

GNSS Observations of Ionospheric Scintillations Due to Rocket Launches

Daniel Koshy [koshyd@my.erau.edu], Jaclyn Adams, Skye Colonna, and Chintan Thakrar Student Research Symposium 2020

Space Physics Research Lab - Department of Physical Sciences

Objectives

- > Study and identify rockets as possible sources of disturbance in the ionosphere by analyzing the June 25, 2019 Falcon Heavy rocket launch case in Cape Canaveral, FL
- ➤ Utilize the Global Navigation Satellite Systems (GNSS) constellation to pinpoint these effects
- > Study atmospheric effect in various rocket launches and apply the knowledge in the June 25th instance
- Expand current algorithm methods at the Space Physics Research Lab used to identify other phenomenon and build a team to work on this new initiative

Introduction

The Ionosphere & GNSS

- > The ionosphere is a layer in Earth's upper atmosphere that is located approximately 80-1000 km above the Earth's surface
- > This layer contains ions and free electrons that are known to cause drastic phase and power changes in signals known as ionospheric scintillations
- The GNSS network is composed of satellites that provide signal data at various altitudes
- > SPRL has been utilizing this data as it has had provided reliable insight in past projects

Why Rockets?

- ➤ Large enough rocket launches can stimulate notable changes in the ionosphere through a culmination of aftershock propagation waves, causing irregularities that threaten GPS signal reception
- These changes due to rockets are rarely noticed, and to the best of our knowledge, this is Figure 1: The Falcon Heavy Rocket the first time this concept is being studied up close

has enough power from exhaust to elicit changes to ionospheric structures

Methodology and Current Results

Data Collection

- > Before any data is parsed or visually analyzed, the team utilizes a spreadsheet to organize dates in UTC (Universal Time Coordinated) and EST (Eastern Standard Time) of potential days rockets will be launched
- > Novatel software is used by GPS receivers to pick up low and high-rate binary data from GNSS during specified launch times
- > EISA (Embry-Riddle Ionospheric Scintillation Algorithm) is used to gather this data, which is then parsed and graphed into CSV files through a series of code using GPS data

Figure 2: One of SPRL's GPS-703-GGG antennas on top of the COAS Building at ERAU

Results of 06/25/2019 Falcon Heavy Rocket Launch Case

Figure 3: This graph separates the changes in power and phase recorded by PRN32 on June 25, 2019. There is a notable change in phase of the signal

Figure 4: The peak in phase at 6:30 UTC is believed to be an irregularity due to the rocket launch. Elevation is at about 75 degrees above horizontal axis.

Area of Focus on Trajectory & Total Electron Content (TEC) Results

Figure 5a

Figure 5a & 5b: Figure 5a demonstrates the TEC activity shortly after the time of the launch (~6 UTC). Figure 5b demonstrates the path of Falcon Heavy. Our group focuses on the points between ascent and stage separation.

Conclusions

- In the June 25, 2019 instance we see that shortly after 5:00 UT there is a phase scintillation of approximately 1 radian demonstrating the ability of a rocket to cause fluctuation
- > We see through Figure 5b that after 6 UTC, at the time of the launch there is not much TEC activity, which causes us to believe that the launch did not affect TEC as much as believed
- Figure 4 demonstrates that the signal we received was not a multipath, or alternative signal, due to its high angle.
- > We can believe that due to the obvious scintillation in the signal, there is influence from acoustic waves

Future Developments

- > Facilitate recording of more rocket launches that could provide potential instances of disturbance.
- Make sure flow between Excel, parsing, and graph creation is user-friendly for future researchers
- > Use GEMINI or SIGMA methods to model acoustic gravity waves
- > Incorporate a triangular network array of receivers to gather more diverse sets of data
- > Expand 2021 team and train future members

Acknowledgements

- > We would like to express our sincere gratitude to the following individuals:
- > Dr. Kshitija Deshpande for providing the inspiration, guidance, and advice throughout the development of this up-and-coming project
- > Shantanab Debchoudury for providing knowledge and insight into rocket launches
- ➤ Marie Bals photography, 30th Space Wing Public Affairs, and NASA and SpaceX public data repositories