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Conventional airplane horizontal takeoff run consists of the accelerating 

ground-roll phase and the airborne phase. The airborne phase starts at liftoff with 

MULOF vv   to regulatory screen height (SH) at 2vvSH  . Part of the airborne takeoff 

run does not require hard-surface underneath, but obstacle-free space instead. 

Hence, clearways (CWY) are often used to facilitate part of the airborne takeoff 

segment and accordingly increase operating takeoff weight (TOW). The entire 

takeoff maneuver is considered accomplished by reaching 1,500 ft AGL at flaps-

up maneuvering speed (Holt and Poynor, 2006; Swatton, 2008). Takeoff 

regulations of transport-category (T-category) airplanes with associated speed 

requirements are covered in respective FAR/CS 25.105, 25.107, 25.111, 25.113 

and 25.115 (EASA, 2007; FAA, 2011, 2013). Scheduled takeoff performance 

must satisfy numerous constraints imposed by FAR/CS 25 and some operational 

rules, such as, 91.605, 121.189 (FAA, 2014b), and 135.379. Stopways (SWYs) 

and CWYs were introduced in the early 1950’s by the ICAO (International Civil 

Aviation Organization) and the British Civil Aviation Authorities (CAA) in order 

to accommodate the operation of the first commercial jet transport – Comet 1 

(Smith M. A., 1953).  

 

In most engineering references, a so-called, direct takeoff-dynamics 

problem is solved. The weight (mass) of an airplane is known, while the 

aerodynamic, propulsive, gravitational, and frictional forces and accelerations are 

modeled. Most of the takeoff occurs in ground effect and at constant pitch 

attitude. The required distance for takeoff is then calculated by marching-in-time 

integration of differential equations of motion based on speed-dependent forces. 

However, airplane takeoff problems in scheduled air-carrier operations are more 

complex and the solution of the more difficult inverse problem is sought. Takeoff 

runways are now fixed. Existing environmental conditions must be used over 

which an operator has no control. The maximum takeoff weight at available thrust 

and discrete flap setting that can be lifted is maximized under many constraints. 

Thus, the problem of T-category takeoffs is a problem of nonlinear programing 

(Luenberger, 1984; Minoux, 1986; Pierre, 1984). The constrained nonlinear 

optimization of the system of algebraic equations and inequalities is solved. It is 

not possible to solve this problem in a closed (analytical) form unless some 

severe, and totally unrealistic, assumptions are made. 

 

Runways used for T-category commercial jets are very expensive ($600-

$1,000/ft2). An airport operator can opt for a cheaper option and that is to add 

SWY to increase accelerate-stop distance available (ASDA) and CWY to increase 

takeoff distance available (TODA). General runway layout is illustrated in Figure 

1. Note that EMAS cannot be used in takeoff calculations. Adding CWY only will 

increase field-length limited takeoff weight (FLLTOW), but at the cost of lower 
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decision/action speed V1 to account for unchanged ASDA and heavier weight. 

Complete regulatory definitions of CWYs and SWYs is provided in 14 CFR 1, 

FAA (2014a), ICAO (2006), Swatton (2008), and will thus not be repeated. For 

runways with no CWYs, TODA is more restrictive than takeoff run available 

(TORA). TORA provides full-strength pavement surface capable of supporting 

given airplane operations during all field operations. Regulations allow maximum 

usable CWY to be no longer than 50% of TORA.  However, as the CWY is added 

to the basic TORA, the takeoff run required (TORR) becomes significant and at a 

certain CWY length, takeoff distance required (TODR) and TORR are equally 

restrictive. The CWY for which FLLTOWTODR= FLLTOWTORR is designated 

critical CWY. Any CWY beyond critical is practically unusable. Accelerate-stop 

(AS) and accelerate-go (AG) T-category airplane takeoff scenarios, available and 

required distances are illustrated in Figure 2. 

 

 
Figure 1. General runway layout. Not to scale. 

 

By definition, the balanced field length (BFL) represents the case for 

which ASDA=TODA. On the other hand, the balanced field condition (BFC) 

occurs when ASD=TOD (or ASDR=TODR). One may have BFL, but not BFC 

due to the effect of runway slope, wind, density altitude (DA), etc. Similarly, the 

field lengths may be unbalanced (UBFL), but the BFC may still exist. Inconsistent 

definitions and use of BFL and BFC is common in practice. In this work, we will 

primarily focus on UBFL and typically in real life that implies TODA > ASDA. 

Although the field may be unbalanced, a unique V1 and FLLTOW may exist. A 

symbolic depiction of BFL and UBFL is shown in Figure 3. Hence, V1-speed 

represents a pitchfork bifurcation point after which two entirely different takeoff 

histories exist. There are infinitely many possible combinations of SWYs, CWYs 

and TORAs. Sometimes starter extensions (up to 500 ft long) are used to increase 

TORA (Swatton, 2008). BRP defines brake release point. 
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Figure 2. Available and required takeoff distances for a typical unbalanced 

condition. Not to scale. 

 

 
 

Figure 3. Symbolic depiction of balanced (above) and arbitrary unbalanced 

(below) takeoffs from dry, level, and paved runways. Not to scale. 

 

Certified TOWs are obtained by flight-tests in prototype airplanes 

followed up by data reduction to standard conditions. Normally, any of the 

following conditions can limit regulated TOW (RTOW): TORA, ASDA, or 

TODA. RTOW is the lower of the maximum structural TOW (MSTOW) and the 

performance-limited TOW (PLTOW). This can be evaluated for net (factored) all-
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engines-operating (AEO) and gross (unfactored) one-engine-inoperative (OEI) 

cases for dry or wet conditions. Additional limitations can be posed by the 

maximum brake energy absorption, which limits the maximum groundspeed for 

AS rejected takeoff (RTO), 
MBEvv 1

. On the other hand, the maximum liftoff 

groundspeed TIRELOF vv  , limits AG maneuver. The takeoff decision/action speed 

V1 is aerodynamically limited by 
MCGv  on the lower end ( EFMCG vv  ), and rotation 

Rv , on the higher-end of the speed-spectrum. Physically, ASDA defines the 

envelope of the VSTOP or maximum V1 speeds, while TODA/TORA defines the 

envelope of the minimum V1 or VGO speeds, such that, STOPGO vvv  1 . AEO TORR 

and TODR do not depend on V1. Definitions and details of various takeoff V-

speeds can be found in Airbus (2002), Swatton (2008), and current FAR 25.51. 

 

Physics of AS and AG maneuvers is complex. Although, the laws of the 

classical (Newtonian-Lagrangian-Hamiltonian) physics/mechanics are well 

known and straightforward to apply in differential or integral form, accounting 

for, and estimating, all aerodynamic, propulsive, mechanical, gravitational, and 

other forces (and moments) acting on accelerating aircraft is an extremely arduous 

task plagued with uncertainties. Although not inertial, non-rotating flat-Earth 

topocentric frame of reference fixed to the airfield was used with takeoff 

equations of motion. Energy balances during takeoff are illustrated in Figure 4.  

 

The FAA Amendment 25-92 and guide to flight testing of FAR 25 

airplanes summarized in AC 25-7C (FAA, 2012) defines how are certification 

rules to be applied in order to arrive to figures contained in airplane flight 

manuals (AFM). For FAR 25 airplane certification process, multiple experimental 

and fully instrumented airplane prototype demonstrated takeoff runs are required 

(Daidzic, 2013b), resulting in average values scaled/reduced to appropriate ISA 

conditions, configurations, and weights. Such is, of course, complex and 

expensive endeavor and currently the only option to certify field performance 

FAR/CS 25 airplanes. Alternatively, one can design 3-DOF or 6-DOF (or even ∞-

DOF elastic airplane) simulation models consisting literary of hundreds of 

nonlinear ordinary differential equations (ODE) and simultaneous algebraic 

equations. Such initial-value ODE systems can be then solved using sophisticated 

numerical integration methods, such as, adaptive single-step Runge-Kutta, 

Richardson extrapolation and the Burlish-Stoer methods, multi-step Adams-

Bashforth-Moulton methods, and predictor-corrector methods as sub-category of 

multi-step methods (Allerton, 2009; Chapra and Canale, 2006; Press et al., 1992). 

Such complex nonlinear simulation models would surpass the fidelity used in 

current Level-D full flight simulators, cannot run in real time (Allerton, 2009), 

and provide little insights into dynamics of field performance. Due to convoluted 
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simultaneous effects of many parameters it is difficult to draw definite 

conclusions or learn much from it. Parametric analysis is possible, but it requires 

hundreds of hours of tedious work and in case of flight tests would be practically 

impossible to conduct. Flight test results supported by physics-based data 

reduction are then entered in AFMs.  

 

 
 

Figure 4. Illustration of energy balances during specific unbalanced AEO and 

OEI AG and AS takeoff. Not to scale. 

 

A total-energy physics-based model of FAR/CS 25 airplane takeoff 

performance was developed here. This model uses existing certification and 

operational regulations, but is flexible and has many free parameters that can be 

adjusted to simulate any regulatory changes, runway data, environmental data, 

and particular airplane/engine models. The model operates by utilizing the energy 

conservation principle on integral (macroscopic) scale. As such it cannot recreate 

takeoff time histories, but the end states only. While, real-world aircraft takeoff 

performance certification cannot be currently based on mathematical models, it is 

hoped that simulated results will be very close to demonstrated performance. 
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Thus, the main focus of our study is to build a realistic, yet simple enough, 

mathematical model of FAR/CS 25 certified airplanes takeoff maneuver 

complying with all applicable regulatory, environmental, runway, and aircraft 

constraints/limitations. This mathematical model and simulation software was 

named Takeoff Performance Tool (TPT). The presented physics-based total-

energy model serves several purposes. It provides deeper insights into takeoff 

physics and highlights the relative importance of various regulatory, aircraft, 

runway, environmental and atmospheric parameters. Hence, TPT can be used in 

analytical and numerical takeoff optimization studies, airport/runway planning 

and operations, economic analysis of runways, CWYs, and/or SWYs, etc. 

Another goal was to evaluate how unbalanced fields affect TOW and V1. 

 

Literature Review 

 

Not much information on T-category airplane takeoff performance theory 

and applications in commercial service is available in public domain. It is 

assumed and expected that large civil-aircraft manufacturers, such as, Airbus, 

Boeing, Embraer, etc., would have developed proprietary takeoff performance 

models and programs augmented by flight test data (i.e., flight-test expansion 

models). For example, Airbus (2002) provides useful information and 

performance analysis during various phases of flight for its customers. Airbus has 

developed standalone proprietary PEP (Performance Engineering Programs) 

application in MS Windows environment designed to provide the necessary tools 

to handle the performance aspects of flight preparation and also to analyze aircraft 

performance after the flight. PEP consists of many submodules specializing in 

aircraft performance calculations for various phases of flight (Airbus, 2002). For 

example, OCTOPUS (Operational and Certified TakeOff and landing 

Performance Universal Software) is used for field performance computations 

related to A320 family, A330, A340, and A380. It was designed in Fortran 95 by 

Airbus with roughly 230,000 lines of code (de Lemos Viana, 2011). More details 

on OCTOPUS applications can be found in de Lemos Viana (2011). Details on 

internal workings and optimization algorithms are not available. 

 

Takeoff dynamics of rigid airplanes is described in various levels of detail 

in several standard and classical aerospace/aeronautics engineering references, 

such as, Anderson (1999), Asselin, (1997), Eshelby (2000), Filippone (2012), 

Hale (1984), Mair and Birdsall (1992), McCormick (1995), Ojha (1995), Padilla 

(1996), Roskam and Lan (1997), and Vinh (1993). However, all these references 

deal with the direct takeoff problem, i.e., by knowing airplane’s TOW find the 

required takeoff distances for given runway and environmental conditions. The 

problem facing commercial operators (FAA, 2014b) daily is actually the inverse 
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takeoff problem, i.e., knowing the available/declared takeoff distances (ASDA, 

TORA, TODA), find the maximum operating or restricted TOW under known 

environmental and runway conditions while complying with several constraints. 

No general analytical solution of such nonlinear inverse problem exists.  

 

From the flight testing, piloting, and airline operational perspective, we 

reference the work of Davis (1971), Lowery (2001), Webb and Walker (2004) and 

Holt and Poynor (2006). Davis (1971) gives a good early account of certification 

rules and flight tests on B747-100. Lowery (2001), Web and Walker (2004) and 

Holt and Poynor (2006) give account of many takeoff operational regulations as 

well as takeoff piloting techniques and procedures. FAA’s takeoff training safety 

aid (FAA, 1994), gives detailed qualitative account of many RTO accidents and 

highlights takeoff techniques and procedures in non-mathematical terms. Also, 

many incidents and accidents have occurred in airfield line operations (during 

takeoff and landing phase) due to erroneous input of performance data (ATSB, 

2011). Some of the accidents are summarized in ATSB (2011), but there is no 

space here to discuss or go into detail on any of the particular events.  

 

A good early source of flight testing procedures and data reduction is 

given in Durbin and Perkins (eds.) (1962). Takeoff performance measurements 

and reduction to standard conditions is properly described. Perry (1967) gives an 

overview of fixed-wing aircraft horizontal normal-takeoff physics highlighting 

many major factors. The author showed how to solve the direct-takeoff problem 

using both the energy- and the differential-models. It is often possible to 

analytically integrate differential models to arrive at takeoff distance-required 

solutions in a closed form implying some, more or less severe, assumptions must 

be first made. Wagenmakers (1991) discuss many topics of interest regarding 

aircraft performance monitoring, regulations, and planning. The author defines in 

clear terms the needs for better understanding of some takeoff issues. Roskam and 

co-workers developed Advanced Aircraft Analysis (AAA) modules and much of 

the underlying implemented theory can be found in Roskam and Lan (1997). Nuic 

et al. (2005) present advanced aircraft performance modelling tool called BADA 

(Base of Aircraft Data). The primary purpose of BADA is to serve as a tool in air 

traffic management. BADA model is based on kinetic (dynamic) physics-based 

first-principle differential models that account for various forces. Integration of 

the underlying system of differential equations describing forces and the total-

energy state of aircraft at every instant results in variable-mass (weight) 

trajectories in time and space for all phases of flight. Aircraft limitations are also 

implemented. Large internal aircraft database is required to provide inputs into the 

model. Similarly, a powerful PIANO software (Simos, 2006) was designed as a 

performance analysis tool, aircraft database and preliminary design tool. This 
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proprietary commercial software has almost become an industry standard with 

many prominent users, but not much information and details of its internal 

working is available in public domain  

 

ICAO’s aerodrome design manual (ICAO, 2006) gives very good 

description of the effect that SWYs and CWYs have on the takeoff performance. 

In general, very little to none qualitative information was found on the effect of 

SWYs and CWYs on takeoff performance. In an aviation-industry oriented article 

Chiles (2007) discusses some takeoff myths and common practices and highlights 

the need for takeoff performance monitoring. Jeppesen (2007) and Swatton 

(2008) give account on various takeoff regulations and operational procedures in 

FAR/CS 25 airplanes mostly aimed toward professional pilots and commercial 

operators. Daidzic and Shrestha (2008) studied the FAR/CS 25 landing dynamics 

of T-category airplanes. The 3-DOF differential equations of motion model 

included realistic simulation of pilot actions and operational delays when landing 

on contaminated runways in adverse weather conditions. The model could also be 

used for RTO simulations, as a landing calculator, and as a tool in aircraft 

accident investigations. The level of sophistication in accounting for various 

runway contaminants surpasses the one used in Level-D Flight simulators. 

Filippone (2008) presents multi-disciplinary comprehensive analysis of T-

category aircraft flight performance. The author uses B777-300 with GE-90 

engines as an example for performance calculations. Type of results obtained by 

performance analysis includes air-range charts, takeoff WAT charts, payload-

range performance, economy Mach number, etc. Ohme (2009) reports on a new 

developed software tool, called MAPET II for evaluation of aircraft takeoff and 

landing performance based on 6-DOF high-fidelity model. Ohme’s model was 

designed for FAR/CS 25 airplane takeoff and landing dynamics where flap 

setting, CG location, runway contaminants and other parameters could be set 

through graphical user interface. A summary of some industry and academic 

aircraft performance programs is provided in Filippone (2012). The author also 

presents his differential model of takeoff performance.  It is essentially a lumped-

parameter model consisting of eight coupled nonlinear ODE. The author uses 

fixed (not adaptive) single-step Runge-Kutta methods to perform integration in 

time. While time histories can be recreated, this model does not solve the inverse 

takeoff problem nor does it perform optimization of TOW for given runway under 

given constraints. The same arguments can be used for all other previous works 

mentioned here. Torenbeek (2013) provides a wealth of theory and details on 

optimization of aircraft design. The takeoff maneuver was only marginally 

discussed and the statement was made that it is the most difficult of all the 

optimization studies. No constrained optimization and maximization of the Figure 

of Merit (FOM) of takeoff maneuver was presented. Zontul (2013) presents study 
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in which all aircraft types can be combined in a single server based database 

systems. Author claims that its rule checking process is very dynamic and flexible 

and that server database can be extended to create national or international aircraft 

and airport information system in the future. Daidzic (2014a) presents analytical 

total-energy model and solutions of improved or overspeed-V2 airplane takeoffs. 

Such takeoffs are often an important tool to increase TOW (and profit) when 

dealing with climb-limited takeoffs (CLTOW). Bays and Halpin (2014) propose 

replacements of traditional AFMs with the direct performance calculations from 

physics-based models. The results of their study shows that inherent conservatism 

in traditional AFMs causes undue penalty in airfield performance. Furthermore, 

sometimes even that conservatism is inadequate. Wasiuk et al. (2015) developed 

and used the Aircraft Performance Model Implementation (APMI) software to 

calculate the global commercial aviation fuel burn and emissions. Daidzic (2016a) 

and Daidzic (2016d), introduces and describes certain aspects of the proprietary 

Total Runway Safety System (TRSS) which falls under the Aircraft-Runway 

Total Energy Monitoring and Management Systems (ARTEMS). TRSS monitors, 

manages, and controls longitudinal and lateral trajectories of conventional fixed-

wing airplanes during field operations preventing overruns and veer-offs, 

including during RTO’s.  

 

Mathematical Models and Methodology 

 

The first-principle physics-based aircraft performance models require 

knowledge and accounting of all dominant forces at every instant. That also 

requires in-depth knowledge of aircraft aerodynamics, structural, and dynamics 

data that sometimes even the manufacturer does not have readily available. 

Airplane takeoff is accelerated maneuver complicated by the fact that it involves 

three distinct stages occurring in changing ground effect magnitude: 

 

1. Ground run (roll) acceleration (groundspeed 0 to airspeed VR). 

2. Rotation (airspeed VR to VLOF) and transition to flight. 

3. Accelerated climb to SH (airspeed VLOF to V2 @ OEI or V3 @ AEO). 

 

Each of these phases involves multiple truly complicated interactions 

between an airplane, runway, and the environment. The TPT model derived here 

consists of four submodules: (1) Runway model (dry, wet, contamination, average 

slope, etc.), (2) Aircraft model (drag polars for various configurations, brakes, 

tires, etc.), (3) Propulsion engine model (thrust, SFC, anti-ice on/off, AC on/off, 

etc.), and (4) Environmental/atmospheric model (air density, wind, etc.). 
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A total-energy based, model of airplane takeoffs is used in this study 

(Daidzic, 2014a, 2016b). Topocentric flat and non-rotating Earth, nearly inertial, 

frame-of-reference fixed at the runway threshold is used in derivation of the 

model equations. Horizontal distance covered during the constant net average 

acceleration or deceleration only depends on the groundspeeds at the beginning 

and at the end of the speed-range: 

 

0
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22
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Equation (1) describes kinematic problem. If a<0 (deceleration or 

negative acceleration), then Vc>Vd, and the distance covered is positive 

(deceleration length). All subsequent analysis assumes no-wind situation and thus 

VGS=VTAS. Since the equivalent airspeeds (EAS) are mostly used as reference 

airspeeds, we convert true airspeeds (TAS) to equivalent EAS, yielding: 
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The difference between CAS and EAS during takeoffs is less than one 

knot (for Mach < 0.3 and altitude < 10,000 ft) and thus negligible (Asselin, 1997; 

Eshelby, 2000; Hurt, 1965; Padilla, 1996). Dry air properties are calculated 

according to ISA model (Daidzic, 2015a, 2015b): 
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Model of standard troposphere was used to calculate air parameters 

(Daidzic, 2015a). It is thus assumed that all speeds are EAS from now on unless 

explicitly defined otherwise. From Equation (2), the Law of conservation of 

kinetic energy describes dynamic problem: 
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Forces acting on airplane during takeoff are generally speed-dependent. 

Changing ground effect plays especially important role during airborne segment. 

An illustration of various forces acting on an airplane taking off are depicted in 

Figure 5. Modeling of average forces is summarized in Appendix A. 

 

 
 

Figure 5. Main forces acting on accelerating airplane during one-dimensional 

along-the-runway force takeoff analysis. Not to scale. 

 

Rolling resistance, in the absence of impingement and slush drag, is really 

a minor force especially as the effective weight on wheels decreases with speed. 

The rolling coefficient of friction (mostly adhesion and some hysteresis) on dry 

paved asphalt/concrete runways is about 0.010-0.025 for most aviation tires 

(radial ply, bias ply) and is inflation pressure (filled mostly with N2) dependent. 

Visco-elastic rubber material is not necessarily following the Coulomb’s law-of-

friction (e.g., Formula 1 racecars). The tire’s coefficient of rolling and braking 

friction is also longitudinal-slip and speed dependent. Additional dependence 

comes from the runway surface (dry, damp, wet, contaminated). These facts are 

illustrated in Figure 6 for braking coefficient of friction as a function of surface 

quality and tire slip for a given speed. 
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Figure 6. The coefficient of braking friction for various surfaces as a function of 

tire longitudinal slip and with anti-skid operating range depicted. Not to scale. 

 

The speed-dependent peak braking coefficient of friction with the fully-

modulated anti-skid system, for dry and wet level paved runways as a function of 

groundspeed are illustrated in Figure 7. Asselin (1997) reports peak braking 

coefficient of about 0.5, while Mair and Birdsall (1992) show linear dependence 

of braking coefficient with groundspeed with average dry concrete runway 

braking coefficient of 0.55. Daidzic and Shrestha (2008) model the braking 

coefficient using linear speed dependence for various runway surface conditions. 

Durbin and Perkins (1962) show that for dry paved runway at groundspeed of 140 

knots, the braking coefficient can be as low as 0.25. The runway slope may and 

normally does change (positive or negative slopes) along the runway length and is 

thus a function of longitudinal distance. See Appendix A for more details on 

modeling of rolling and braking friction forces. The average aircraft stopping 

deceleration and force can be defined as: 

 

   gWLWDTn
W

g
F

W

g
a STPBaeeREVSTPSTP   1         (4) 
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Figure 7. Peak coefficient of braking friction as a function of groundspeed for dry 

and wet surfaces and with the fully-modulated anti-skid operations. Not to scale. 

 

The reverse-thrust coefficient REV  could take any positive value between, 

typically, 0.07-0.1 (idle forward residual thrust) or about negative 0.3 to 0.45 for 

maximum AEO reverse-thrust in modern turbofans. The number of engines factor 

ne defines AEO and OEI cases. The amount of reverse thrust will of course 

depend on the engine make & model. Thrust reversers are allowed only for wet-

runway certification. If the runway slope effective gradient is positive (upward), 

then it will assist stopping, if negative (downward) then the angle will be negative 

and provide gravity-assist thrust. The average friction braking force is very 

complicated and will also depend on the efficiency of the anti-skid system, 

braking coefficient of friction (tire/runway contact), average net weight on the 

tires (function of spoilers deflection and efficiency), etc. (Daidzic, 2011):  

 

  









W

L
WWR WeffBWeffTimeABSBeffortbB 1         (5) 

 

Nose gear typically supports about 10% of the entire aircraft weight and, 

in most cases, is not contributing to friction braking (Daidzic and Shrestha, 2008). 
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Dynamic braking on main gears will cause weight-on-wheels transfer and affect 

normal reaction forces. The maximum braking efficiency for a dry level paved 

runway with tires and brakes in given condition (regulation dependent) for a 

fictitious FAR/CS 25 aircraft: 

 

1111

610950750900950





WeffTimeMaxABSBeffortMax

bbTimeMaxWeffABSBeffortMaxbB .....




 

 

The antiskid efficiency factor 
ABS  could be distance (FAA, 2011) or time-

averaged ratio of the instantaneous to the peak braking force: 

 

   























 

t

max,B

t

BABS dtvRdtvR

00

              (6) 

 

According to FAR 25.109 (FAA, 2013), the maximum (peak) braking 

coefficient of friction is given in polynomial form for wet smooth paved runways 

with experimentally-derived maximum braking coefficients as a function of tire 

pressure. Similar polynomial form can be experimentally obtained for dry or 

contaminated runways and as a function of tire pressure and tire construction for 

given surface micro- and macro-texture. The general 5th-order polynomial form 

and the average maximum braking friction coefficient in the range of 

groundspeeds (V is in knots) from zero to arbitrary value is (FAA, 2011, 2013): 
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         (7) 

 

These coefficients also depend on the runway texture, design, and 

construction. For example, if the average braking coefficient of friction (speed 

range 160 to 0 knots) on dry asphalt/concrete runway (given micro- and macro-

texture) with 300-psi (20.42 bar) aviation tires is 0.50, the maximum average 

friction braking coefficient B  is 0.305. A 400,000 lbf airplane performing RTO, 

on dry level paved runway with no thrust reversers will generate average 

maximum braking force of about 121,838 lbf. The total deceleration/stopping 

factor STP  depends also on the available reverse thrust, runway slope, and 

aerodynamic drag. While reverse thrust and slope are not accounted for in dry, 

level, and paved runway performance certification, ever-present aerodynamic 

drag is unavoidable. Simpler linear relationship between the peak braking and 

rolling coefficients with groundspeed is given in Daidzic and Shrestha (2008). 
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The weight of the entire airplane cannot be on tires due to significant lift 

production even with spoilers deployed during RTO. The fully-modulated anti-

skid (anti-lock) systems are about 90% efficient and that efficiency must be 

accounted for in AS test and certification runs (FAA, 2011). One also has to 

consider the entire braking dynamics and the possible braking torque limit 

(Durbin and Perkins, 1962; Mair and Birdsall, 1992). FAR 25 requires that brakes 

used in testing and certification runs be worn to the remaining 10% of their 

replacement limit. More in-depth modelling and simulation of deceleration runs 

as they apply to landing scenarios on dry, wet, and contaminated runways is given 

in Daidzic and Shrestha (2008). The average friction braking and the total 

deceleration force can be now written as WR BB   and WF STPSTP   . 

 

If the runway is level, then the only additional forces to friction braking 

acting on an airplane are aerodynamic drug and thrust reversing. However, since 

the reverse thrust credit is not allowed during dry-runway certification, the idle 

forward residual thrust just about cancels, relatively small, deceleration caused by 

air resistance, and all what is left is friction braking. On wet and slippery 

runways, the friction (adhesion) braking can diminish significantly, often leaving 

thrust reversing as the major deceleration force (Daidzic and Shrestha, 2008). 

Many factors affect friction braking, including tire construction, tire dynamics, 

tire pressure, runway micro- and macro-texture, braking torque limit, crosswind, 

etc. Estimating friction braking forces is one of the most difficult problems in 

landing and RTO dynamics (Daidzic and Shrestha, 2008; Torenbeek, 2013). 

 

Accelerate-Stop distances 
 

The AS distance is calculated based on the Title 14 CFR 25.109 

definitions and requirements (FAA, 2013) and T-category flight test guide AC 25-

7C (FAA, 2012). This procedure is used for certification of field performance and 

only partially replicates real-life RTOs. FAA regulations stipulate no use of thrust 

reversers for dry runways. However, Amendment 25-92 (1998) allowed the use of 

thrust reversers during wet runway certification runs. Average acceleration and 

deceleration forces are assumed. Brakes used are worn out to within 10% of their 

usable limit. A sudden and complete failure with total loss of thrust on one engine 

is assumed at MCGEF vv  . Engine failure speed is related to takeoff 

decision/action speed by regulatory recognition time delay. Thus, for the short 

period 1t  as demonstrated or minimum per regulation (currently 1s in FAR/CS 

25) after the sudden engine failure, an airplane is accelerating (at reduced rate) 

under OEI conditions. At typical FAR/CS 25 airplane takeoff speeds this is about 

200-300 ft (60-90 m) and thus not entirely negligible. During the transition 
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period, as illustrated in Figure 8, pilots will apply deceleration systems in a 

specific order (brakes-throttles-spoilers). This is the period during which the 

acceleration (and reaching the maximum transition speeds VTRMAX >V1) mutates 

into deceleration and is difficult to characterize. Distance covered during this 

transition period (acceleration and deceleration length) is equal to distance 

covered at constant V1 speed at bit longer time: 

 

      2112111

2

11

tvttvdtvttvdttvs

t

t

B

t

t

trans

B

           (8)  

 

 
 

Figure 8. Illustration of the AS transition region with the 11 t s engine-failure 

recognition time, flight testing demonstrated transition period Bt , and the 

mandatory 23 t s coasting at V1 as required by FAR 25.109. Not to scale. 

 

The period  1ttB  , during which sequential actions are taken by pilots to 

stop the aircraft, has to be demonstrated during flight testing. It is or 1 second or 

actual demonstrated time, whichever longer (FAR 25.109). The time tB designates 

the instant the speed drops back to V1, after it reached the maximum transition 

speed VTRmax. Since the acceleration/deceleration is constantly changing in 
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transition period, an equivalent coasting period of  12 tttt BB   at V1 is 

used. Also, by regulations, the mandatory inertia period 3t  is added. Currently, 

it is two seconds (FAA, 2013) of coasting at takeoff decision/action speed V1. 

Typically, such mandatory operational distances are in the range of 400-600 ft 

(120-180 m) for FAR/CS 25 certified airplanes. Dynamics of takeoffs using total 

energy model was already discussed in many details in Daidzic (2014a) and 

Daidzic (2016b). The energy balance for AS-distance using EAS yields: 

 

corr

STPOEI

EF

AEO

EF ASDAASDR
a

v
t

v
t

v

a

vv

a

v

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

 222
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2

        (9) 

 

where: 111 t
W

gF
vtavvvv OEI

EFOEIEFEF 


  

 

We are using factored (net) distances required by regulations and thus 

gross (unfactored) ASD is always less than net (factored or scheduled) ASDR. 

The difference between ASD and ASDR comes from the inclusion of currently 

mandatory 2 seconds cruise-delay at V1. This factoring reduces maximum weight 

and increases safety margins,   31 tvASDASDR   . The available distance 

for AS-maneuver is: ASDAXXSWYTORAASDA ROLLBcorr  . Here, XB is 

the airplane make & model certified runway-alignment distance measured 

between the beginning of ASDA and the nose gear location (BRP). The rolling 

takeoff distance XROLL is the equivalent distance that is being lost during rolling 

takeoff as compared to takeoff from standstill utilizing maximum takeoff thrust 

(MTT/TOGA). While XROLL is zero for certification purposes, XB will be always 

finite and is conservatively about 200 ft for wide-body and about 100 ft for 

narrow-body FAR 25 T-category airplanes (Swatton, 2008). After lengthy 

reductions, we obtain the AS or ASDR energy equation in units of length: 

 

  0
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1
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2
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where, 
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with, WF STPSTP   , s11 t , s22 t , s23 t , and 

 

111 

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
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
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a

a
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AS transition time 2t  was arbitrarily chosen to be two seconds to 

simulate flight test data. Three kind of net average forces are affecting airplane 

during AS maneuver: AEO net accelerating force, slowing down or braking 

deceleration (stopping) force, and, to a very short duration, OEI net accelerating 

force.  The average acceleration coefficient A is weight-dependent and weight 

iterations combined with the nonlinear solver are required. To simulate the case of 

AS due to an event (e.g., tire failure) or AEO AS RTO, one only needs to set 

01 t , which leads to C=0 and diminished B. In that case, deceleration may be 

seriously affected. Even simpler equation for AS maneuver is obtained if the 

transition and coasting periods at V1 are neglected, i.e., 0B . While this will 

definitely not be very accurate in determining V1 and maximum W from available 

AS-distance it gives good physical insight into no-wind RTO physics: 

 

W
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FF

FF
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ASDAg
v AS,

STPAEO

STPAEOcorr
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12
1
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
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
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










       (12) 

 

Both, high acceleration and high deceleration, forces enable higher 

stopping-onset speeds. On contaminated runways, the AEO net acceleration 

remains mostly unchanged, while the stopping force are significantly diminished, 

resulting in lower V1. However, occasionally extra drag (impingement drag, slush, 

etc.) during accelerating ground roll lowers the net AEO accelerating force. On 

high-quality paved dry runways both, accelerating and decelerating, forces are 

high, resulting in high V1 for given distance and weight. It also follows that 

  01 
ASDA

Wv , and    01 
W

ASDAv . The essential functional 

relationships are illustrated in Figure 9 (AS=ASDA, TO=TODA/TORA). To 

calculate Jacobian and use Newton-Raphson solvers (Appendix B), the first-order 

partial derivatives of 1f  are evaluated, i.e.,  
1

1 v
Wf  , and  

W
vf 11  . After 

formally evaluating 2nd-order partial derivatives (including cross-derivatives) of 

1f , i.e.,   ji xxf  1

2 , we found that Hessian 0H  (Appendix C). It was 

determined that the first-order partial derivatives have no zeros in the positive real 

range of speeds and weights, thus no maximums exist. That also makes sense 

since in unconstrained optimization the airplane’s kinetic energy can be made as 

high as possible by increasing TOW and V1 without limit. 
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OEI accelerate-go takeoff distance 
 

The energy-balance for continuing (AG) takeoff (FAR/CS 25.113) after 

sudden engine failure just past VEF and decision made to continue at V1, yields: 
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where, 
11 tavv OEIEF  ,  and, TODAXXCWYTORATODA ROLLAcorr   

 

 
 

Figure 9. The essentials of T-category airplane’s takeoff physics. Not to scale. 

 

The gross TOR is equal to net TORR, as no safety factorization is taken 

for one-in-a-million OEI AG maneuver. The average OEI angle of climb (climb 

gradient) during airborne takeoff part is: 
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By using extremal value and performing tedious mathematical reductions, 

we obtain the AG TODR energy equation in units of length: 
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where: 
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The main-gear runway line-up correction, XA is conservatively about 100 

ft for wide-body and about 50 ft for narrow-body T-category airplanes (Swatton, 

2008). Runway alignment corrections are certified for every airplane type 

(Swatton, 2008). The liftoff and screen-height airspeeds (EAS) are expressed as: 

 

maxTO,LrefSL

SHSH

maxTO,LrefSL

LOFLOF
CS

W
v

CS

W
v


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


22
  

 

The product of the constant geometric wing-reference surface Sref and the 

maximum coefficient-of-lift in takeoff configuration CL,TOmax, defines Seff or the 

effective lifting surface; the larger the effective lifting surface the lower the 

stalling speed. There is a direct relationship between the steady-state coefficient-

of-lift at LOF and the maximum (stalling) coefficient-of-lift in the takeoff 

configuration, 2

LOFmaxTO,LLOF,TO,L CC   . There is a bit of uncertainty with the 

factors for VLOF and VSH speeds and due to various stability and control issues 

during rotation and transition to flight, the manufacturer can use different 

operational values of these speeds. However, all these aforementioned speeds 

have to meet various restriction as defined by FAR/CS 25.107.  
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A minimum takeoff safety speed V2MIN cannot be less than 1.2 VS1 or 1.13 

VSR1. We used this criteria to define OEI SH-speed which is identical to the 

takeoff safety speed, i.e., VSH =V2 speed. Liftoff speed occurs between the rotation 

VR and the OEI SH-speed VSH, and must be always faster than flight-test 

determined VMU (minimum-unstick airspeed). Deceleration forces play no role in 

AG maneuver. A special case exists if the short engine-failure recognition delay is 

neglected. In that case the takeoff decision/action speed can be expressed 

analytically as (see also Figure 9): 
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The 1st- and 2nd-order partial derivatives of 2f  are formally derived. As 

expected, it was found that V1s and TOWs have no extremums in the positive real 

range. The coefficient K1 is on the order of 105 and P1 is on the order of 10-7. 

However, weight is also on the order of 105 and W3 is thus on the order of 1015. 

The 2nd derivative with respect to weight is thus negative and of opposite sign of 

2nd derivative over airspeed. The Hessian (Appendix C) is again negative. From 

basic considerations, we now have,   01 
TODA

Wv , and    01 
W

TODAv . 

Using the Newton-Raphson (N-R) solver for the system of nonlinear equations, 

the real roots for V1 and W can be calculated. Our problem of finding V1 and the 

maximum W (TOW) for the given conditions is relatively good behaved with 

overall rapid convergence. For more information on various N-R and other 

nonlinear solvers for equations with constant coefficients (algebraic and 

transcendental) consult Press et al. (1992) and Demidovich and Maron (1987).  

 

One-engine-inoperative takeoff run weight net limit 

 

As CWY length increases, OEI TORR may limit FLLTOW. The energy 

balance for the TORR required under the FAR 25.113(c)(1)(i) for dry runway (SH 

of 35 ft), yields: 
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where: 
corrTORATORRTOR  , and, TORAXXTORATORA ROLLAcorr  .   

 

Similarly, as in the TODR case, we obtain AG TORR energy equation: 
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where, 
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If TORR is more limiting than TODR, the nonlinear system of equations 

defining ASDA and TORA field-length limits is solved using the same N-R 

solver, which results in the maximum TOW and corresponding V1.  

 

All-engine takeoff distance and takeoff run weight net limits 
 

 Takeoff can be also limited by the net (factored) AEO scenario. In that 

case a safety factor of 15% is currently added to demonstrated gross distance. The 

15% add-on comes from the study of operating variations (Eshelby, 2000) 

resulting in 3% standard deviation (SD) and five SDs are taken to account for 

slightly less than one-in-a-million (10-6) probability of not meeting the operational 

requirements. Thus, for the AEO TODR case, we have:  
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    (20) 

 

After mathematical reductions, we obtain the quadratic equation for AEO 

factored field-length limited unknown maximum takeoff weight: 

 

011

2

1  cWbWa             (21) 

 

where, 
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The net AEO takeoff weight limit is the smaller positive real value. 

Naturally, no complex-conjugate or negative real solutions are allowed. The 

airspeed during AEO takeoff and at SH (35 ft dry or 15 ft wet) is not defined. In 

operating practice V3 is typically V2 plus 10-20 knots. We could introduce another 

energy equation to estimate V3 more accurately, but that would add to complexity 

and we simply assume that speed at SH during AEO takeoff is V3=1.3 VS1. Twin-

engine jets are normally field-length limited by OEI (gross performance) takeoffs. 

Only very lightly loaded T-category twin-jets may become net-AEO field limited. 

Conversely, four-engine jets are often field-limited by the 115% AEO takeoff 

(net) factorization. Tri-jets are often restricted by VR limit (Swatton, 2008). 

 

As CWY becomes longer, the takeoff run FLLTOW becomes more 

important and at some critical CWY length it is limiting takeoff mass/weight. For 

factored AEO takeoff scenario according to FAR/CS 25.113(c)(1)(ii) for dry 

runway case we have the mathematical condition: 
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After rearrangements, we obtain similar condition to AEO TODA: 
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where, 
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It is to be expected that in the case of absence or very short CWYs, the 

FLLTOW will be limited by TODA. In the case of sufficiently long CWY, the 

FLLTOW will become TORA limited. One could now explore many different 

dry, wet, or contaminated runway takeoff scenarios by changing regulatory 

required SHs (e.g., 0, 15, or 35 ft) and SH speeds (VSH). The effect of changing 
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TORA and TODA on V1 are illustrated in Figure 9. Changing SH will affect 

required TOD/TOR airborne part and accordingly TODA/TORA. This will be 

especially interesting when evaluating wet and contaminated runway takeoffs 

which is planned in a future contribution. 

 

Calculation of V1-range when TOW is less than FLLTOW 
 

In the case that actual TOW is less than FLLTOW three options are possible 

(Daidzic, 2012b, 2013b, 2014a): 

 

1. Reduced/derate (flexible) thrust takeoff is conducted, while possibly 

rebalancing the runway. 

2. Range of V1 speeds exist between VSTP and VGO. 

3. Overspeed takeoffs (with or without reduced/derated thrust) are conducted 

to increase climb-limited weights, while possibly rebalancing the runway. 

 

We are now interested in determining the range of V1 speeds when TOW is 

less than FLLTOW. In fact, theoretically, TOW can also be larger than FLLTOW, 

but that results in unsafe takeoff condition. The maximum possible speeds that 

will still satisfy ASDA limitation are designated as VSTP speeds and can be 

estimated from: 
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The minimum takeoff speeds VGO from which the airplane can still 

perform OEI AG and meet TODA restriction are evaluated from: 
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Similar quadratic expression exists when TORA is more limiting. As the 

TOW approaches FLLTOW, VSTP decreases to and VGO increases toward unique 

V1. Therefore, at all times it must be, 
MBESTPGOMCG vvvvv  1

. It is very likely 

that at light weights, 
max,STPR vvv 1 . However, if overspeed takeoffs are 

conducted, higher rotation speeds can be chosen (Daidzic, 2014a). A tire speed 

may interfere with the improved-V2 takeoffs, such that, 
TIRELOF vv  . The range of 

V1 speeds is illustrated in Figure 9. If TOW > FLLTOW, a range of speeds exists 

for which an airplane cannot stop or go, should the engine fail there. 
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Additional constraints for takeoff computations and optimization 
 

There are some very important stability, control, and performance 

limitations that are constraining the choice of V1 and FLLTOW during takeoffs. 

The OEI asymmetric thrust during ground roll must be offset by rudder and nose 

gear tire cornering side force resulting in MCGEFOEI vvtav  11 . 

 

The maximum attainable V1 must be less than the maximum braking 

energy (MBE) that can be dissipated by aircraft brakes and is expressed in terms 

of groundspeed, MBEvv 1 . Additionally, in the case of continuing OEI takeoff the 

maximum tire groundspeed should not be exceeded, i.e., TIRELOF vv  . The 

structural takeoff weight limitation implies MSTOWFLLTOW  . Although it 

seems rather obvious, the following constraints must be satisfied as well, 01 v  

and 0W . A twin-engine airplane in takeoff configuration that lifts off and 

retracts landing gear should be able to achieve OEI still-air 2.4% climb gradient at 

V2 using 5- or 10-minutes maximum takeoff power (Padilla, 1996). This climb-

limited TOW (CLTOW), formerly known as WAT limit (Weight-Altitude-

Temperature), could lower RTOW when airplane is out of ground effect due to 

high DA: 
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0240.
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          (26) 

 

The case of improved or overspeed-V2 takeoffs, where flying faster 

decreases vortex-drag, has been discussed in Daidzic (2014a). The case of 

obstacle-limited TOW (OLTOW) and cruise and landing TOW limits are not 

included, as they are route and departure/destination airport specific. 

 

The effect of air density and flap setting on takeoff distances 
 

Air density plays crucial role in takeoffs. Two important adverse effects 

exists. First, the TAS increases for the same EAS as air density is decreased 

(increased elevation, temperature, humidity, and/or lower barometric air pressure 

or all effects combined). Second, jet engines are air-breathing propulsion devices 

and in the first approximation it can be assumed that thrust decreases linearly with 

air density. The takeoff distance assuming constant acceleration up to V2 is: 
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with,  WRDTFCSS ISA,SLISA,SLmaxTO,Lrefeff   

 

Hale (1984) uses gross SL thrust-to-weight (T/W) ratio in Equation (27) 

which underestimates the required distances as it does not account for retarding 

forces. Theoretically, at 7,400 ft ISA where σ is approximately 0.8, the ground 

run alone will be about 56% longer. There are other propulsive effects (TAS 

effect and increase in momentum drag) that will cause takeoff distance to increase 

even more due to lower air density (Daidzic, 2012b, 2016c). DA calculations and 

resulting graphs are presented in Appendix D. 

 

A statistical method to estimate AEO takeoff distance of FAR/CS 25 T-

category yields (Loftin, 1980; Roskam and Lan, 1997): 
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SL,TOmaxTO,L
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SW
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22525537


         (28) 

 

Straight application of Equation (27) would result in constant multiplier of 

21.65 as 115% of gross distance is used for AEO TODR. Consider that Equation 

(27) uses net T/W ratio, while Equation (28) utilizes rated gross SL T/W. If we 

assume that net takeoff thrust (gross thrust minus all resistances) is about 75% of 

the gross takeoff thrust, we obtain multiplier of about 29, which is still 23% lower 

than what semi-empirical Equation (28) predicts. Loftin (1980) shows that many 

production commercial multi-engine airplanes follow the linear correlation line. 

Accordingly and using Equation (28), if our fictitious T-category airplane has 

wing-loading (W/S) of 132 lbf/ft2, maximum TO lift-coefficient of 2.2, net SL 

takeoff T/W ratio of 0.3, and taking off at the DA of 3,600 ft, the TOP25 

parameter becomes 247 ft and the FAR takeoff distance is accordingly 9,260 ft. 

  

Increased flap setting increases CL (effective lifting surface) lowering 

stalling and other performance/control airspeeds, but it also increases coefficient 

of drag CD (both parasitic and induced) possibly seriously impairing airborne 

takeoff climb performance. And while the airplane may become airborne earlier 

and climb shallower in ground effect to SH, once it leaves the ground effect it 

may not be able to meet required climb performance. The effect of flap setting on 

takeoff dynamics is discussed in Daidzic (2014a).  

 

Sensitivity due to small changes in weight, runway length, and air density 
 

 A question arises of how much small uncertainties in actual takeoff 

weight, runway length, and air density affect takeoffs. Since we are only talking 
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about the small linear perturbations around equilibrium points, Taylor’s first-order 

expansion of multivariable functions (e.g., Appendix C) will be used. The 

sensitivity (or uncertainty) of liftoff-speed on aircraft weight and air density (air 

pressure and temperature) can be expressed as: 
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Thus, a 10% increase in TOW will result in 5% increase in liftoff speed. A 

5% decrease in air pressure together with 5% increase in air temperature will 

cause 10% decrease in air density. A 10% decrease in air density will cause 5% 

increase in liftoff TAS (EAS stays the same). From Equation (29) we can estimate 

the inverse effect of liftoff speed and air pressure and temperature on TOW.  

 

Runway distance correction due to wind 
 

The effect of wind was not included in the mathematical model. The effect 

of crosswind (XW) on tire dynamics is neglected as well. Only the wind 

component co-linear with the runway is used. Wind not only changes GS of the 

aircraft, but also the time exposure to it. Headwind (HW) is by definition positive 

(HW > 0), while tailwind (TW) is negative (TW < 0). Distance covered in ground 

roll under steady wind along the runway using aircraft’s TAS is (Durbin and 

Perkins, 1962; Mair and Birdsall, 1992; Saarlas, 2007; Vinh, 1993): 
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The speed- and time-averaged accelerations in above integrals are not the 

same as for no-wind situation (Mair and Birdsall, 1992). The average acceleration 

is taken from the point where TAS is equal to steady wind component (HW or 

TW) to the liftoff TAS. Since acceleration is not constant during takeoff, the 

average acceleration will be slightly different in the no-wind, HW, or TW cases. 

However, for small wind factors we can neglect those differences. The effect of 

wind on ground roll distance with airplane’s CAS/EAS liftoff airspeed in the first 

approximation for small wind factors is proportional to: 
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We assumed that wind is reported in terms of true airspeed and true or 

magnetic direction as appropriate in different situations. Dynamic pressure 

created by wind will depend on the existing air density. The no-wind distance is 

always increased by dimensionless wind factor (normally quite small) as the 2nd 

term above illustrates. The 3rd term in the square parenthesis above will be 

negative with HW and positive for TW. Consider also that regulations FAR 

25.105(d)(1) (FAA, 2013) require not more than 50% of reported HW to be 

included in computations and not less than 150% of the reported TW, resulting in 

two scenarios with factored reported winds:  
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For example, a wind ratio of 0.1 (e.g., 16 knot along runway wind at VLOF 

=160 knots) for SL density will result in a ground-roll correction multipliers of 

0.9025 and 1.3225 for HW and TW respectively. For HW, the ground roll is 

reduced, while for TW it is significantly increased. A 7,000 ft no-wind distance to 

liftoff will increase by about 32.3% due to 16 knot TW. The factored distance is 

now amazing 9,258 ft. Such wind factoring introduces additional inherent safety 

margins built into performance charts and it is illegal for an operator to take 

advantage of it (Swatton, 2008). During the airborne takeoff portion the airplane 

will accelerate to V2, but the wind will slightly change due to Earth’s boundary 

layer. More details on takeoff airborne phase wind accounting and wind gradient 

can be found in Durbin and Perkins (1962). More on the many curious effects of 

wind affecting aircraft in flight can be found in Daidzic (2016a). Mair and 

Birdsall (1992) and Vinh (1993) give particularly good in-depth discussion of 

wind effects on airplane’s field performance. Also, McCormick (1995) gives good 

discussion and solution methods for inclusion of wind effects.  

 

Runway distance correction due to effective runway gradient 
 

Most commercial use runways have effective gradient (grade, slope) less 

than ±2%. Regulations, such as FAR 25.105(d)(2), require considerations of  

effective runway gradients for field performance calculations. The effective 

runway gradient is also defined in AC 150/5325-4B (FAA, 2005). We use linear 

perturbations to extract the runway slope correction on calculated TODR, ASDR, 
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and TORR. The runway slope affects the longitudinal forces and accelerations. It 

can be treated in terms of the gravity-assisted thrust (downslope takeoff, 0 ) 

or gravity-generated drag (upslope takeoff, 0 ). During RTO’s those 

functions are reversed and upslope runway is very helpful. Thus, we can write for 

the runway gradient effect alone: 
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Hence, the effective runway gradient (slope) correction is: 
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For example, if an airplane lifts-off at 160 knots at SL density 

(EAS=CAS=TAS) and needs 7,000 ft of dry, level, and paved runway, what is the 

distance correction for average 2% upslope grade? After substituting values with 
2ft/s17432.g   ( 2m/s806659.g  ), one obtains the runway gradient correction of 

1.1234 or about 12.3% longer liftoff run (now 7,864 ft) is required than for level 

runway under zero-wind and given SL conditions. The inclusion of density ratio 

in Equation (34) may be confusing. Increased TAS at higher DA to generate 

required EAS hints to decreasing effective runway gradient effect. However, 

consider that with decreasing density ratio, the runway required increases, and 

this is already factored in our main results. So the runway slope correction must 

be applied for the appropriate density ratio (DA). It is recommended that first the 

correction for wind is made and then the correction for effective runway slope 

(Durbin and Perkins, 1962). From the earlier wind-correction example, the 16-

knot TW correction increased the runway by about 32%. This increased value 

should then be used when making runway gradient correction. Taking the 

example above and adding 12.34% to 9,257.5 ft, results in almost exactly 10,400 

ft – a 3,400 ft increase of liftoff distance due to relatively gentle +2% upslope and 

quite significant 16 knot TW. The combination of even mild TW, upslope 

runway, and high DA is absolutely devastating for an airplane conducting OEI 

AG takeoff.  

 

Results and Discussion 

 

The total-energy based mathematical model and TPT enable quite accurate 

estimation of FLLTOW and all takeoff airspeeds for balanced (BFC) and 
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unbalanced takeoff (UBFC) conditions. Takeoff computations will depend on 

many factors, such as, air density (elevation, air pressure, temperature, and 

humidity), wind (direction and intensity), effective runway slope and surface 

quality, tire quality and pressure, dry, wet or contaminated runways, thrust setting, 

AEO and OEI cases, and a plethora of other more or less influential factors. To 

explore relative effects of each of these factors in a single article would be 

overwhelming.  

 

The airplane used for simulations is a fictitious wide-body T-category 

airplane similar to Boeing’s B767-300ER (Boeing, 2005). The MTOW is 410,000 

lbf (186,364 kg), wing reference area of 3,100 ft2 (288 m2), wing span of 160 ft 

(AR=8.26), and two flat-rated high-bypass turbofans with SL ISA 61,500 lbf 

(273.55 kN) thrust. Such turbofan is in the same category with GE CF6-80C2B64, 

PW4060, and RR RB 211-524H engines. More details on this fictitious airplane 

together with drag polars for different configurations are given in Daidzic 

(2016c). Comparison with Boeing’s published basic performance (D6-58328) 

data for airport planning (Boeing, 2005) was used to validate our physics-based 

takeoff performance model.  Also, medium-range airplane data (CAA, 2006) 

resembling narrow-body medium-range T-category B737-400 was used to 

validate TPT calculations.  

 

The TPT is implemented in Fortran 90/95/2003/2008, Matlab, True Basic, 

and MS Excel software platforms. The accuracy of numerical computations 

exceeds 14 significant digits which in respect of many inherent uncertainties is 

not really necessary. To illustrate the process and how N-R solver is implemented 

let us choose a particular UBFL case shown in Figure 10.  

 

The basic TORA is 8,000 ft with 300-ft SWY and 800-ft CWY. The main- 

and nose-gear runway alignment (line-up) corrections are 100 (XA) and 200 (XB) ft 

respectively. This is the case of no-wind, dry, hard-surfaced runway with required 

SH of 35 ft at environmental relative density of 0.9 (about 3,600 ft ISA). The N-R 

solver converged to the correct value of V1 of 135.8 knot and FLLTOW of 

341,437 lbf. The AEO TODA net (115% factored) weight limit is 392,790 lbf and 

the AEO TORA limit is 396,451 lbf, while the structural takeoff limit (MSTOW) 

is 410,000 lbf. Additionally, it was computed that V1/VR is 0.97 with VR =140 and 

V2=153 knots. A slightly longer CWY would result in TORA be more restrictive 

than TODA. In the case when TOW < FLLTOW for given ASDA and TODA and 

no reduced-thrust takeoff, a range of V1 speeds exists between VGO and VSTP as 

summarized in Table 1. The abnormal case, 
GOSTP vv   implies the airplane is 

performance-wise overloaded and the takeoff is unsafe (see also Figure 9). For 
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example, when TOW is 300,000 lb, the VGO speed is 113 knots and VSTP speed is 

144 knots, while rotation speed is about 132 knots, thus possibly restricting V1.  

 

 
 

Figure 10. FLLTOW and corresponding V1 limited by OEI TODA dry (35 ft) 

condition with 8,000 ft TORA, 300 ft SWY, 800 ft CWY (UBFL). 

 

Table 1 

 

Minimum and maximum takeoff action speeds when TOW< FLLTOW 

 

TOW [lbf] 
GOv [knot] STPv  [knot] GOSTP vv   [knot] 

300,000 112.62 144.15 31.53 

310,000 118.84 142.00 23.15 

320,000 124.62 139.94 15.32 

330,000 130.02 137.97 7.94 

340,000 135.11 136.08 0.97 

341,437 135.82 135.82 0.00 

345,000 137.55 135.17 -2.38 

350,000 139.92 134.27 -5.65 
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For the BFL case, with no SWY and CWY, as illustrated in Figure 11, we 

obtain V1 of 135.2 knot and OEI TODA-limited FLLTOW of 330,086 lbf at the 

same no-wind, DA, and dry, hard-surfaced, level runway. The AEO TODA and 

TORA limits become 374,297 lbf and 396,451 lbf (stays the same) respectively. 

 

 
Figure 11. FLLTOW and corresponding V1 limited by OEI TODA dry (35 ft) 

condition with 8,000 ft TORA (BFL), no SWY and CWY. 

 

Clearly, TODR is more limiting than TORR in the absence of CWY. 

Thus, about 11,400 lbf can be lifted more in UBFL case incorporating relatively 

short 800-ft CWY and 300-ft SWY. The V1 did not change much from the 

original TORA-only case, as about 2.7 times longer CWY than SWY is added. In 

this case, V1/VR is 0.98 with VR =138 and V2=150 knots. On the speed-weight 

diagram, the ASDA and TODA intersect at a point of FLLTOW and V1, but under 

no circumstances does this imply that ASDA is equal TODA as is often thought. 

The above solution is given in TOW-V1 space. BFL only exists when 

ASDA=TODA.  

 

UBFC is thus best observed in Figure 12 illustrating UBFL distance-speed 

graph. Considering wide-body aircraft runway-alignment corrections with 8,000 ft 

TORA and TODA 600 ft longer than ASDA. Additionally, TODR is still more 

limiting than TORR. The FLLTOW is thus 345,875 lbf with corresponding V1 of 

136.79 knots. We have not shown AEO limits, but now the AEO TORR is more 

limiting at 396,451 lbf than the AEO TODR which is 397,278 lbf. In both above 
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cases (UBFL and BFL), the RTOW is limited by unfactored (gross) OEI limits. 

Clearly, ASDA and TODA differ, but the obtained solution is optimal resulting in 

maximum takeoff weight (mass) at given V1. No consideration and limitations due 

to VMCG, VMBE, and VTIRE is given at this point. They would essentially represent 

left and right V1 boundaries. The minimum V1/VR ratio may be limited by VMCG 

and the maximum V1/VR ratio may be limited by VMBE. Increased TOW will result 

in ASDR curve moving up and to the left, while TODR curve would move up and 

to the right. 

 

 
 

Figure 12. The OEI TODR, TORR, and ASDR distances for 8,000 ft TORA 

1,000 ft CWY and 500 ft SWY at 3,600 ft ISA. 

 

Using the current airplane model, we have designed several 

TODR/TORR-ASDR charts for fictitious twin-jet as a function of air density with 

TOW and V1/VR as parameters. Of course, this applies only to no-wind, dry, level, 

and hard-surfaced (paved) runway. The SL ISA performance diagram 

(TODR/TORR-ASDR) is shown in Figure 13. The balanced field conditions 

occur for V1/VR speed ratios in the range from about 0.96 (lower weights) to 0.975 

(higher weights). When V1/VR is equal to one, V1 is limited by VR. Unlimited 

number of BFCs and UBFCs are thus possible. At constant weight, increasing 

V1/VR results in decreased TODR and increased ASDR. The vertical projection 

(ASDR is constant) of difference between the corresponding TODR and TORR 

(for the same TOW), represents ½ of the airborne distance. Moving along the 

constant V1/VR and increasing TOWs causes increase in both ASDR and 
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TODR/TORR. However, at lower V1/VR, the increase in TODR is steeper than in 

ASDR (slope is shallower than for BFC). 

 

 
 

Figure 13. OEI TODR and TORR versus ASDR for different TOWs and V1/VR 

ratios at SL ISA conditions (σ=1.0). 

 

Going to lower air density (DA is 3,600 ft) is illustrated by computations 

summarized in Figure 14. The BFC is now very close to V1=VR limit (around 

0.99). The low-speed V1/VR ratio results in even steeper slopes and TODR/TORR 

naturally increases even faster than ASDR. At low V1/VR, more time is spent in 

OEI acceleration and the engine thrust decreases significantly with the lower air 

density resulting in TODR/TORR being significantly longer than ASDR. For 

example, lifting 390K lbf at V1/VR=0.88 (possibly VMCG limited) ASDR becomes 

about 8,400 ft, TODR is 14,000 ft and TORR is 12,500 ft. At the same TOW and 

V1/VR=0.96, TODR becomes 11,600 ft, ASDR is almost 10,000 ft, and TORR is 

10,300 ft. BFCs are still possible, but the aircraft is on the brink of becoming VR -

limited. 
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Figure 14. OEI TODR and TORR versus ASDR for different TOWs and V1/VR 

ratios at about 3,600 ft ISA conditions (σ=0.9). 

 

Taking off from about 7,400 ft ISA airfield, causes significant decrease in 

TOW for the same runway sizes as illustrated in Figure 15. TODR starts 

increasing even steeper than ASDR. All TOWs result in unbalanced conditions 

and are limited by rotation speeds V1=VR. The slopes of constant speed-ratios 

become very steep at low V1/VR, requiring excessive TORAs and TODAs. 

 

Runway analysis charts or RTOW graphs/charts (Swatton, 2008) can be 

now constructed for desired airport/runway and aircraft airframe/powerplant 

combination. The base conditions are for no-wind, dry, hard-surfaced, level 

runway. Corrections can then be applied for wind (HW, TW, XW), effective 

runway longitudinal slope, non-dry runway surface conditions (wet, 

contaminated), anti-skid op/inop, available thrust (maximum/flexible, AC on/off, 

TMC/PMC on/off, etc.), anti-ice on/off, and environmental/atmospheric 

conditions (temperature, pressure, humidity). Some of the corrections were 

already discussed All relevant aerodynamic and mechanical limits/constraints can 
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be included to define RTOW under given conditions. The range of V1 speeds 

exists when aircraft is not FLLTOW limited. Reduced and/or derated thrust 

takeoffs are common in such cases (Daidzic, 2012a, 2012b). 

 

 
 

Figure 15. TODR and TORR versus ASDR for different TOWs and V1/VR ratios 

at about 7,400 ft ISA conditions (σ=0.8). 

 

Perhaps the most important result of this study is depicted in Figure 16. It 

illustrates the increase of FLLTOW by adding runway extensions in various 

proportions. The FLLTOW for the basic dry and level ASDA=TODA=BFL is 

330,086 lbf with V1 equal to 135.2 knots. The V1/VR ratio is 0.98 and V2 is 150.4 

knots (shown in Figure 11). Adding up to 2,000 ft of CWY and/or SWY to the 

basic 8,000-ft TORA (up to 25% increase) is simulated. Adding SWY alone will 

increase FLLTOW, but only if V1 is higher. On the other hand, adding CWY 

increases FLLTOW at the expense of lower V1. Thus,   01 
W

SWYv , and 

  01 
W

CWYv . See also Figure 9 for illustration and graphical explanation. 

Adding both SWY and CWY at the same rate (BFL) will increase FLLTOW 
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significantly, while exact change in V1 will have to be determined, but is often 

somewhat increasing. However, V1 increase is not as dramatic as is in the case of 

adding SWY only. Thus, we could state quite generally that CWY reduces and 

SWY increases V1. All the presented results apply only to a specific airplane, no-

wind, dry and level runway, and given air density. 

 

 
 

Figure 16. The effect of up to 2,000 ft runway extensions (CWY and/or SWY) on 

V1 change and FLLTOW increase at about 3,600 ft ISA. 

 

Also interesting is that weight/speed increments are practically linear. For 

example, adding 2,000 ft of SWY to 8,000 TORA, increased TOW by 26,764 lbf 

(8.1%) at the expense of V1 increase by 12.2 knots. Assuming linear trend each 

foot of SWY increases FLLTOW by 13.4 lbf. For this case V1 increased by about 

0.61 knot/100 ft. In the case when SWY and CWY were added in equal amounts 

(BFL or 1:1 ratio) of 2,000 ft, then each foot of SWY and CWY together added 

21.73 lbf (13.2% increase) to basic TOW of 330,085.75 lbf. At the same time V1 

increased by 9.1 knots or +0.455 knots for each 100 ft of combined SWY and 

CWY. Adding up to 2,000 ft of CWY only, increased FLLTOW merely by 

17,981 lbf (5.4%), while V1 decreased 3.26 knots, which is -0.163 knots/100 ft. 

Another problem with long CWY is that at some critical length, TORR will 

constrain takeoff rather than TODR, and any CWY longer than the critical 

becomes unusable for takeoff performance scheduling. Adding up to 2,000 ft of 

CWY and 1,000 ft SWY (2:1 ratio) increased TOW by about 31,000 lbf (9.4%) at 
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a cost of 3 knot faster V1. The V1/VR is 0.96 and V2 is 157 knots. Using wet 

runway V1wet of 126 knots and lowering SH to 15 ft resulted in maximum liftoff 

weight of 340,800 lbf, VR/V2 of 140/153 knots with the same 2,000/1,000 ft 

CWY/SWY ratio. At the CWY/SWY ratio of 4:1, the V1 speed essentially stays 

unchanged, while FLLTOW increased by almost 25,000 lbf (7.5%). The non-

dimensional changes in *v1  and *TOW  for specified SWY and CWY lengths are 

presented in Figure 17. 

 

 
 

Figure 17. The effect of up to 2,000 ft runway extensions (CWY and/or SWY) on 

dimensionless V1 and TOW changes at about 3,600 ft ISA. 

 

Interestingly, the combined balanced SWY+CWY (SCWY) extension 

length, results in general triangle problem, which approximately obeys the Cosine 

Law (Spiegel and Liu, 1999). The change in V1 and TOW for combined SCWY 

length can be found from adding respective projections of SWY- and CWY-only 

cases. The angle is defined by the respective first-order derivatives with respect to 

runway extensions at constant weight. The last graphical result is shown in Figure 

18. It depicts the same result given in Figures 16 and 17, but this time the increase 

in TOW is given directly as a function of runway extensions for various 

combinations of CWYs and SWYs. It is assumed again that TORA is not limiting 

TOW. Interestingly, up to 2,000 ft of SWY only (with associated 12.2 knots 
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increase in V1) increased TOW at virtually the same rate as CWY/SWY ratio of 

three (up to 2,000 ft CWY and up to 667 ft of SWY) runway extension. 

 

 
 

Figure 18. The effect of up to 2,000 ft runway extensions (CWY and/or SWY) on 

dimensionless V1 and TOW changes at about 3,600 ft ISA. 

 

The total cost of modern runways that support operations of wide-body 

super-jumbo T-category jets (e.g., A380) may be around $1,000/ft2 (with the SD 

of $100/ft2). Thus a modern 9,000 x 150 ft runway with land purchase and all 

associated infrastructure may cost around US$ 1.35 billion today and will take 

several years to build. On the other hand, the cost of CWY (500 ft or 150 m wide) 

is estimated at $20/ft2, while the SWY may cost about $250/ft2.  Thus a 1,000 x 

500 ft CWY would today cost US$ 10 million. A 500 x 150 ft SWY to support 

heaviest jets may cost today $18,750,000. An economic analysis of using runway 

extensions could now be conducted to facilitate the estimation of the most 

efficient combinations and lengths of TORA’s, SWYs and CWYs. 

 

Crucial parameters in this energy analysis are: corrASDAE   , 

corrTODAU  1 , and corrTORAU 2 . These density-dependent values define 

volumes of runway energy reservoirs that can be used in energy conversion during 

airplane takeoffs. For example, during AS maneuver, the runway first provides 

energy exchange for an airplane to gain kinetic energy and then subsequently 
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energy absorption during braking efforts. In the case of AG maneuvers (TORR or 

TODR), the runway provides necessary space for the airplane to achieve 

minimum required and safe total energies for, both, the  AEO and/or OEI cases 

under various environmental conditions. Since, airplanes need the same 

operational EAS/CAS speed at given weight, the runway potential energy 

reservoirs are being significantly depleted at lower air densities (higher DA). 

 

We tried to strike a balance between the complexity and the 

fidelity/accuracy. The results presented are not far from the certified takeoff data 

for airplanes in the same category as tested on the fictitious aircraft here. Future 

improvements in the presented total-energy model will include more accurate 

modeling of forces. Additionally, the VMCG, VMBE and VTIRE speed limits will be 

modeled and showcased in subsequent publications. The full non-dimensional 

takeoff equations, which may also include full steady-wind effects will be 

presented in a future contribution. Based on a limited validation study, we believe 

that TPT is currently accurate within 3% in the entire takeoff envelope for a given 

airplane model. However, this is work in progress and we have already identified 

parts where further improvements will be made. Ultimately, the goal is to achieve 

overall accuracy and fidelity of less than 0.5% compared to flight-test data for 

particular T-category airplane make and models. Nevertheless, using the total-

energy takeoff models can be made more accurate and reliable if data from actual 

flight tests are used to calibrate TPT analytic model. Furthermore, this total-

energy based model offers better understanding of takeoff physics and identify 

effects of individual variables. TPT is very flexible and can accommodate any 

regulatory changes, any conventional-takeoff airplane models, runways and 

environmental conditions. The model can be coded in any high-level computer 

language. Future contributions will focus on wet and contaminated runways and, 

in more detail, the effects of air density, wind, and runway slope with CWY/SWY 

extensions. 

 

To reiterate, the main motivation of this work is to develop a relatively 

simple, yet reasonably accurate and reliable, model that can serve as a powerful 

tool in deeper understanding of complicated takeoff dynamics of FAR/CS 25 

airplanes used in commercial services. A variety of calculations for differing 

runway layouts with or without runway extensions, aircraft, and environmental 

conditions can be performed. Particular emphasis of this work was the effect oof 

SWYs and/or CWYs on V1 and FLLTOW. This could also be very helpful in 

designing new airports and runways and the feasibility and economic analysis of 

runways and extensions. Additionally, the goal was to dispel some common 

misconceptions on FAR/CS 25 takeoff physics. At the end, the problem of 
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determining the maximum takeoff weight is a problem of nonlinear constrained 

optimization with many constraints in the form of equalities and inequalities. 

 

Conclusions 

 

 A physics-based total-energy airplane takeoff performance model has been 

developed. Average accelerating and decelerating forces during ground and 

airborne takeoff segments have been modeled. Hence, accurate time histories 

cannot be predicted, but only the end states. Current FAA CFR and EASA CS 

takeoff regulations have been implemented. The main model consists of three 

sub-models: runway model, aircraft model, and atmospheric model. A fictitious 

wide-body T-category airplane has been used for simulations. A Newton-Raphson 

nonlinear equation solver was used to calculate performance-limited takeoff 

weight and the associated takeoff decision/action speed. All other takeoff speeds 

were extracted as well. A simplified mathematical analysis of the nonlinear 

constrained optimization problem showed that estimated weights and speeds are 

indeed optimums. Special emphasis was given to UBFL takeoffs and the 

individual and combined effect of CWYs and/or SWYs was explored. The length 

of CWY was increased until TORA becomes limiting designating the critical 

CWY length. As expected, the maximum liftoff weights are obtained when both 

CWYs and SWYs are used together, which is also the most expensive solution. 

The use of CWYs only, although being the cheapest solution increased takeoff 

weight by smallest amount. For given DA at CWY/SWY ratio of about 4:1, the V1 

stays essentially unchanged, while TOW increases significantly. Runway analysis 

charts or RTOW charts could be now readily designed for an arbitrary 

airframe/powerplant combination, airport/runway with declared distances, runway 

surface quality and grade, atmospheric conditions including wind and air density, 

and other limitations. In future developments, the takeoff performance tool will 

include various improvements. Although the presented TPT cannot replace 

demonstrated and measured takeoff data it can serve as a flight-test expansion 

model for various airplane types if measured performance is used to augment and 

calibrate it. TPT nevertheless serves as a useful tool in understanding takeoff 

physics and the many limitations that often lead to confusing nonlinear interaction 

of many parameters. Presented model is flexible and can accommodate any future 

regulatory changes and can be also used in various technical and economic 

optimization studies. 
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Appendix A 

 

Modeling of dominant forces during takeoff 

 

If the accelerated takeoff roll is restricted to 1-D straight-line motion only, the 

distance and the time covered to accelerate between two groundspeeds is (Vinh, 

1993): 
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The instantaneous acceleration using EAS can be modeled using 2nd-order 

polynomial (Vinh, 1993): 

 

   2vCvBAva             (A2) 

 

where the instantaneous coefficients are, 
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Generally, the coefficients A and C are speed-dependent. They can be 

made constant if average values of selected coefficients are used. Runway upslope 

defines positive, while downslope defines negative local gradient  . The total 

drag coefficient accounting for ground-effect (Anderson, 1999) and in a given 

airplane configuration (landing gear, flaps/slats, etc.) is approximately: 
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Propulsive thrust of modern turbofans is a function of actual air density 

and true airspeed for a given bypass-ratio and other design characteristics. Thrust 

from a single engine can be written as (Daidzic, 2016c): 
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The parameter 2c  can often be neglected for the existing takeoff speed 

range. The momentum drag, which is airspeed dependent and opposes thrust is 

expressed with the linear term. The maximum takeoff (MTO) or maximum 

continuous (MCT) thrust flat-ratings ratings are incorporated into thrust setting 

parameter (TSP). Average thrust of one engine can be calculated using EAS: 
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A sudden and complete engine failure at engine failure speed VEF and the 

complete loss of thrust on failed engine is assumed resulting in the average net 

AEO and OEI accelerations for constant mass/weight: 
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All forces above are average during takeoff except that aircraft weight is 

assumed constant. Average acceleration during no-wind takeoff is practically 

equal to instantaneous acceleration evaluated at the speed equal to 70% of the 

liftoff speed (Durbin and Perkins, 1962; Mair and Birdsall, 1992; Saarlas, 2007). 

Normally, aerodynamic drag and tire resistance, while on the ground, would 

increase somewhat during OEI condition compared to AEO case because of the 

control inputs and the adverse elevator effect (AEE) during rotation (Daidzic, 

2014b), but that minor short-duration effect is being omitted from analysis. 

Assuming that coefficients A, B, and C are constant in the given sped-interval, the 

time elapsed during portions (or entire) takeoff roll is: 
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where (Spiegel and Liu, 1999): 
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The average acceleration can be now defined and calculated from: 
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where, for 042  CABZ , (Spiegel and Liu, 1999): 
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The average values of maximum rolling friction and (effective) runway 

slope during ground roll are: 
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Appendix B 

 

Newton-Raphson method for system of simultaneous nonlinear equations 

 

Let us assume a vector of functions with the vector of independent values that 

needs to be zeroed. We are seeking vector of solutions xi that satisfies: 
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A multi-variable functions can be expanded in Taylor series where only 

first-order (linear) terms are retained (Press et al., 1992):  
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The matrix of partial derivatives defines, so-called, Jacobi matrix or 

Jacobian (e.g., Press et al., 1992) is defined as: 
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By neglecting the higher-order terms in the above Taylor expansion and 

setting   0 xxF  , one obtains in matrix notation: 

 

 xFxJ               (B4) 

 

And accordingly iteratively: 
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The Jacobian must be non-singular matrix for which determinant exists. 

Unfortunately, the quadratic convergence of the Newton-Raphson numerical 

method strongly depends on the initial guess of independent variables and is by 

no means assured. The global root-finding methods exist, but are much slower 

and quite more complex. For complicated functions or when not supplied in 

analytic form, the Jacobian can be estimated using numerically evaluated 

functions derivatives (Press et al., 1992). Many of the advanced solvers for 

nonlinear system of equations are implemented in IMSL for Fortran 90/95/2003. 
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Appendix C 

 

Finding optimum solutions for multi-variable functions 

 

Let us assume we have a function of n independent variables. We are seeking 

stationary points or optimums/extremums (maximum, minimum, saddle points) of 

this function. Some extremums may be local and some are also global. For the 

sake of simplicity we will use a function of two independents, which can easily be 

expanded to n variables. We can expand such function into Taylor series around a 

known  0y,xfz oo    (Ayres and Mendelson, 2009; Smith, 1953): 
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We can now define elements of the square Hessian matrix (matrix of 

second-order partial derivatives) around a known point P: 
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Trace of the non-singular Hessian matrix of rank n is: 
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For two independent variables (Equation C1), the determinant of the 

nonsingular Hessian matrix is simply: 
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The necessary condition for the multivariable function to have extremum 

at point P is that all first derivative vanish (Ayres and Mendelson, 2009; Smith, 

1953): 

 

0



P

i

|
x

f
             (C5) 

 

Depending on the determinant of the nonsingular Hessian matrix (Ayres 

and Mendelson, 2009; Chapra and Canale, 2006; Smith, 1953), we can define 

maximum, minimum, or the saddle point at established extremum point P for the 

function of two independent variables as: 
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Appendix D 

 

Density altitude calculations 

 

Density altitude (DA) calculations for standard and nonstandard temperatures and 

constant pressure altitudes (PA) are illustrated in Figure D1.  

 

 
 

Figure D1. Variations of DA for standard and nonstandard ISA temperature 

conditions and various PAs.  

 

 The lines of constant PA (dashed) are also lines of constant  . The lines 

of constant temperature ISA±∆T (solid) are lines of constant   and the lines of 

constant DA (horizontal) are the lines of constant  . 

 

Pressure altitude for ISA troposphere is (Daidzic, 2015a): 

 

   ft110472136191 190263205 ..PA           (D1) 
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Density altitude for ISA troposphere is (Daidzic, 2015a) 

 

   ft110472136191 234969205 ..DA              (D2) 
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