Positive Solutions for a Derivative Dependent p-Laplacian Equation with Riemann-Stieltjes Integral Boundary Conditions

Jaffar Ali Shahul-Hameed
Department of Mathematics
Florida Gulf Coast University,
Fort Myers, FL 333965.
e-mail: jashahulhameed@fgcu.edu

Abstract

In this talk, we will discuss the existence of two non-trivial positive solutions to a class of boundary value problems (BVP), involving a p-Laplacian, of the form:

$$(\Phi_p(x'))' + g(t)f(t,x,x') = 0, \quad t \in (0,1),$$

$$x(0) - ax'(0) = \alpha[x],$$

$$x(1) + bx'(1) = \beta[x],$$

where $\Phi_p(x) = |x|^{p-2}x$ is a one dimensional p-Laplacian operator with $p > 1$, a, b are real constants. Here α, β are given by Riemann-Stieltjes integrals

$$\alpha[x] = \int_0^1 x(t)dA(t), \quad \beta[x] = \int_0^1 x(t)dB(t),$$

where A and B are functions of bounded variations. We will use the fixed point index theory to establish our results.

1Joint work with S. Padhi