
to ensure that these technologies and systems are 
meeting their design objectives, test and evaluation 
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must similarly be expanded to include m etrics th at 
assess how well sys tem features and fu nction s are 
supporting cri tical human cognit ive processes such as 
SA and decision-making. I n this article, we address 
this issue, focusi ng specifically on SA. W e begin with a 
brief overview of SA , defini ng thi s constru ct a t both 
the individual and team level. W e then discuss h ow SA 
assessment can be integrated into test and evaluati on, 
ci ting examples from our own research. 

SA defined 
Although several different definitions of situat ion 

awareness have been put fo rth in th e li terature (Fracker 
1991; Sarter and W oods 199 1; Smith and H ancock 
1995), in thi s arti cle, we focus on E ndsley's (1995b) 
theoretical model of SA, which defines this co mplex 
cogni t ive construct as "the percept ion of elem ents in 
the enviro nme nt within a volume of ti me and space, 
the comprehension of their meaning, and the projec­
tion of their status in the near fu ture" (E nds ley l 995b, 
36) . A s implied by th is defini tion, SA involves bein a 

b 

aware of what is happening arou nd you to unders tan d 
how information , events, and your own actions wi ll 
affect you r goals and objectives , both now and in th e 
near fut ure. Endsley's defin it ion highlights th ree leve ls 
of SA: perception, comprehension, and proj ec tion . 
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Perception (Level 1 SA) involves an active process 
whereby individuals extract significant cues from their 
environment, selectively directing attention to impor­
tant information, while disregarding nonrelevant 
items. Comprehension (Level 2 SA) involves integrating 
this information in working mem01y to understand 
how the information will influence the individual's 
goals and objectives. Projection (Level 3 SA) involves 
extrapolating this information fo1ward in time to 
determine how it will affect future states of the 
operating environment. Consideration of these three 
levels of SA is useful for understanding the types of 
difficulties human operators face while performing 
their tasks and also for determining how best to 
mitigate these challenges. 

At the team level, SA can be viewed in terms of both 
team SA and shared SA. Team SA can be defined as 
"the degree to which eve1y team member possesses the 
SA required for his or her responsibilities" (Endsley 
1995b, 39). Thus, to ensure successful performance, 
each team m ember needs to have superior SA on those 
factors that are relevant for his or her job. In contrast, 
shared SA can be defined as "the degree to which team 
m embers possess the same SA on shared SA 
requirements" (Endsley and Jones 2001, 48) . A maj or 
part of teamwork involves understanding the SA 
requirements that are relevant across multiple team 
members. Successful team performance, therefore, is 
influenced by the degree to which team members share 
a common understanding of what is happening on 
these shared SA elements. In other words, team 
members must be able to access and similarly interpret 
important information on the shared SA requirements 
that are relevant across their different positions. 

Role of SA in human performance 
SA represents one of the most challenging aspects of 

human performance. In particular, in most complex 
tasks, effective decision-making largely depends upon 
the degree to which individuals have developed a good 
understanding of the si tuation, namely, their SA. SA is 
especially cru cial in domains where information flow 
can be quite high and poor decisions may lead to 
serious consequences (e.g., piloting an airplane, 
fun cti oning as a soldier, treating critically ill or injured 
patients). Indeed, SA has bee n recognized as a critical, 
ye t often elusive , fo undation for successful decision­
making across a broad range of complex and dynamic 
sys tems , including aviation and air traffic control 
(Nullmeye r et al. 2005), emergency response and 
military command and contro l operations (Blandford 
and W ong 2004; Gorman, Cooke, and Winner 2006), 
and offshore o il and nu clear power plant management 
(Flin and O 'Conn or 2001) . Lacking SA or having 

inadequate SA has been consistently identified as one 
of the primary factors in accidents attributed to human 
error (Hartel, Smith, and Prince 1991; Merker, 
Bergondy, and Cuevas-Mesa 1997; Nullmeyer et al. 
2005) . Yet, developing and maintaining SA imposes 
high cognitive demands upon human operators in 
terms of time, attention, and effort. Fortunately, the 
cognitive load associated with achieving high levels of 
SA can be mitigated through SA-oriented system 
design (see Endsley, Bolte, and Jones 2003) and SA­
oriented training programs (Strater and Bolstad 2009) . 
Hence, test and evaluation plays a major role in 
ensuring that these systems achieve their design 
objectives, a topic we turn to next. 

SA assessment 
An SA-oriented approach to test and evaluation 

goes beyond simply assessing a system's functional 
capabilities to also include how well the system's design 
supports human operators' critical cognitive processes 
underlying SA and decision-making. At the team­
level, this also includes evaluating the system's 
effectiveness in supporting the team's ability to assess 
and track coordination, communication, collaboration, 
and information-sharing activities . In general, meth­
odologies to assess SA va1y in terms of direct 
measurement (e.g., objective real-time probes or 
subj ective questionnaires assess ing perceived SA) or 
indirect methods (e.g., process indices, trained observer 
ratings) that infer SA based on operator physiological 
state, behavior, or performance. Direct measures are 
typically considered to be "product-oriented" in that 
these techniques assess an SA outcome; indirect 
measures are considered to be "process-oriented," 
focusing on the underlying processes or mechanisms 
required to achieve SA (Graham and Matthews 2000). 
Selecting which methodology to use depends upon the 
researcher's objectives and what data collection facil­
ities or se tup is available. Examples of each of these SA 
measurement approaches will be furth er described 
next. 

Process indices 
Process indices, such as psycho-physiological mea­

sures, examine how individuals process information in 
their environment (\Vilson 2000) . Such measures 
include electroencephalography (EEG), event-related 
potentials (ERP), event-related desynchronization 
(ERD), heart rate variabi1 ty (HRV), electrodermal 
activity (EDA), eye blinks, and eye tracking. Tracking 
eye movements, in particular, is one of the more 
common psycho-physiological approaches for provid­
ing insight into perception and comprehension . Eye­
tracking devices can be used to monitor where 
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operators are directing their attention , and thereby, 
determine whether the saliency of important cues is 
sufficient or if nonessential cues are drawing away the 
operator's attention. Analyzing communications can 
also serve as process indices of operator SA. For 
example, verbalizations made by operators during a 
task can be analyzed to determine how well informa­
tion is being acquired from a system designed to 
support this task. 

Process indices are advantageous in that these offer 
objective assessment of operator SA and provide an 
indication of information access and utilization. 
However, process indices create large amounts of data 
to analyze and are difficult to implement in the real­
world environment (e.g., eye-tracking devices, if head­
mounted, can be cumbersome and intrusive). Further, 
process indices do not directly assess SA but rather can 
only be used to infer SA. In other words, these 
measures do not indicate what is actually done with the 
information acquired (processing) or whether the 
information is registered correctly or what is retained 
in memory. Instead, these measures simply indicate 
that the operator looked at the information. Given 
these limitations, process indices are more suitable for 
investigating specific research questions of information 
acquisition and for examining the processes underlying 
SA (e.g., perception, attention) rather than the final 
product. 

Subjective measures 
Subj ective measures directly assess SA by asking 

individuals (or experienced observers) to rate their SA 
on an anchored scale (for a detailed review, see Jones 
2000). These ratings can be collected during task 
performance or following task completion. Subjective 
measures of SA are attractive in that they are relatively 
straigh tfo1ward , inexpensive, and easy to administer. 
H owever, several important limitations should be 
noted. Individuals making subjective assessments of 
their own SA are often unaware of information they do 
not know. Further, self- ratings may be tainted by 
perfo rmance outcomes. Subjective measures also tend 
to be global in nature and, as such, do not fully exploit 
th e multivariate nature of SA to provide the detailed 
diagnostics ava ilable with objective measures . Never­
theless , self-ratings may be useful in that they can 
provide an assessment of operators' degree of confi­
dence in their SA. 

Subj ective estimates of an individual's SA may also 
be made by experienced observers (e .g ., supervisors, 
trained external experts) . These observer ratings may 
be somewhat superior to self-rati ngs of SA because 
more information about the true state of the environ­
ment is usuaUy available to the observer than to the 
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operator, who may be focused on performing the task 
(i.e., trained observers may have more complete 
knowledge of the situation) . However, observers have 
only limited knowledge about the operator's concept of 
the situation and cannot have complete insight into the 
mental state of the individual being evaluated . Thus, 
observers are forced to rely more on operators' 
observable actions and verbalizations in order to infer 
their level of SA. In this case, such actions and 
verbalizations are best assessed using performance and 
behavioral measures of SA, as described next . 

Performance and behavioral measures 
Performance measures infer SA from the end result 

(i .e., task performance outcomes) based on the 
assumption that better performance indicates better 
SA. Common performance metrics include quantity of 
output or productivity level, time to perform the task 
or respond to an event, and the accuracy of the 
response or, conversely, the number of errors commit­
ted. The main advantage of performance measures is 
that these can be collected objectively and without 
disrupting task performance. However, although 
evidence exists to suggest a positive relation between 
SA and performance, this connection is probabilistic 
and not always direct and unequivocal (Endsley 
1995b). In other words, good SA does not always lead 
to good performance, and poor SA does not always 
lead to poor performance (Endsley 1990) . Thus, 
performance measures should be used in conjunction 
with others measures of SA that directly assess this 
construct. 

Behavioral measures also infer SA from the actions 
that individuals choose to take, based on the 
assumption that good actions wilJ follow from good 
SA and vice versa. Behavioral measures rely primarily 
on observer ratings and are thus somewhat subjective in 
nature . To address this limitation, observers can be 
asked to evaluate the degree to which individuals are 
carrying out actions and exhibiting behaviors that 
would be expected to promote the achievement of 
higher levels of SA. This approach removes some of 
the subj ectivity associated with making judgments 
about an individual's internal state of knowledge by 
allowing them to make judgments about SA indicators 
that are more readily observable. 

Objective measures 
Obj ective measures directly assess SA by comparing 

an individual's perceptions of the situation or environ­
ment with some "gro und truth" reality. Specifically, 
objective measures can be used to collect data from 
operators' perceptions of the situation and co rn pare thi s 
with what is actually happening at a given m om ent in 
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time. Thus, this type of assessment provides a direct 
measure of SA and does not require operators or 
experimenters to make judgments about situational 
knowledge on the basis of incomplete information. 
Objective measures can be gathered in one of three 
ways: during an interruption in task performance (e.g., 
queri es), real time as the task is completed (e.g., 
probes), or posttest following completion of the task. 

One common approach to directly and objectively 
measure SA is the Situation Awareness Global 
Assessment Technique (SAGAT) (Endsley 1995a). 
SAG AT utilizes a concurrent memory probe technique 
that presents queries related to the current task 
environment. Administration of the SAGAT involves 
freezing a simulation exercise at randomly selected 
times and hiding task information sources (e .g., 
blanking visual displays) while individuals quickly 
answer randomly ordered questions about their current 
perceptions of the situation. These responses are then 
compared with "ground truth" (i.e., actual data on the 
real situation) to assess the accuracy of the individuals' 
SA. However, because it involves interrupting task 
performance, SAGAT is better suited for assessing SA 
in simulation exerci ses and may not be practical for 
real-time measurement of SA. 

For se ttings in which disruptions to task perfor­
mance are not practical or desirable, real-time probes 
(e.g., open -ended questions embedded as ve rbal 
communications during the task) can be administered 
to naturally and unobtrusively assess operator SA 
Qones and Endsley 2000). Real-time probes are similar 
to SAGAT in that they query operators on their 
knowledge of key task-relevant information in the 
environment; however, this methodology differs from 
the SAGAT in that task performance is not disrupted 
(i.e. , the simulation or task is not stopped) but rather 
the queries are incorporated as a natural part of the 
task. 

Modeling SA 
SA modeling approaches can be used to objectively 

predict SA based on readily observable verbal and 
nonverbal communications. Specifically, team commu­
nications (particularly verbal communications) support 
the knowledge building and info rmation processing 
that lead to SA construction (Endsley and Jones 2001). 
Thus, since SA may be distributed via communication, 
computati o nal linguistics and machine learning tech­
niques can be combined with natural language 
analyti ca l techniques (e.g., Latent Semantic Analysis) 
to create models that draw on the verbal expressions of 
th e team to predict SA and task performance (Bolstad 
et al. 2005b, 2007). For example, the A utomated 
Com munica tion and Situation Avva reness (ACASA) 

tool offers near real-time, nonintrusive, quantitative 
assessment of SA by analyzing communication ex­
changes among team members (Foltz et al. 2008). 
Since the communication data are collected using 
either Automatic Speech Recognition (ASR) software 
or transcriptions of speech recordings, this methodol­
ogy does not interrupt activities or affect performance. 
Thus, SA modeling approaches, such as the ACASA 
tool, are appropriate for use in both simulations and 
real-world environments. Further, this methodology 
can provide diagnostic information regarding current 
SA. For example, when coupled with ASR software, 
the ACASA tool can be used to quickly identify 
whether or not immediate action needs to be taken to 
address poor SA among team members. 

Although evidence exists to support the utility of 
communication analysis for predicting team SA (Foltz 
et al. 2008) , time constraints and technological 
limitations (e.g., cost and availability of speech 
recording systems and speech-to-text translation soft­
ware) may make this approach more time consuming in 
terms of up-front investment. In addition, the models 
generated using this approach are domain- and task.­
specific; thus, unique models must be created for each 
environment or application. Last, this measure is only 
effective for measuring SA in a team environment and 
would not be suitable for situations in which a single 
operator is being evaluated . 

Applying SA assessment to teams 
Not surprising, assess ing team and shared SA is 

more complex than assessing SA at the individual level. 
Some methodologies are inherently more readily 
applicable for team-level assessment. For example, 
the ACASA tool described earlier is specifically 
designed to be applied in a team context; thus it can 
be used to evaluate information fl ovv during task 
perfo rmance in terms of how well team members are 
sharing the SA information requirements necessary for 
building and maintaining both team and shared SA. 
Similarly, behavioral measures can be used to support 
assessment of the types of overt team behaviors and 
communications that are indicative of SA. 

Comparison of individual responses to obj ective 
measures of SA (e.g., SAGAT queries or re;tl-time 
probes) across different team members can be used to 
ascertain the degree to which they have developed a 
common and accurate understanding of the situation 
or task environment (i. e., shared SA) . T hus, this 
approach can provide the degree of diagnosticity 
needed to fully evaluate team performance. T he 
simplest analysis involves comparing performance 
between two team members. For example, when 
amtlyzing two team members' responses to a SAGA T 
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query, one of four possible ourcomes can occur: borh 
individuals are correct; one individual is correct and the 
other is incorrect; both individuals are incorrect and 
they have the same response; or both individuals are 
incorrect but they have different responses (Endsley 
and Jones 2001). The latter three outcomes highlight 
differen t problems with the team members' shared SA, 
which in turn can provide insights on how to address 
this potential breakdown in team performance. 

Lessons learned in SA assessment 
Our work on assessing SA in team operations has 

demonstrated that using multiple metrics provides the 
greatest utility in terms of understanding how and why 
teams perform. For example, in a brigade-level 
simulated military exercise, we utilized the SAGAT 
methodology to evaluate a possible new unit formation 
(Bolstad and Endsley, In press) . While the overall 
exercise was deemed a success , analysis of our SA 
assessment results indicated that placing the Deputy 
Brigade Commander away from the Commander 
hindered his ability to develop the same level of SA 
as the Commander. In another military exercise, we 
evaluated using cross-training as a method to improve 
team SA and performance (Bolstad et al. 2005a, 
2005b). In addition to administering an objective 
measure of SA (i.e ., SAGAT queries), we also included 
a subjective measure of team communication that 
specifically asked participants to rank order other team 
members based on their frequency of communication 
with them during the scenario; this measure was used 
to calculate social network distance, that is, the 
frequency with which team members communicated 
with each other. While results showed that cross­
training, particularly in a leadership role, did lead to 
improved SA, analysis of the communication data also 
provided some insights on potential factors influencing 
team SA and perfo rmance. Specifically, physical 
distance (i. e., whether participants were co-located or 
distributed during the scenario) was found to be a 
significant predictor of both shared SA and social 
network distance. This finding supports the view that 
direct information exchange may be used as an input 
for building a team member's individual SA (Endsley 
and Jones 2001 ; M ilham, Barnett, and O ser 2000). 

O ne important lesson learned from these research 
studies is that increasing the sensitivity and diagnos­
ticity of test and evaluation involves adopting a multi­
faceted approach to assessment . Rather than rely on a 
single approach or metric, valid and reliable assessment 
should utilize a battery of distinct yet related measures 
that complement each other; this approach capital_i zes 
on the strengths of each measure while minimizing the 
Emitations inherent in each. Combining multiple 
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measures toge ther can provide valuable info rmation 
with regard to factors influencing team SA, d ecision­
making, and performance, such as the effect of team 
organization, distribution, and communication pat­
terns. 

Conclusion 
Assessment of SA provides a degree of diagnosticity 

that is especially useful in the test and evaluation of 
new technologies and systems. SA assessment can be 
used to identify the source of the problem as well as to 
establish a baseline for comparison of the effects of 
different design concepts. More specifically, integrat­
ing SA assessment into test and evaluation can allow 
researchers to determine if a new technology or system 
is helping or hindering human operators' ability to 
perceive critical information (Level 1 SA), comprehend 
the relevance of this information to their task (Level 2 
SA), and use this information to predict what will 
happen next (Level 3 SA); as well as to evaluate how 
these effects on operator SA influence decision-making 
and, ultimately, safety and performance. At the team­
level, SA assessment can be used to determine the 
degree to which information is being exchanged among 
team members to support both team and shared SA. 

In both cases, determining the best SA measures for 
inclusion in Mission-Based Test and Evaluation events 
depends upon multiple factors, such as the study's 
objectives, team size, other variables being assessed, 
and the ability to integrate the selected measures into 
th e experimental test plan. However, whenever possi­
ble, a multi-faceted approach to SA assessment is 
desirable to ensure a higher level of diagnosticity in the 
overall assessment. 0 

D R. CHERYL A . B oLST/ID is a principle research associate 
at SA T echnologies, headquartered in M arietta, Georg ia. 
She receiv ed her doctor rf philosophy degree in p sy chology, 
sp ecializing in cognit ion and aging, fi'om N orth Ca rolina 
State University (Raleigh, North Carolina). Dr. B olstad 
has 20 years ef exp erience as a human factors engineer and 
has w orked on a wide variety ef projects including team 
peifonnance analysis and measurement, t rain ing p rogram 
design and evaluat ion, collaboration tool design, and 
cognitive readiness assessment. M ore recent~y, she has worked 
extensively in SA research including user inteijace desig71, 
training, and measurement. E-mail- cheiyl@~atechnologies. 

com 
D R. H // \'DFE M. CuEV//S is a research as.swiate II at SA 

T echnologies, headr;uartered in M ariet ta , Georgia. She 
received her doctor ef p hilosophy degne in applled exp en­
mental and human f actors psychology.fiwn the Un iven itv of' 



Team SA Assessment 

Central Florida (Orlando, Florida). Dr. Cue·vas has over 
10 years of experience as a human factors researcher and has 
worked on projects funded by the National Science 
Foundation, Air Force Office of Scientific R esearch, 
Army R esearch Laboratoiy, Office of Naval R esearch, 
and Office of the Secretaiy of Defense. H er recent research 
has primarily focused on supporting human-automation 
team peiformance in complex operational environments. 
E - mail: haydee. cuevas@satechnologies.com 

References 
Blandford, A. , and W. Wong. 2004. Situation aware­

ness in emergency medical dispatch. Intemational}oumal 
of Human-Computer Studies. 61: 421-452 . 

Bolstad, C. A., and M. Endsley. In press. Measuring 
shared and team situation awareness in the U.S. Army's 
Future Objective Force. Militaiy Psychology. 

Bolstad, C . A ., H. M . Cuevas, A. M. Costello, and 
J. Rousey. 2005a. "Improving situation awareness 
through cross-training." In Proceedings of the 49th 
Annual Meeting of the Human Factors and Eigonomics 
Society, September 26- 30, Orlando, Florida, 2159-
2163 . Santa l\!Ionica, CA: Human Factors and 
Ergonomic Society. 

Bolstad, C . A., H. M . Cuevas, C. Gonzalez, and M. 
Schneider. 2005b. Modeling shared situation aware­
ness. In Proceedings of the 14th Conference on Behavior 
Representation in Modeling and Simulation, .May 16-19, 
Los Angeles, California. 

Bolstad, C. A ., P. Foltz, l\!I. Franzke, H. M. Cuevas, 
M. Rosenstein, and A. M. Costello. 2007. Predicting 
situation awareness from team communications. In 
Proceedings of the Human Factors and Eigonomics Society 
51st Annual M eeting, October 1-5, Santa l\1onica, CA: 
Human Factors and Ergonomics Society. 

Endsley, M. R . 1990. Predictive utility of an 
objective measure of situation awareness. In Proceedings 
of the H uman Facton Society ]4th Annual lVfeeting, 
Santa l\!Ionica, CA, 41-45. Santa Monica, CA: 
Human Factors and Ergonomics Society. 

Endsley, l\!I. R. 1995a. l\1easurement of situation 
awareness in dynamic systems. H uman Factors. 37 (1): 
65-84. 

Endsley, M. R. 1995b. Toward a theory of situation 
awareness in dynamic systems. H uman Factors. 37 (1): 
32-64. 

Endsley, M. R., and W. M. Jones. 200 1. A model of 
inter- and intrateam situation awareness: Implications 
for design, training and measurement. In New trends in 
cooperati·ve acti·vities: Understanding .1yste111 dynamics i11 
complex en·vironmrnt.1. Edited by l\!I. lVIcNeese, E. 
Salas, and M. R. E ndsley, 46- 67. Santa l\!Ion ica, CA: 
Human Factors and E rgonomics Society. 

Endsley, M. R., B. Bolte, and D. G. Jones. 2003. 
D esigning for situation awareness: An approach to 
human- centered design. London: Taylor & Francis. 

Flin, R., and P . O'Connor. 2001. Applying crew 
resource management in offshore oil platforms. In 
Improving teamwork in organization: Applications of 
resource management training. Edited by E . Salas, C. A. 
Bowers, and E. Edens, 217-233 . Hillsdale, NJ: 
Erlbaum. 

Foltz, P . W., C. A. Bolstad, H. M. Cuevas, M. 
Franzke, M. Rosenstein, and A. M. Costello. 2008. 
Measuring situation awareness through automated 
communication analysis. In Macrocognition in teams. 
Edited by M . P . Letsky, N. Vv. Warner, S. M. Fiore, 
and C. A. P. Smith, 259-275. Aldershot, England: 
Ashgate. 

Fracker, M. L. 1991. Nleasures of situation awareness: 
R e·view and future directions (Report No. AL-TR-
1991-0128). \ i\Tright-Patterson Air Force Base, OH: 
Armstrong Laboratories. 

Gorman,]. C., N.]. Cooke, and]. L. Winner. 2006. 
l\1easuring team situation awareness in decentralized 
command and control environments. Eigonomics. 49 
(12-13) : 1312-1325. 

Graham, S. E., and M. D. Matthews. 2000. 
l\1odeling and measuring situation aware ness. In 
Workshop on assessing and measuring training peifor­
mance ejfecti·veness (Tech. Rep. 1116). Edited by J. H . 
Hiller, and R. L. Wampler, 14-24. Alexandria, VA: 
U .S. Army Research Institute for the Behavioral and 
Social Sciences. 

Hartel, C. E . ]., K. Smith, and C. Prince. 1991. 
Defining aircrew coordination: Searching mishaps for 
meaning. Paper presented at the 6th International 
Symposium on Aviation Psychology, April 29- May 2. 
Columbus, Ohio. 

Jones, D . G. 2000. Subjective measures of situation 
awareness. In Situation awareness analysis and measure­
ment. Edited by M. R. Endsley and D . ]. Garland , 
113-128. Mahwah, NJ: Lawrence Erlbaum. 

Jones, D. G., and M. R. Endsley. 2000. Exami ning 
the validity of real-time probes as a metric of situa­
tion awareness. In Proceedii1gs of the 14th Tri nnial 
Congress of the I11ter11atio11a! Ergonomics Association and 
the 44th Annual Nl eeting of the H uman Factors and 
Ergonomics Society. July 30-August 4, San Diego, CA. 
Santa l\!Ionica, CA: Human Factors and Ergonomics 
Society. 

Lawlor, M . 2005. Researchers investigate cognitive 
collaboration. Signal. 59 (9) : 30-34. 

.Merk.et, D. C., M. Bergondy, and H. C uevas-Mesa. 
1997. l\!Iak.ing sense out of teamwork errors in complex 
environments. Paper presented at the 18th Annual 
Indu strial/ Organizational-Organizational Behavior 

31(2) • June 2010 245 



Bolstad & Cuevas 

Graduate Student Conference, March. Roanoke, 
Virginia. 

Milham, L. M., J. S. Barnett, and R. L. Oser. 2000. 
Application of an event-based situation awareness 
methodology: 1\!Ieasuring situation awareness in an 
operational context. In Proceedings of the XIVth 
Triennial Congress of the International Ergonomics 
Association and 44th Annual Meeting of the Human 
Factors and Ergonomics Society, July 20-August 4, San 
Diego, California, 2, 432-426. Santa Monica, CA: 
Human Factors and Ergonomics Society. 

Nullmeyer, R. T., D. Stella, G. A. Montijo, and S. 
W. Harden. 2005. Human factors in Air Force flight 
mishaps: Implications for change. In Proceedings of the 
27th Annual Interservice/Industry Training, Simulation, 
and Education Conference (Paper no. 2260), Arlington, 
VA: National Training Systems Association. 

2 4 16 /TEA Journal 

Sarter, N. B., and D. D. Woods . 1991. Situation 
awareness: A critical but ill-defined phenomenon. 
International journal of Aviation Psychology. 1: 45-57. 

Smith, K., and P. A. Hancock. 1995. Situation 
awareness is adaptive, externally directed conscious­
ness. H uman Factors. 37 (1): 137-148. 

Strater, L. D., and C. A. Bolstad. 2009. Situation 
awareness in simulations. In H uman factors in simula­
tion and training. Edited by D. A. Vincenzi, ]. A. 
Wise, M. Mustapha, and P . A. Hancock, 129-148. 
New York, NY: CRC Press, Taylor and Francis 
Group. 

Wilson, G. F. 2000. Strategies for psychophysio­
logical assessment of situation awareness. In Situation 
awareness analysis and measurement. Edited by M. R. 
Endsley and D. J. Garland, 175-188. Mahwah, NJ: 
Lawrence Erlbaum Associates. 


	Integrating Situation Awareness Assessment Into Test and Evaluation
	Scholarly Commons Citation

	Integrating Situation Awareness Assessment Into Test and Evaluation.pdf
	Last page edit.pdf

