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Aviation regulatory authorities are grappling with the problem posed by 

balancing the benefits of small Unmanned Aerial Systems (sUAS) with the safety 

risks posed to people on board manned aircraft and on the ground. They are 

proposing and implementing a range of solutions for the safety of people on the 

ground. For example, in 2015 the New Zealand Civil Aviation Authority (CAA) 

amended its Civil Aviation Rules (CAR) governing unmanned aircraft to prohibit 

operation in airspace above any person who has not given consent [CAR 

101.207(a)(1)]. The Federal Aviation Administration (FAA) has chartered two 

committees to consider various aspects of sUAS regulation. In November 2015, the 

“Unmanned Aircraft Systems Registration Task Force Aviation Rulemaking 

Committee” (UAS Task Force) recommended that unmanned aircraft weighing 

250g or less should not require registration (UAS Task Force, 2015), and the FAA 

followed suit with similar requirements. More recently, in April 2016, the “Micro 

Unmanned Aircraft Systems Aviation Rulemaking Committee” (Micro UAS ARC) 

proposed four categories of UAS, with those unmanned aircraft weighing 250g or 

less being able to operate without restriction over people (Micro UAS ARC, 2016). 

Despite the rulemaking effort, and consultation that supports the rule 

making, there is little published analysis that supports the various existing and 

proposed rules. Dalamagkidis et al. (2008) calculate the required mean time 

between ground impacts for the fatality risk from unmanned aircraft to meet current 

aviation safety levels; this analysis is performed for the United States and for 

Greece. Ball et al. (2012) provide an analysis of the likely “lethal crash area” for 

various military unmanned aircraft; a significant part of their analysis concerns the 

harm caused by fire and explosion from liquid fuels in addition to kinetic energy 

harm. The Civil Aviation Safety Authority (CASA) in Australia has published a 

detailed analysis of human injuries resulting from small unmanned aircraft impacts 

(CASA, 2013); this analysis supports Australia’s requirement that unmanned 

aircraft are not operated within 30m of a person who is not directly connected with 

the operation (Civil Aviation Safety Regulations 1998, rule 101.245(1)). There are 

limited calculations in the reports of the UAS Task Force (2015) and Micro UAS 

ARC (2016), but the analysis is somewhat perfunctory when compared to CASA 

(2013) and Ball et al. (2012). Skobir and Magister (2011) calculate the conditions 

under which the kinetic energy of impact from a fixed wing unmanned aircraft is 

equal to the kinetic energy of different classes of manned aircraft. 

The limited quantity of available analysis, and the limited nature of some of 

that analysis, makes it difficult to judge whether the various rules overstate or 

understate the risks posed by sUAS. This paper is a contribution to expanding that 

body of analysis. Ideally, a cost-benefit analysis would be applied to determine the 

optimal trade-off between safety restrictions and the benefits provided by sUAS; 

however, as with most policy problems, the explicit quantification of benefits and 
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costs is difficult to achieve. An alternative approach is adopted here; that of 

establishing a safety goal expressed as a social cost threshold and determining the 

least restrictive regulation that is consistent with that safety goal. Essentially, this 

is a least-cost analysis, which is consistent with the law and economic literature on 

safety regulation. 

The literature review commences by reviewing examples of injuries and 

fatalities to establish that the type of harm considered in this analysis is more than 

just conjecture. The appropriate safety goal is then considered. Key points from the 

law and economic literature on the optimal level of safety are touched on, but 

ultimately a lack of information hinders our ability to determine what this optimal 

level might be. Instead, regulators are left in the position of establishing a safety 

goal that is “acceptable.” The fatality rate for General Aviation is proposed as an 

appropriate safety goal for the present analysis. 

Section 3 develops a model to quantify the human harm that could arise 

from an unmanned aircraft that strikes someone on the ground. To provide a level 

of comparison for different levels of harm, each outcome predicted by the model is 

valued using estimates of social cost normalized to the social cost of a fatality. The 

various formulae underlying the model are presented and the parameter estimates 

are discussed. 

Section 4 presents the results from the modelling in the form of estimates 

of the maximum height above ground at which an unmanned aircraft can operate 

without violating the safety goal. Various population densities are considered, 

including densities representative of crowds at a public event. The effect of 

parachutes and the reliability of the aircraft is explored. The results of the analysis 

are then contrasted with the various existing and proposed regulatory rules 

discussed above. Section 5 provides concluding comments. Section 6 provides 

some brief observations on areas for further development of the model framework. 

Literature Review 

Examples of Injuries and Fatalities 

In May 2015 an unmanned aircraft flying above a crowd at a Memorial Day 

parade in Marblehead, MA hit a building and crashed, causing minor injuries to 

two people (Molinet, 2015). A month later, a woman was knocked unconscious at 

the Seattle Pride Parade by a small unmanned aircraft that hit a building, 

subsequently falling on her (“Falling drone knocks woman out,” 2015). In that 

incident, the woman was fortunate that her boyfriend was able to catch her as she 

fell, but one can readily envisage that she might have suffered more significant 

injuries if she had hit her head on an object when she fell. In September 2015, an 
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11-month old baby was injured by debris from an unmanned aircraft that crashed 

at a public event in Pasadena, CA (Henry, 2015). Other incidents of small 

unmanned aircraft hitting buildings and falling to the ground have been reported 

(for example: Mortimer, 2012; Williams, 2015; Li, 2015), although there does not 

appear to have been any injuries caused by these events. 

The intermediate vehicle of a building is not a defining feature of the issue; 

in any setting involving unmanned aircraft and people, the aircraft may malfunction 

and fall on the people below. For example, in early April 2014, an unmanned 

aircraft struck a female athlete during a triathlon in Geraldton, Western Australia 

(Taillier, 2014). The aircraft allegedly dropped about 10m before hitting the 

woman. The triathlete fell to the ground, received lacerations to her head, and stated 

that ambulance personnel removed a piece of the propeller from her head (Grubb, 

2014). Small unmanned aircraft have also crashed at prominent sporting events like 

the US Open tennis tournament (Waldstein, 2015), although in that case no one was 

injured. 

Fatalities are also a possible outcome of UAS malfunctions and operator 

errors. Below is a short list of UAS and model aircraft-related fatalities:  

 In April 2003, an out-of-control model aircraft killed a 14-year-old girl in 

England (Sapsted, 2003). 

 In November 2003, a 41-year-old man was killed while providing flight 

instruction to the operator of a radio-controlled model helicopter (“Man 

killed by model helicopter,” 2003). 

 In March 2013, a radio-controlled helicopter crashed in Borneo, Malaysia, 

killing an 18-month-old baby (“Baby killed,” 2013). 

 In July 2013, a man was killed in Japan while operating a Yamaha R-max 

UAS (“Heli pilot killed in Japan,” 2013). 

 In September 2013, a 19 year old in New York was killed when his remote-

controlled helicopter “plummeted from the sky,” inflicting severe head and 

neck injuries (Zennie, 2013). 

 In Switzerland in 2013, a radio-controlled helicopter struck the 41-year-old 

man who was operating it, inflicting what was described as “severe head 

and arm injuries” (Curtis, 2013). 

Only the Borneo incident may have involved a free-falling aircraft, which 

is the focus of this paper. However, the listed accidents occurred when UAS activity 

was relatively low, so a greater number and variety of accidents can be expected in 

the future. It is also likely that the listed accidents are not a complete record. It was 

evident from online searches that historical news reports have been removed from 

the internet, and it is only those accidents that have been recorded in online 

discussion forums for which any evidence is currently available. It seems likely that 
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this explains the absence of reports for the period 2004–2008 and 2010–2011. The 

reason for the absence of reports after 2013 is less clear. It is possible that there 

have been no fatalities during this period, perhaps due to improvement in flight 

control systems or random chance. 

Setting the Safety Goal 

From an economic perspective, the optimal level of safety occurs when the 

net benefit from sUAS activity is the greatest, with the net benefit denoting gross 

benefits from conducting the activity being less than (a) the cost of harm and (b) 

the cost of taking precaution to avoid harm. Equivalently, the optimal level of safety 

occurs at the least-cost point where cost is comprised of the cost of harm, the cost 

of precaution, and the opportunity cost of foregone benefits from any reduction in 

the activity in question (in this case, unmanned aircraft flights). In theory, this 

optimal level could be achieved by allowing sUAS operators to choose their level 

of activity and level of precaution, given the knowledge that they will be subject to 

liability under tort for any harm that does occur. 

The person on the ground has no way of knowing the relative level of danger 

posed by different unmanned aircraft, the skill level of the pilot, whether a 

particular unmanned aircraft has been properly maintained, or whether it is being 

operated safely (for example, whether the UAS is being operated with sufficient 

battery power remaining). These factors all mean that the person on the ground has 

no way of knowing the appropriate level of precaution to take if an unmanned 

aircraft flies overhead. In such cases, the appropriate standard of liability is that of 

strict liability (Shavell, 1980; Davis, 2011), and aviation regulation does indeed 

impose strict liability for harm caused by anything falling from the sky.  Strict 

liability with contributory negligence is the legal standard in New Zealand (Civil 

Aviation Act 1990, s97). Jakubiak (1997) summarizes the liability regime that 

applies to commercial aviation in the United States, concluding that the various 

doctrines of liability “appear strikingly similar to common-law imposed strict 

liability”. 

Strict liability, properly applied, will provide compensation to a person for 

harm caused, and thereby return them to the equivalent position as if they had not 

been harmed. The economic concept is that harm plus compensation is equal to no 

harm occurring. However, there are many reasons why the strict liability regime 

may not work as ideally theorized. For example, the sUAS operator might not be 

able to pay the compensation (e.g. being a 15-year-old high school student), a 

problem that is referred to in the literature as being “judgment proof” (Shavell, 

1986). The potential injurer might not face the threat of a suit for harm done because 

of difficulty in identifying the party causing harm (Shavell, 1984), or because the 

costs of going to court to obtain compensation may be too high. For these various 
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reasons, it is appropriate to impose an ex-ante safety standard (Shavell, 1984), 

which may specify allowed activities as well as prohibited activities. Furthermore, 

while the equivalence of compensation may hold economically, from a moral and 

political position it is better for the harm not to occur in the first place.  

A strict liability regime has the desirable outcome that the potential injurer 

(i.e., the sUAS operator) will optimize both their level of precaution and their 

activity level (Shavell, 1984). Regulation sets the minimum level of precaution; it 

acts as a complement to a liability regime that enables parties with a high cost of 

precaution (including those with a high opportunity cost of foregone benefits) to 

take only the minimum level of precaution. Additionally, parties with a low cost of 

precaution may choose a higher level of precaution (Kolstad et al., 1990). Such a 

regime significantly reduces the likelihood of harm occurring, while enabling an 

economically optimal outcome. In all cases, the regulated entity is able to optimize 

its level of activity. 

This still leaves the regulator in the position of determining which ex-ante 

safety rules will achieve the socially optimal level of safety. We can estimate the 

expected cost of harm, as is done in this paper, and we may be able to estimate the 

cost of precaution. However, the benefits from the sUAS activity are very difficult 

to quantify, and change significantly for different activities. What, for example, is 

the benefit from an unmanned aircraft flown for private recreational purposes over 

a beach with numerous people on it? There are also difficult value judgments to 

make. For example, while the benefits from a UAS flown over a beach for private 

recreational purposes may not be high enough to justify any level of potential harm, 

is it then acceptable to allow for some degree of harm because the UAS is actually 

being used to monitor the sea for swimmers that might need rescuing? Similar 

questions arise regarding a UAS being flown at a public event. If an unmanned 

aircraft crashes into a crowd watching a tennis match, is that more acceptable if the 

UAS is being used to capture footage for a television broadcast than if it is being 

used for private purposes? 

Setting the safety goal is therefore an imprecise process that occurs in an 

environment of incomplete information. Safety standards are set in an iterative 

process, with regulators adjusting the standard over time in response to lobbying 

from interest groups and decisions by the courts. Cooter et al. (1979) argue that the 

evidence produced by litigants and defendants provides judges with the information 

required to refine the legal standard of precaution over time, and the same argument 

can be applied to regulatory decision makers. Even if the legal standard of 

precaution is not initially efficient, it will converge to the efficient level as it is 

modified in the light of new information. 

For the current analysis, this means that the best available indicator of what 

might be an appropriate level of safety for sUAS operations is the observed level 
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of safety in a comparable area of aviation, such as General Aviation. That level of 

safety has developed as parties optimize their activity levels in an environment 

where there are safety regulations, a legal liability regime, and where the parties 

derive benefits from the various aviation activities undertaken. If the observed level 

of safety in General Aviation is insufficient, the consequential harm will result in 

prosecutions, liability suits, and public pressure that ultimately results in a stricter 

level of safety. If that standard is too strict, then there will be ongoing pressure from 

operators and manufacturers, who will be able to demonstrate that they can safely 

operate in prescribed areas. Accordingly, for this analysis, the ground fatality rate 

for General Aviation is adopted as the safety goal. 

The form of safety regulation is then set based on the mechanism that causes 

harm. The analysis presented in this paper concerns the harm that occurs if an 

unmanned aircraft falls from a given height on to a person below. Other forms of 

harm, such as cuts from spinning propellers and horizontal impacts, are not 

considered. It follows that the appropriate safety regulation is the maximum height 

at which an unmanned aircraft can fly with the safety goal being met; this paper 

refers to this as the “maximum allowable height.” 

UAS-Induced Human Harm Model 

UAS have the potential to cause a range of harm and injuries to human 

beings. The model presented in this section estimates the economic cost of a subset 

of injuries that might arise from an impact caused by a multi-rotor unmanned 

aircraft falling from a given height. The model focuses solely on free-fall incidents, 

which might arise from the following: an impact with a building, a controller 

failure, a battery failure, or pilot error. Other incidents – such as those in which the 

unmanned aircraft flies sideways or at an angle into a person – are not considered. 

Figure 1 presents a schematic diagram of the main components of the model. 

Harm, in terms of fatalities and injuries, is determined by the kinetic energy of the 

aircraft when it hits a person (“impact energy”); kinetic energy is a function of 

height and the aircraft mass. Impact energy determines the probability of a fatality 

if a person is hit by the aircraft; relevant studies are reviewed to develop an 

appropriate probability function for this model. People impacted by the aircraft but 

not killed will suffer a range of injuries. This model captures some of the xxxx 

6

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 3 [2016], Iss. 3, Art. 1

https://commons.erau.edu/ijaaa/vol3/iss3/1
DOI: https://doi.org/10.15394/ijaaa.2016.1120



 

 

 

Figure 1. Schematic Diagram of UAS-Induced Human Harm Model. 
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more serious injuries, being skull fractures, which are graded according to the 

commonly used Abbreviated Injury Scale (AIS). Only a subset of potential harm is 

modelled; injuries similar to the woman knocked unconscious by the unmanned 

aircraft at the Seattle Pride Parade are not captured by the current version of this 

model. The model also effectively assumes there is a power failure, so there are no 

injuries from spinning propellers. The final data required to establish the number 

of fatalities and injuries per flight hour is the expected number of people exposed 

to the impact, which is dependent on the population density in the area of operation 

and the UAS reliability (modelled for convenience as the Mean Time Between 

Failure). 

The rate of ground fatalities from General Aviation in the United States is 

the safety goal for the model. It develops estimates of the social cost of harm for 

each type of injury modelled, which are then normalized into a “fatality-equivalent” 

measure of social cost. Conflating the expected number and type of injuries with 

the normalized social cost estimates provides the fatality-equivalent cost per flight 

hour for a given unmanned aircraft operating at a given height. Comparing the 

fatality-equivalent cost with the safety goal enables the maximum allowable height 

to be established. 

Impact Energy 

Standard physics can be used to estimate the energy with which a falling 

multi-rotor unmanned aircraft could hit a person. An object free falling through the 

atmosphere experiences a downward force due to gravity, and an upward drag force 

due to air resistance. The downward force due to gravity gF  is equal to: 

mgFg   

where m  is the mass of the object and g  is the acceleration due to gravity. 

The drag force dF  is proportional to the square of downwards velocity  of the 

object, and is equal to (Crowe et al., 2009:365): 

2

2

1
vAcF ADd 

 

When the two forces are equal, the object will cease to accelerate and is said to have 

reached terminal velocity. Equating Fg and Fd, and solving for terminal velocity, 

Tv , gives: 

AD

T
Ac

mg
v



2


 

v
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where CD is the drag coefficient,  is the density of air (1.225kg/m3 at sea level), 

 is the cross-sectional area of the object in the direction that it is falling, and the 

gravitational constant is = 9.806m/s2. 

The velocity of the object after falling from height h is, assuming the object 

is at rest at the start of the free fall (Fowles and Cassiday, 2005:73): 

 2/222 1 Tvgh

T evv


  

The impact energy Eimp at velocity  is given by: 

 

For the purpose of this analysis, HUMANAIRCRAFT hhh  , where h
AIRCRAFT

 is 

the height of the unmanned aircraft above ground level, and h
HUMAN

 is the height 

above ground level of the impacted area of a human (i.e. typically the head and 

shoulders). The height of a human is assumed to be 5’10” (1.778m).  

The drag coefficient CD depends on the shape and surface roughness of the 

object. Ball et al. (2012:27) adopt a drag coefficient of 0.5 as typical for military 

rotor wing aircraft. CASA (2013) does not provide a value for the drag coefficient. 

Skobir and Magister (2011) focus on a fixed wing unmanned aircraft, so their 

formula for the drag coefficient is not relevant to a falling multi-rotor aircraft. 

Dalamagkidis et al. (2008) also focus on a fixed wing aircraft, and avoid specifying 

a drag coefficient by assuming the impact velocity is 40% higher than the 

“maximum operating velocity.” The UAS Task Force (2015) adopts a value of CD 

= 0.3, and the present analysis adopts the same value. 

Six unmanned aircraft sizes are modelled: 

 a 150g aircraft, which is significantly below the threshold for 

registration with the FAA;  

 a 250g aircraft, which is the threshold for registration with the FAA;  

 a 500g aircraft;  

 a 1.5kg aircraft that is similar to the popular DJI Phantom and 3DR Solo, 

and slightly lighter than the Yuneec Typhoon H;  

 a 3kg aircraft; and  

 a larger 8kg aircraft.  

Table 1 provides parameters for each modelled aircraft. Much heavier 

machines are possible, with the regulated upper limit for a “small” unmanned 

aircraft being 25kg (55lb). The results of the analysis indicate that even at 8kg the 

safety goal is breached by flying at any height over people at anything other than 

A

A

g

v

2

2

1
mvEimp 
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low population densities; and at a low population density the maximum allowable 

height for the aircraft is a small distance above people’s heads. Therefore, there is 

no additional information to be gained from analyzing heavier aircraft. 

Table 1 

Modelled Unmanned Aircraft. 

Unmanned 

Aircraft 

Mass 

(kg) 

Diameter 

(m) 

Core D 

(m) 

Core A 

(m2) 

Outer A 

(m2) 

A 

(m2) 

vT 

(m/s) 

A - 8kg 8 1 0.16 0.020106 0.785398 0.173165 49.65 

B - 3kg 3 0.6 0.144 0.016286 0.282743 0.069577 47.97 

C - 1.5kg 1.5 0.4 0.12 0.011310 0.125664 0.034181 48.39 

D - 500g 0.5 0.2 0.08 0.005027 0.031416 0.010304 50.89 

E - 250g 0.25 0.2 0.07 0.003848 0.031416 0.009362 37.75 

F - 150g 0.15 0.12 0.07 0.003848 0.011310 0.005341 38.71 

“Core D” is the diameter of the central core of the aircraft containing the control systems, batteries, 

etc. “Core A” is the area of the central core. “Diameter” is the diameter of the circle that 

circumscribes the aircraft, and “Outer A” is the area of that circle. “A” is the area used for the 

calculation of the drag force and is calculated as A = [Core A] + 0.2 x ([Outer A] – [Core A]); it is 

assumed that only 20% of the circle outside of the central core has structures that impede airflow.  

 

Figure 2 shows the impact energy from each modelled aircraft, for a free 

fall from heights up to 400ft above ground level (AGL). This is the maximum 

height allowed by regulation. 

 

Figure 2. Impact Energy by Modelled Unmanned Aircraft, no parachute. 
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Probability of Fatality Given Impact 

This component of the model calculates the probability of a fatality in the 

event a falling object strikes a person. Given that the object of interest is falling 

from above, the focus is on fatalities caused by an impact to a person’s head. 

The simplest approach adopted in the literature is that utilized by the UAS 

Task Force. It relies on a single point estimate that “an object with a kinetic energy 

of 80J … has a 30% probability of being lethal when striking a person in the head” 

(UAS Task Force, 2015:8), and on this single point estimate in calculating the 

maximum weight for an unmanned aircraft that does not require registration. This 

approach is unsuitable when kinetic energy may differ substantially from the 80J 

estimate. 

Whether or not a fatality occurs is a binary outcome – the impact is either 

fatal or it is not. When the outcome is binary, it is appropriate to use a logistic curve 

to model the probability, and the other sources reviewed below take this approach. 

A logistic curve for the probability of a fatality takes the form: 

   01

1
|

EEk impe
impactfatalityP




  

where 0E  is the impact energy associated with a 50% probability of a fatality and 

k  is a constant. 

The origin of the 30% probability of lethality at 80J used by the UAS Task 

Force is a United Kingdom Ministry of Defense report (Henderson, 2010), which 

in turn references a Department of Defense Explosives Safety Board (DDESB) 

Technical Paper (Swisdak et al., 2007). Swisdak et al. (2007) suggest a cumulative 

log-normal distribution relating fatality probability to kinetic energy based on 

“average body position data,” i.e. not specifically related to an impact to the head. 

Swisdak et al.’s distribution is based on three data points: 10% probability of 

fatality at 51.5J, 50% probability of fatality at 103J (a figure in turn quoted by 

Henderson (2010)), and 90% probability of fatality at 203.4J. The parameters of the 

curve are not provided.  

Henderson (2010) presents a chart from a 1982 Swiss paper that shows the 

probability of lethality, given impact energy to different areas of the body; this data 

is presented as straight lines on a log-log chart, and implicitly describes a logistic 

curve. Figure 3 shows data points estimated by eye from the Swiss data (blue 

diamonds) and the three data points provided by Swisdak et al. (green triangles). 

Logistic curves have been fitted to both sets of data; the solid line shows the logistic 

curve for the Swiss data, and the dashed line shows the logistic curve for the 

Swisdak et al. data. The curve through the Swisdak data predicts relatively lower 
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fatality rates at high impact energies, and never reaches a certain probability of 

fatality, even at very high impact energies. For this reason, the curve fitted to the 

Swiss data is preferred. The parameters for the curve fitted to the Swiss data are: 

0E  = 103J and k  = 0.09. 

 

Figure 3. Probability of Fatality: Logistic Curves fitted to Henderson (2010) and 

Swisdak et al. (2007). 

Dalamagkidis et al. (2008) propose a modified form of a logistic model that 

includes a sheltering parameter, which takes account of the exposed population’s 

ability to take shelter from an impact. A sheltering parameter is appropriate for an 

analysis, considering the general risks of flying over an area where there may be a 

range of buildings, plants, and other objects that could shelter people from either 

direct impact or from debris thrown up by an unmanned aircraft crash. This is 

exactly the focus of Dalamagkidis et al. However, the sheltering parameter is not 

relevant to the analysis presented in this paper; it is assumed that the unmanned 

aircraft is flying above people who are directly exposed to the impact. In such a 

situation, the sheltering parameter is equal to zero. In the limit as the sheltering 

parameter approaches zero, the function proposed by Dalamagkidis et al. (2008) 

becomes a step function that provides a fatality probability of 0 for all impact 
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energies less than a specified value, and 1 for all impact energies greater than or 

equal to that value. This function is therefore unsuitable for the present analysis. 

The most suitable approach for this model is the curve fitted to the Swiss 

data from Henderson (2010), presented in Figure 3 and the accompanying text. 

Combining the impact energies from Figure 2 and the fatality probability from 

Figure 3 provides the fatality curves in Figure 4, which shows the probability of a 

fatality if a person is hit by each modelled unmanned aircraft from any height up to 

400ft AGL. Probability is plotted on a logarithmic scale, providing greater detail 

on the probability associated with the three lighter aircraft. 

 

Figure 4. Probability of a Fatality if Impact Occurs, by Aircraft and Height. 

Impact Injuries 

People hit by a falling unmanned aircraft, but not fatally injured, may have 

received injuries of varying severity, depending on the force of the impact. None 

of the models reviewed above include a prediction of injury severity, but this is 

essential for a full assessment. The most likely impact injuries are injuries to the 

head, particularly skull fractures. Information from various sources is used to 

establish a relationship between impact energy and the severity of a skull fracture. 

In a study for establishing the safety of rail cars, Payne and Patel (2001) 

relate the impact force and injury to two widely used injury scales: the Head Injury 

Criterion (HIC) and Abbreviated Injury Score (AIS). The HIC is calculated from 

impact forces experienced by crash-test dummies and will predict the level of 

injury. The AIS is an injury scoring system that is widely used by hospital 
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emergency departments, and, being published by the Association for Advancement 

of Automotive Medicine (AAAM), is also widely used within accident research. 

Payne and Patel (2001) propose specific ranges relating impact force to the severity 

of the injury sustained; Table 2 shows their proposed ranges for “Blunt Object Skull 

Fractures”. 

The tolerance levels reported in Table 2 are consistent with the other 

estimates of force causing skull fracture. Yoganandan et al. (1995) tested twelve 

un-embalmed, intact human cadaver heads to failure, and found that a fracture 

occurred with loads ranging from 4.5kN to 14.1kN, with an overall mean of 6.4kN 

(± 1.1). In a test of children’s bicycle helmets by Mattei et al. (2012), the un-

helmeted skull underwent catastrophic failure at a maximum load of 520lbf or 

2.3kN during compression testing (Mattei et al., 2012). Raymond et al. (2009) 

tested the tolerance of seven cadaver heads to impacts, and found that no fracture 

occurred at forces of 2.5kN–5.0kN (6 observations) and 6.0kN (one observation). 

A linear fracture occurred for one impact of 6.3kN, and depressed skull fractures 

occurred at forces of 3.4kN–9.5kN (6 observations). 

Table 2 

Force Required for Skull Fracture Caused by Blunt Object, Payne and Patel 

(2001). 

Injury Level Tolerance 

Level 

(kN) 

Equivalent 

HIC 

Equivalent 

AIS 

0–1 No Skull Fracture < 2.2 < 500  

2 Minor Depressed Skull Fracture 2.2–5.5 500–900 2 

3 Major Depressed Skull Fracture > 5.5 900–1800 3 

4 Severe Life-Endangering Fracture > 5.5 > 1800 4/5* 

Source: http://www.eurailsafe.net/subsites/operas/HTML/Section3/Section3.3frm.htm. A severe 

life-endangering fracture is assessed by the authors of the OPERAS study as “potentially non-

survivable with over 50% probability of an AIS 4 head injury”. 

 

Although the effect of an object dropping on to the top or back of the skull 

may differ from the effect of a frontal impact, as an initial approximation we adopt 

the scale shown in Table 2 for potential skull fractures caused by blunt objects 

falling from the sky. There are two adaptations required to utilize Payne and Patel’s 

ranges in the present analysis: first, a threshold needs to be established for the force 

at which a skull fracture becomes an AIS level 4/5 fracture rather than AIS level 3; 

second, it is necessary to relate the impact force to the impact energy. For the first 

item, the assumption that the threshold between AIS level 3 and AIS level 4/5 

occurs at 11kN of impact force is adopted.  
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For the second adaptation, all kinetic energy is dissipated as the object 

comes to rest, so the average impact force F is: 

 

With this formula, we can readily calculate the force with which a falling 

aircraft might hit a person. Raymond et al. (2009) find that kinetic (impact) energy 

and force have a similar ability to predict skull fractures. Their data also indicate 

that the average value for d is 0.009m (i.e. 9mm). 

Given the two adaptations indicated, Table 3 shows the relationship 

between impact energy and injury severity adopted for this model. 

Table 3 

Assumed Relationship between Impact Energy and Skull Fracture Severity. 

Outcome 

Impact 

Force 

(kJ) 

Impact 

Energy 

Threshold 

(J) 

AIS 

Injury 

Severity 

No Skull Fracture  0 

Minor Depressed Skull Fracture 2.2 19.8 2 

Major Depressed Skull Fracture 5.5 49.5 3 

Severe Life-Endangering Fracture 11 99 4 

 

Probability of Impact 

An unmanned aircraft that crashes will only injure a person if there is a person 

in its path as it crashes. The expected number of people impacted or hit in the event 

of a crash, Nexp, is equal to the product of the expected crash area, Aexp, and an 

assumed uniform population density,  (Dalamagkidis et al. 2008): 

 

Nexp will be a positive real number. If the expected crash area is 0.5m2 and the 

population density is 0.2 people/m2, then the expected number of people hit is 0.1; 

this also means that we would expect one person to be hit every 10 times an 

unmanned aircraft crashes under conditions that match these assumptions. In a 

dense setting with a large unmanned aircraft, it is possible that the expected number 

of people hit in the event of a crash is greater than 1. 

Following Clothier and Walker (2006), Dalamagkidis et al. also suggest that 

in a vertical crash the area Aexp “may be approximated by the frontal area of the 

dEF imp /

expexp AN  
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aircraft augmented by a small buffer to account for the width of an average human.” 

Assuming, for simplicity, that a human has a circular cross section, the formula for 

the expected number of people affected by a vertical crash is: 

 2

exp HUMANAIRCRAFT rrN    

where π has its usual value, r
AIRCRAF

 is the radius of the aircraft, and r
HUMAN

 is the 

radius of the human being. 

Oberhagemann (2012) cites a German-language source from 1993 as 

providing an estimate of the surface area, as viewed from above of an “average 

citizen of Central Europe” of 0.085m2, which corresponds to a radius of 0.164m. A 

value of r
human

 = 0.164m is therefore assumed for this model. Table 1 provides the 

diameter from which the radius of the unmanned aircraft is derived. 

Oberhagemann (2012) also provides useful indications of potential crowd 

densities: photographs of crowds in the public viewing area of the football World 

Cup in 2006 show densities of 3.8 people/m2 and 5.0 people/m2. Still (2013) 

provides additional graphic representations of crowd densities. Given the densities 

portrayed in these various images, the present analysis adopts densities ranging 

from 0.05 people/m2 to 4 people/m2. 

UAS Failure Rate 

This is an important parameter of the model, yet there is no data available 

to justify any particular rate. The UAS Task Force (2015) assumes a Mean Time 

Between Failure (MTBF) of 100 hours, and the same assumption is employed here. 

A sensitivity analysis is also conducted with an MTBF of 1000 hours. 

Safety Goal 

As discussed in section 0, the safety goal adopted in this analysis is set equal 

to the ground fatality rate for General Aviation in the United States. Table 7 in the 

appendix shows fatalities and fatality rates for General Aviation in the United States 

between 1995 and 2014. The difference between total fatalities and fatalities for 

those aboard the aircraft provide the fatality rate for those people killed in an 

accident who were not aboard the US-registered aircraft. The average fatality rate 

from General Aviation for people not aboard the aircraft was 5.94x10-7 fatalities 

per flight hour over this period. However, it should also be noted that this fatality 

rate is inflated by the inclusion of 154 fatalities from a non-US registered aircraft 

in the “Not Aboard” fatality rate; removal of these 154 fatalities results in a fatality 

rate of 2.31x10-7 for people not aboard the US-registered aircraft. Both figures are 

in the same order of magnitude as, but larger than, the ground fatality rate of 1.0x10-
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7 fatalities per flight hour that is adopted by Dalamagkidis et al. (2008), which was 

based on similar data to that in Table 7, albeit for a longer period.  

The UAS Task Force (2015:9) suggests that the “actual risk level” for 

General Aviation is in the order of 5 x 10-5, without defining precisely what that 

term means. In the context of their analysis, this would appear to refer to the risk 

of fatality. However, the rate of 5 x 10-5 is approximately two orders of magnitude 

higher than the ground fatality rate in the data, and twice the total fatality rate. The 

conclusions of the UAS Task Force could therefore be biased towards accepting a 

higher level of risk than that currently posed by manned aviation. 

Absent of any public outcry about risk of General Aviation to members of 

the public, the rate of 5.94x10-7 fatalities per flight hour forms a reasonable starting 

point for the acceptable level of risk to the public from sUAS. This analysis 

therefore adopts a rounded value of 6x10-7 fatality-equivalents per flight hour for 

the safety goal. The lower rate of 2.31 x10-7 could also have been adopted, which 

could lead to more stringent recommendations than those presented in this paper. 

Estimates of Social Cost 

Social cost is the appropriate tool for converting the various injuries into a 

common estimate of harm. Cost estimates can then be normalized to provide an 

injury score that relates to social welfare. An important component of the social 

cost is the number of “Quality-Adjusted Life Years” (QALYs) lost, which provides 

a quantitative estimate of the duration and severity of a health problem. The 

monetary value of a QALY is determined by the statistical value of a life, and the 

average life span (Zaloshnja et al., 2004:424). 

Studies involving the cost of treating injuries usually focus on very broad 

categories of injury rather than the level of granularity required for this model; and, 

they typically focus on monetary costs and omit QALYs lost. For example, Polinder 

et al. (2005) estimate the cost of hospital admissions for age bands, gender, and for 

broad categories of injury such as “hip fracture,” “fracture: knee/lower leg,” and 

“skull-brain injury.” While the latter category is relevant to this analysis, it does not 

differentiate on the severity of injury. Chen et al. (2012) estimated the direct costs 

of “Acquired Brain Injury” in Ontario, Canada, but were only concerned with the 

difference in cost between TBI (i.e. resulting from an accident) and a non-traumatic 

brain injury); they did not include severity scores in their analysis.  
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In New Zealand, Pezzullo and Crook (2006) undertake a comprehensive 

estimation of the costs associated with occupational disease and injury, including 

lost productivity, lost human capital, medical costs, administrative costs, the 

deadweight cost of administering the welfare system, other government transfers, 

and other costs. However, the measure of severity adopted by this study is the 

length of absence from work, a measure that is not relevant to the current analysis. 

The New Zealand Ministry of Transport (MOT) estimates the “social cost” of road 

accidents in New Zealand, using estimates of QALYs lost, lost productivity, 

medical treatment costs, and legal costs (MOT, 2016). QALYs lost utilizes annually 

updated estimates of the value of a statistical life, based on the willingness-to-pay 

to avoid one premature death. The MOT provides estimates in three categories: (i) 

fatality; (ii) serious harm or notifiable injury including bone fracture, laceration, or 

burns; and (iii) minor harm. 

Zaloshnja et al. (2004) was the only study found that relates economic costs 

to AIS scores; Table 4 provides estimates from Zaloshnja et al. (2004). The 

“Comprehensive Cost” is the total cost including QALYs lost. The cost of property 

damage is deducted from the Comprehensive Cost, as in most of the situations 

contemplated by the current analysis; the only property damaged would be the 

unmanned aircraft. The cost excluding property damage is then normalized to the 

cost of a fatality.  

Table 4 

Normalized Social Cost calculated from Zaloshnja et al. (2004), USD. 

Human Harm Comprehensive 

Cost 

 

(USD) 

Property 

Damage 

 

(USD) 

Cost excl 

Property 

Damage 

(USD) 

Normalized 

to Fatality 

Normalized 

Social Cost 

for model 

Death 3,158,552 10,273 3,148,279 1.000 1.0 

Skull Fracture      

- AIS 4 1,042,400 9,833 1,032,567 0.328 0.3 

- AIS 3 374,316 6,799 367,517 0.117 0.1 

- AIS 2 310,706 3,954 306,752 0.097 0.1 

Minor(*) 500  500 0.000159 0.0002 

(*) For the purposes of the current analysis, the cost of a minor injury is set at a nominal $500USD. 

 

The data set utilized by Zaloshnja et al. (2004) is truncated, because it will 

not include instances of non-physical harm such as fright or annoyance; nor will it 

include very minor injuries. The cost for minor harm must be positive, but we do 

not have an estimate of its value. This analysis therefore adopts a nominal value of 
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$500USD; further analysis of the significance of this is provided below, when 

considering social cost estimates for New Zealand. 

As indicated by the regulators discussed in the introduction, this paper is 

also concerned with the application of the results of the Human Harm Model to 

sUAS regulation in New Zealand. The data from MOT (2016) can be scaled using 

the values reported in Zaloshnja et al. (2004) to estimate New Zealand dollar (NZD) 

values for each severity of injury. Thus, we can calculate a normalized cost per AIS 

level. MOT (2016) provides cost estimates in NZD for fatalities.  

Table 5 shows the resulting social cost estimates. The final two rows of the 

table normalize the social cost estimates to that of a fatality, rounded to one 

significant digit to recognize the imprecision in the estimates. The normalized 

social costs for AIS severity 2 and AIS severity 3 injuries are 0.05 of the social cost 

of a fatality, whereas the normalized social cost for AIS severity 4 injuries are 0.4 

of the social cost of a fatality. The NZD value social cost estimates for skull fracture 

injuries were derived by scaling each cost component from MOT (2016) with the 

data reported in Zaloshnja et al. (2004). Table 5 provides the scaled cost estimates; 

the scaling applied to each cost component is described in the table’s notes. The 

final row of Table 5 reports the normalized social cost. 

As noted above with the data from Zaloshnja et al. (2004), the costs reported 

in MOT (2016) for “minor” injuries are derived from a truncated data set, and are 

therefore likely to overstate the average cost of minor injuries. The data set will not 

include instances where no harm occurred, nor where there were no (or minor) 

medical costs, and no legal and court costs. Disability and loss of output in such 

circumstances will also be overstated. The true normalized figure is likely to range 

between 0 and 0.04. The results of the Human Harm Model are sensitive to the 

value assumed. Take, for example, the smallest of the aircraft modelled. When 

falling from a height of 10ft AGL, the impact energy when hitting a person is 1.85J; 

there is zero probability of fatality and no skull fracture occurs. The expected cost 

is therefore 0.004 per person impacted. At a population density of 0.05 people/m2 

there are 0.015 people expected to be impacted. With a MTBF of 100 hours, the 

expected cost is 0.004 x 0.015 / 100 = 6x10-7 per hour, exactly equal to the safety 

goal of 6x10-7 per hour. This suggests that a 150g aircraft should not be flown at 

heights greater than 10ft AGL above relatively low densities, even when we know 

intuitively that little harm would occur. This analysis therefore adopts a nominal 

value of $500NZD for the average value of harm that occurs, to cover outcomes 

such as fright, annoyance, and loss of enjoyment of activities. This normalizes to a 

value of 0.0001, and for the example given provides an expected social cost of 

1.5x10-8 per hour, well below the safety goal. 
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Table 5 

Calculation of Normalized Social Cost for New Zealand, NZD. 

Cost Component Fatal 
Skull Fracture Injury 

Minor 
AIS 4 AIS 3 AIS 2 

Loss of Life / Permanent Disability[1] 4,057,300 1,435,348 149,700 155,830 16,200 

Loss of Output (Temporary 

Disability)[2] 
- 31,000 29,432 27,493 300 

Medical      

- Hospital/medical[3] 3,600 14,745 10,805 6,864 100 

- Emergency/pre-hospital[4] 2,900 2,890 1,281 738 600 

- Follow-on[5] - 7,290 5,342 3,393 100 

Legal and Court[6] 24,000 9,170 7,519 5,673 800 

Total 4,087,800 1,500,442 204,078 199,991 18,100 

      

Normalized Social Cost 1.0 0.4 0.05 0.05 0.004 

Source: “Fatal” and “Minor” from Ministry of Transport (2016).  

Notes: Costs for AIS injury levels scaled as follows: 

[1] “Loss of Life/Permanent Disability” costs were scaled from the MOT (2016) estimate for a 

fatality using Zaloshnja et al.’s estimates for “Quality of Life”. Zaloshnja et al.’s estimates for 

“Quality of Life” are $73,191 (AIS 2), $70,312 (AIS 3), $674,162 (AIS 4), and $1,905,655 (fatal). 

The Permanent Disability costs for a skull fracture in New Zealand are therefore calculated as 

$4,057,300 x (73,191/1,905,655) = $155,830 (AIS 2); $4,057,300 x (70,312/1,905,655) = $149,700 

(AIS 3); and $4,057,300 x (674,162/1,905,655) = $1,435,348 (AIS 4).  

[2] “Loss of Output” was scaled from the MOT (2016) estimate for a fatality using Zaloshnja et al.’s 

estimates for “Household Work” and “Wage Work”.  

[3] “Hospital/medical” costs were scaled from the MOT (2016) estimate for a minor injury using 

Zaloshnja et al.’s estimates for “Medical” costs. Scaling was tested for both a fatal injury and a 

minor injury. The scaled estimates using fatal costs were substantially higher than the scaled 

estimates for a serious injury in the MOT analysis, whereas the scaled estimates using a minor injury 

were in the same relative order of magnitude.  

[4] “Emergency/pre-hospital” medical costs were scaled from the MOT (2016) estimate for a fatal 

injury using Zaloshnja et al.’s estimates for “Police & Fire”. 

[5] “Follow-on” medical costs were scaled from the MOT (2016) estimate for a minor injury using 

Zaloshnja et al.’s estimates for “Medical”; scaling could not be performed using the estimate for a 

fatal injury because there are no follow-on medical costs in the event of a fatality. 

[6] “Legal and Court” costs were scaled from the MOT (2016) estimate for a fatality using Zaloshnja 

et al.’s estimates for “Legal/Court”. 
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Results and Discussion 

The Human Harm Model was used to calculate the expected Normalized Social 

Cost at heights from 6ft AGL to 400ft AGL in 20ft increments, and for population 

densities from 0.05 to 4 people/m2. Results from the Human Harm Model were 

tabulated; subsequently, interpolation was employed to estimate the maximum 

height at which the safety goal of 6x10-7 fatality-equivalents per flight hour was 

met. Figure 5 shows the maximum allowable height using the normalized social 

cost for New Zealand, and Figure 6 shows the maximum allowable height using the 

normalized social cost for the United States. The maximum allowable height at low 

population densities is essentially the same for the two countries; but, at higher 

population densities, the New Zealand estimates allow operation at lower levels 

over higher densities.  

 

Figure 5. Maximum Allowable Height by Aircraft Size and Population Density, 

NZ Normalized Social Cost. Source: Table 8 (appendix). 
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Figure 6. Maximum Allowable Height by Aircraft Size and Population Density, 

US Normalized Social Cost. Source: Table 8 (appendix). 

In a practical sense, any maximum height that is below 10ft AGL should be 

discarded, as it is too easy for a person on the ground to interfere with a small 

unmanned aircraft at such low heights. For both countries, this suggests that an 

aircraft weighing more than 1.5kg should not be flown above people at any density; 

and a 1.5kg aircraft can be flown at 10ft AGL at low densities. The 500g aircraft 

can be flown above people, but at a maximum height of 15ft AGL (both countries) 

at densities of 0.3 people/m2 or less, and at lower heights over a density of not more 

than 0.6 people/m2 (New Zealand) or 0.4 people/m2 (United States). The 250g 

aircraft can also be flown above people, but at a maximum height of 33ft AGL (both 

countries) rather than the 400ft AGL suggested by the UAS Task Force. Again, the 

250g aircraft should not be flown over densities greater than 0.6 people/m2 (New 

Zealand) or 0.4 people/m2 (United States). Even the smaller 150g aircraft is 

restricted to a maximum height of 50ft AGL above relatively low population 

densities. 
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Comparison with UAS Task Force and Micro UAS ARC 

On 16 December 2015, the FAA issued Interim Final Rule 80 FR 78593, 

requiring the registration of all unmanned aircraft weighing more than 250g. The 

250g weight requirement was set on the basis of analysis by the UAS Task Force 

of ground fatalities per hour of operation, assuming a free fall from 500ft. The 

results in Figure 6 suggest a considerably different outcome than that derived by 

the UAS Task Force. The difference between the UAS Task Force and the current 

analysis arises from two sources: first, the safety goal adopted by the UAS Task 

Force is based on a ground fatality rate approximately 100 times higher than the 

actual ground fatality rate; second, the UAS Task Force assumes a very low rate of 

people exposed to the falling aircraft. 

The UAS Task Force assumed a population density of 0.0039 people/m2 

and that just 20% of that population is exposed to the falling aircraft. An American 

Football field is 360ft (109.73m) long and 160ft (48.77m) wide (NFL, 2015), so it 

has an area of 5,351.5m2. The assumptions employed by the UAS Task Force are 

equivalent to just four people evenly spaced on that field. The probability of hitting 

a person in the event of a failure is obviously very low, and in part drives the results 

of both the UAS Task Force and the Micro UAS ARC in recommending no 

restrictions on unmanned aircraft weighing 250g or less. During a football game, 

each team has 11 players on the field, and there may be 7 officials on the field; 

considering these 29 people alone, the density of unsheltered people is over 7 times 

higher than that assumed by the UAS Task Force. The density obviously becomes 

much higher again when the total number of players on each team, the coaches, and 

spectators are considered. 

Figure 7 shows the effect of relaxing the safety goal to the value assumed 

by the UAS Task Force: all modelled unmanned aircraft are able to fly at 500ft 

AGL over areas of low population density, and all aircraft are able to operate at 

greater heights over people at higher population densities. 

The UAS Task Force results are reasonable in the context of considering 

whether an unmanned aircraft should be able to fly over a populated area with 

people conducting normal day-to-day tasks, many of them inside buildings or 

vehicles. However, those results substantially understate the risks of flying above 

crowds, or even above loose groups of people. A 1.5kg unmanned aircraft flying 

above a crowded sidewalk, for example, would pose an unacceptably high risk, 

whereas the same aircraft flying across houses and backyards with few people 

outside would likely pose an acceptable level of risk. 
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Figure 7. Maximum Allowable Height by Unmanned Aircraft Size and Population 

Density, US Normalized Social Cost, Relaxed Safety Goal (5x10-5 fatality-

equivalents per flight hour). Source: Table 8 (appendix). 

Effect of Parachutes 

On 1 August 2015, New Zealand introduced a new Civil Aviation Rule Part 

102 providing for certification of UAS operators. Certification is not required for 

operators who intend to operate within the rules specified for model aircraft in CAR 

Part 101, but is mandatory for those operators who want to operate outside the 

constraints of those rules. The CAA may authorize a departure from the CAR Part 

101 model aircraft rules if it considers that there are sufficient mitigations in place 

to keep risk at an acceptable level. The CAA notes that in “deciding whether to 

relax or remove the requirement to obtain consent,” one of the considerations would 

include “system redundancy (such as an acceptable automatic recovery parachute)” 

(CAA, 2015:8).  

Parachutes are an effective way of reducing the descent speed of an 

unmanned aircraft that has suffered a power failure. The actual speed of descent 

will depend on the relative size of the parachute and mass of the aircraft. The DJI 

“DropSafe” parachute system results in a descent speed ranging from 4.4m/s for a 

3kg aircraft to 11.7m/s for a 15kg aircraft (DJI, 2015). Opale Paramodels 

recommends parachutes be appropriately sized so that the maximum descent rate is 
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5.2m/s, even with an aircraft as heavy as 40kg (Opale Paramodels, n.d.). Parachute 

manufacturer Fruity Chutes suggests a target descent speed of 4.6m/s 

(FruityChutes.com, 2016), which is the descent speed used in this analysis.  

A maximum descent speed of 4.6m/s significantly lowers the impact energy 

of the unmanned aircraft, and consequently the injuries that might result if the 

aircraft hits a person. This in turn makes a significant difference in the maximum 

allowable height for most of the unmanned aircraft modelled. Table 6 shows the 

maximum allowable heights with the application of the New Zealand normalized 

social cost estimates. The small 150g aircraft can safely operate at 400ft AGL above 

population densities up to 0.8 people/m2, but not at densities greater than that. 

Given the densities modelled, the 250g and 500g aircraft can safely operate at 

population densities up to 0.6 people/m2; and the 1.5kg aircraft can safely operate 

with a parachute at densities no greater than 0.1 people/m2. The parachute enables 

the 3kg aircraft to operate at 400ft AGL, given the density assumptions adopted by 

the UAS Task Force, but the 8kg aircraft is unsafe to fly over people at any density 

modelled. 

These results indicate that for some unmanned aircraft, a parachute is 

sufficient to reduce risk to a level sufficient to fly up to the maximum height of 

400ft AGL without obtaining consent from those below. However, even for the 

lighter unmanned aircraft, a parachute is insufficient to mitigate the risk of flying 

over a crowd. 

Table 6 

Maximum Allowable Height by Aircraft Size and Population Density, NZ 

Normalized Social Cost, with Parachute. 

 Population Density (people/m2) 

 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.00078 

F - 150g 7.0 400 400 400 400 400 400 400 400 400 

E - 250g --- --- 400 400 400 400 400 400 400 400 

D - 500g --- --- 400 400 400 400 400 400 400 400 

C - 1.5kg --- --- --- --- 6.7 7.9 9.6 400 400 400 

B - 3kg --- --- --- --- --- 6.0 6.8 8.0 8.0 400 

A - 8kg --- --- --- --- --- --- --- 6.0 6.0 6.9 

 

25

Shelley: Human Harm from a Falling Unmanned Aircraft

Published by Scholarly Commons, 2016



 

Failure Rate 

The assumed failure rate for all of the analysis presented above is an MTBF of 100 

hours. Figure 8 shows the effect of an increase in reliability to an MTBF of 1,000 

hours for the 250g and 1.5kg aircraft. Intuitively, an increase in reliability would 

allow safe operation at a greater height above ground level over any given 

population density. This would manifest as (i) allowing greater heights above 

ground level for population densities where flight is allowed with MTBF=100, and 

(ii) allowing flight above some population densities that are disallowed at 

MTBF=100. However, as shown in Figure 8, the first of these cases does not occur: 

the maximum allowable height for the unmanned aircraft does not change, but each 

is able to fly at its maximum allowable height over much greater densities of people. 

The 1.5kg aircraft can still only safely fly at a maximum of 10ft AGL over people, 

but can now do so at maximum densities of 1.5 people/m2. The 250g aircraft 

remains restricted to 33ft AGL over people, but is able to fly at that height over 

densities of up to 2 people/m2, decreasing to 16ft AGL over crowds of 4 people/m2. 

This seemingly counter-intuitive result arises because of significant non-

linearities in the expected cost curve. Figure 9 shows the expected cost, conditional 

upon an impact occurring, for each aircraft by height AGL. Each curve has a step 

function below a cost of approximately 0.1. This step reflects the point at which the 

kinetic energy of impact first exceeds the level at which the lowest grade skull 

fracture (AIS 2) occurs, and the normalized social cost of this injury is 0.1 (Table 

4). 

The expected cost per flight hour for each aircraft is derived by dividing the 

expected cost, given impact by the MTBF, and multiplying by the number of people 

expected to be hit in the event of a crash. Given the 0.01 threshold for an AIS level 

2 skull fracture, if 1 person is expected to be hit in a crash, then an MTBF of 100 

results in an expected cost per flight hour of 0.1 /100 x 1 = 1x10-3; and an MTBF 

of 1,000 results in an expected cost of 1x10-4 per flight hour. If only 0.1 people are 

expected to be hit in a crash, then the expected cost per flight hour is one order of 

magnitude less. In all four cases, the safety goal of 6x10-7 fatality-equivalents per 

flight hour is several orders of magnitude less than these threshold values, and 

intercepts the approximately vertical section of the expected cost curve. As the 

curve is approximately vertical in this section, the maximum allowable height will 

not change significantly; even though reliability has increased. 
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Figure 8. Maximum Allowable Height by Aircraft Size and Population Density, 

US Normalized Social Cost, Alternative MTBF Assumptions. Source: Table 8 

(appendix). 

 

Figure 9. Expected Cost if Impact Occurs, US Normalized Social Cost. Source: 

Table 9 in the appendix provides values to 100ft AGL. 

27

Shelley: Human Harm from a Falling Unmanned Aircraft

Published by Scholarly Commons, 2016



 

Conclusion 

The Human Harm Model quantifies the harm that can arise when a person is 

hit by a multi-rotor unmanned aircraft that has experienced some form of failure, 

and falls on people below. With a safety goal based on the ground fatality rate for 

existing manned aircraft, the analysis indicates that there should be significant 

restrictions on flying over people, including maximum heights that are quite 

restrictive compared to the maximum of 400ft AGL currently allowed. Flying over 

people is also only safe at low population densities. Unmanned aircraft in excess of 

1.5kg should not be flown over a crowd of people at any density. 

Parachutes are highly effective at increasing the maximum allowable height 

for most unmanned aircraft, increasing the maximums from tens of feet to 400ft 

AGL. Increasing the reliability of unmanned aircraft enables them to fly above 

much greater densities of people. Manufacturers could potentially conduct testing 

programs to quantify the failure rate, but many hundreds of hours of testing might 

be required for this. Alternatively, registered UAS operators might be encouraged 

to report all crashes and hours flown. It is recommended that additional restrictions 

be added to New Zealand’s Civil Aviation Rules, restricting the range of 

circumstances in which an unmanned aircraft can be flown over people. The New 

Zealand CAA’s stated intention to require unmanned aircraft to have a parachute 

to fly over people is appropriate in some instances, but the model indicates that a 

parachute does not appreciably alter risk for the heavier aircraft; nor does it increase 

the population densities over which an aircraft can fly. Flying over a high density 

of people requires a UAS with a high level of reliability. 

The model also indicates that the recommendation of the Micro UAS ARC 

to allow unmanned aircraft of 250g or less to fly over people without restrictions is 

unsafe. This recommendation appears to follow from assumptions that do not 

reflect likely scenarios of actually flying over people (but are realistic for a scenario 

of traversing across a populated area, with trees, buildings, and most people 

sheltered). 

Finally, it is important to note that optimal social cost will require more 

restrictions in addition to maximum height above people. This paper, for example, 

does not address the appropriate horizontal distance between an unmanned aircraft 

and a person.  
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Further Development 

There are a number of areas in which this model can be applied to provide 

more accurate predictions of the range of potential injury outcomes. A refined 

model could separately identify impacts to a person’s shoulder region from impacts 

to the head, and potentially allow for glancing blows (such as those reported in 

Molinet, 2015). An obvious additional area for development is in the injuries from 

loss-of-control incidents that might occur when the unmanned aircraft is close to 

people and horizontal impacts may occur. Such a model would also need to include 

estimates of the injuries that might occur from people being cut by the spinning 

propellers. Refined estimates of the cross-sectional surface area and coefficient of 

drag would improve the accuracy of the estimates, but might not qualitatively affect 

the results. A significant gap in the data is that of the applicable failure rate. With 

no data on hours flown, and no reliable data on the number of failures that occur, 

there is currently no way to accurately estimate this rate.   
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Appendix 

Table 7 

Fatalities and Fatality Rates, 1995 through 2014, U.S. General Aviation. 

Year 

Fatalities 
Flight 

Hours 

Fatality Rate 

Total Aboard 
Not 

Aboard 
Total 

Not 

Aboard 

1995 734 727 7 24,906,000 2.95E-05 2.81E-07 

1996 636 619 17 24,881,000 2.56E-05 6.83E-07 

1997 631 625 6 25,591,000 2.47E-05 2.34E-07 

1998 624 618 6 25,518,000 2.45E-05 2.35E-07 

1999 621 615 6 29,246,000 2.12E-05 2.05E-07 

2000 596 585 11 27,838,000 2.14E-05 3.95E-07 

2001 562 558 4 25,431,000 2.21E-05 1.57E-07 

2002 581 575 6 25,545,000 2.27E-05 2.35E-07 

2003 633 630 3 25,998,000 2.43E-05 1.15E-07 

2004 559 559 0 24,888,000 2.25E-05 0 

2005 563 558 5 23,168,000 2.43E-05 2.16E-07 

2006 [*] 706 547 159 23,963,000 2.95E-05 6.64E-06 

2007 496 491 5 23,819,000 2.08E-05 2.1E-07 

2008 496 487 9 22,805,000 2.17E-05 3.95E-07 

2009 479 470 9 20,862,000 2.30E-05 4.31E-07 

2010 458 455 3 21,688,000 2.11E-05 1.38E-07 

2011 452 441 11 - - - 

2012 437 437 0 20,881,000 2.09E-05 0 

2013 391 386 5 19,492,000 2.01E-05 2.57E-07 

2014 419 410 9 18,103,000 2.31E-05 4.97E-07 

Total excl 2011 10,622 10,352 270 454,623,000 2.34E-05 5.94E-07 

Source: Fatalities for “Total” and “Aboard” and “Flight Hours” from National Transportation Safety 

Board (n.d.). Fatalities for “Not Aboard” are calculated as the difference between “Total” and 

“Aboard”. 

Note: [*] The 706 Total Fatalities for 2006 includes the 154 people killed aboard a non-US 

registered Boeing 737 aircraft when it collided with a US-registered Embraer Legacy business jet 

over the Brazilian Amazon jungle. These 154 fatalities were not aboard a US-registered aircraft, so 

are included in the “Not Aboard” total. If they are excluded then the total “Not Aboard” for the 

entire period excluding 2011 is 105, and the fatality rate is 2.31E-07. 
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Table 8 

Maximum Allowable Height (ft above ground level) by Scenario, Aircraft Size, and Population Density. 

Aircraft 

Size 

Population Density (people/m2) 

4 3 2.5 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.05 

New Zealand Normalized Social Cost     

F - 150g --- --- --- --- --- --- --- --- --- 17.3 29.1 36.1 44.3 50.0 50.0 50.1 50.3 

E - 250g --- --- --- --- --- --- --- --- --- --- 13.8 18.0 23.2 29.2 33.0 33.0 33.0 

D - 500g --- --- --- --- --- --- --- --- --- --- --- 11.9 14.3 15.0 15.0 15.1 15.3 

C - 1.5kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 10.0 10.0 

B - 3kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 

A - 8kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 

United States Normalized Social Cost     

F - 150g --- --- --- --- --- --- --- --- --- --- 14.2 24.9 36.0 48.8 50.0 50.1 50.2 

E - 250g --- --- --- --- --- --- --- --- --- --- --- 8.4 16.3 24.7 33.0 33.0 33.0 

D - 500g --- --- --- --- --- --- --- --- --- --- --- 7.1 11.1 15.0 15.0 15.1 15.1 

C - 1.5kg --- --- --- --- --- --- --- --- --- --- --- --- --- 6.3 8.4 10.0 10.0 

B - 3kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- 6.1 7.6 8.0 

A - 8kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 6.0 6.0 
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Aircraft 

Size 

Population Density (people/m2) 

4 3 2.5 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.05 

United States Normalized Social Cost, Safety Goal = 5x10-5     

F - 150g 

50.

2 

50.

2 

50.

3 

50.

4 

50.

4 

50.

5 

50.

6 

50.

7 

50.

8 51.0 51.3 51.6 52.0 52.7 54.1 

280.

0 

424.

0 

E - 250g 

33.

0 

33.

0 

33.

0 

33.

1 

33.

1 

33.

1 

33.

1 

33.

1 

33.

1 33.2 33.2 33.3 33.3 33.4 33.6 

115.

2 

162.

7 

D - 500g 

15.

1 

15.

2 

15.

2 

15.

3 

15.

3 

15.

4 

15.

4 

15.

5 

15.

6 15.8 16.1 16.3 16.6 17.1 18.2 51.8 63.8 

C - 1.5kg 

10.

0 

10.

0 

10.

0 

10.

0 

10.

0 

10.

0 

10.

0 

10.

1 

10.

1 10.1 10.1 10.2 10.2 10.3 10.4 10.8 22.4 

B - 3kg 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.2 8.3 8.5 11.0 

A - 8kg 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.3 6.6 

New Zealand Normalized Social Cost, with Parachute     

F - 150g --- --- --- --- --- --- --- --- 7.0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 400.0 

400.

0 

400.

0 

E - 250g --- --- --- --- --- --- --- --- --- --- 

400.

0 

400.

0 

400.

0 

400.

0 400.0 

400.

0 

400.

0 

D - 500g --- --- --- --- --- --- --- --- --- --- 

400.

0 

400.

0 

400.

0 

400.

0 400.0 

400.

0 

400.

0 

C - 1.5kg --- --- --- --- --- --- --- --- --- --- --- --- 6.7 7.9 9.6 

400.

0 

400.

0 

B - 3kg --- --- --- --- --- --- --- --- --- --- --- --- --- 6.0 6.8 8.0 8.0 

A - 8kg --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 6.0 6.0 
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Aircraft 

Size 

Population Density (people/m2) 

4 3 2.5 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.05 

United States Normalized Social Cost, MTBF 1 in 1000     

F - 150g 

36.

0 

48.

8 

50.

0 

50.

0 

50.

0 

50.

0 

50.

0 

50.

0 

50.

1 50.1 50.1 50.2 50.2 50.3 50.5 51.0 52.0 

E - 250g 

16.

3 

24.

7 

29.

3 

33.

0 

33.

0 

33.

0 

33.

0 

33.

0 

33.

0 33.0 33.0 33.0 33.0 33.0 33.1 33.1 33.3 

D - 500g 

11.

1 

15.

0 

15.

0 

15.

0 

15.

0 

15.

0 

15.

0 

15.

0 

15.

1 15.1 15.1 15.1 15.2 15.2 15.4 15.8 16.5 

C - 1.5kg --- 6.3 7.4 8.4 8.9 9.3 9.8 

10.

0 

10.

0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 10.2 

B - 3kg --- --- --- 6.1 6.3 6.7 7.0 7.3 7.6 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1 

A - 8kg --- --- --- --- --- --- --- --- 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 
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Table 9 

Expected Cost Conditional Upon Impact Occurring, heights to 100ft AGL, US 

Normalized Social Cost. 

Height 

 

(ft AGL) 

Aircraft Size 

F - 150g E - 250g D - 500g C - 1.5kg B - 3kg A - 8kg 

6 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

7 0.0003 0.0003 0.0003 0.0004 0.0004 0.1010 

8 0.0003 0.0003 0.0003 0.0004 0.0007 0.1088 

9 0.0003 0.0003 0.0003 0.0005 0.1011 0.1695 

10 0.0003 0.0003 0.0004 0.0007 0.1024 0.5896 

11 0.0003 0.0003 0.0004 0.1007 0.1053 0.8989 

12 0.0003 0.0003 0.0004 0.1010 0.1117 0.9861 

13 0.0003 0.0004 0.0004 0.1015 0.1254 0.9983 

14 0.0003 0.0004 0.0005 0.1022 0.1541 0.9998 

15 0.0003 0.0004 0.0005 0.1033 0.2111 1.0000 

20 0.0004 0.0004 0.1006 0.1227 0.9132 1.0000 

21 0.0004 0.0005 0.1006 0.1330 0.9572 1.0000 

22 0.0004 0.0005 0.1007 0.1479 0.9796 1.0000 

23 0.0004 0.0005 0.1008 0.1687 0.9904 1.0000 

24 0.0004 0.0005 0.1009 0.1976 0.9955 1.0000 

25 0.0004 0.0005 0.1011 0.2364 0.9979 1.0000 

26 0.0004 0.0005 0.1012 0.2870 0.9990 1.0000 

27 0.0004 0.0006 0.1014 0.3499 0.9996 1.0000 

28 0.0004 0.0006 0.1015 0.4243 0.9998 1.0000 

29 0.0004 0.0006 0.1018 0.6163 0.9999 1.0000 

30 0.0004 0.0006 0.1020 0.6825 1.0000 1.0000 

31 0.0004 0.0007 0.1023 0.7464 1.0000 1.0000 

32 0.0005 0.0007 0.1026 0.8038 1.0000 1.0000 

33 0.0005 0.0007 0.1029 0.8525 1.0000 1.0000 

34 0.0005 0.1005 0.1033 0.8915 1.0000 1.0000 

35 0.0005 0.1005 0.1038 0.9217 1.0000 1.0000 

36 0.0005 0.1006 0.1043 0.9442 1.0000 1.0000 
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Height 

 

(ft AGL) 

Aircraft Size 

F - 150g E - 250g D - 500g C - 1.5kg B - 3kg A - 8kg 

37 0.0005 0.1006 0.1048 0.9606 1.0000 1.0000 

38 0.0005 0.1006 0.1055 0.9723 1.0000 1.0000 

39 0.0005 0.1007 0.1062 0.9807 1.0000 1.0000 

40 0.0005 0.1007 0.1070 0.9865 1.0000 1.0000 

41 0.0006 0.1008 0.1079 0.9906 1.0000 1.0000 

42 0.0006 0.1008 0.1089 0.9935 1.0000 1.0000 

43 0.0006 0.1009 0.1101 0.9955 1.0000 1.0000 

44 0.0006 0.1009 0.1114 0.9969 1.0000 1.0000 

45 0.0006 0.1010 0.1129 0.9978 1.0000 1.0000 

46 0.0006 0.1010 0.1145 0.9985 1.0000 1.0000 

47 0.0006 0.1011 0.1164 0.9989 1.0000 1.0000 

48 0.0007 0.1011 0.1185 0.9993 1.0000 1.0000 

49 0.0007 0.1012 0.1208 0.9995 1.0000 1.0000 

50 0.0007 0.1013 0.1234 0.9996 1.0000 1.0000 

55 0.1005 0.1017 0.1419 0.9999 1.0000 1.0000 

60 0.1006 0.1022 0.1734 1.0000 1.0000 1.0000 

80 0.1011 0.1061 0.6322 1.0000 1.0000 1.0000 

85 0.1013 0.1078 0.7294 1.0000 1.0000 1.0000 

90 0.1015 0.1099 0.8143 1.0000 1.0000 1.0000 

95 0.1017 0.1124 0.8794 1.0000 1.0000 1.0000 

100 0.1020 0.1156 0.9245 1.0000 1.0000 1.0000 
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