
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 7 Number 4 Article 7

2012

Technology Corner: A Regular Expression Training App Technology Corner: A Regular Expression Training App

Nick V. Flor
University of New Mexico

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Flor, Nick V. (2012) "Technology Corner: A Regular Expression Training App," Journal of Digital Forensics,
Security and Law: Vol. 7 : No. 4 , Article 7.
DOI: https://doi.org/10.15394/jdfsl.2012.1137
Available at: https://commons.erau.edu/jdfsl/vol7/iss4/7

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol7
https://commons.erau.edu/jdfsl/vol7/iss4
https://commons.erau.edu/jdfsl/vol7/iss4/7
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2012.1137
https://commons.erau.edu/jdfsl/vol7/iss4/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol7%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Digital Forensics, Security and Law, Vol. 7(4)

125

TECHNOLOGY CORNER

A Regular Expression Training App

Nick V. Flor

Marketing, Information & Decision Sciences

Anderson School of Management

University of New Mexico

nickflor@unm.edu

ABSTRACT

Regular expressions enable digital forensic analysts to find information in files.

The best way for an analyst to become proficient in writing regular expressions is

to practice. This paper presents the code for an app that allows an analyst to

practice writing regular expressions.

INTRODUCTION

For many of us old-time Unix programmers, our first experience writing regular

expressions was within the Vi editor – where we used them to search and replace

text in our C-code. As a fascinating historical note, Ken Thompson, the architect

of regular expressions in Unix (Thompson, 1968), credits Kleene (1956) with the

theory of regular expressions. In terms of Kleene’s theory, a regular expression

was a neural network representing a regular event, where a neuron fired in

response to some stimulus (Kleene, 1956; p. 62). So, although we tend to think of

regular expressions as originally a programming tool, its first historical

application was as a neuroscience modeling tool.

Over time, regular expressions have found important applications outside of

programming. In particular, today’s digital forensic analysts use regular

expressions to find information evidence in computer logs and in user files (see

Stewart & Uckelman, 2011 and Vasiliadis, Polychronakis, Antonatos, Markatos,

& Ioannidis, 2009, for recent examples).

However, due to the history of regular expressions as a tool for programmers,

non-programmers often find the syntax cryptic and difficult to learn. For

example, the following is a regular expression for recognizing valid e-mails typed

into a textbox (Microsoft, n.d.): ^(?("")(""[^""]+?""@)|(([0-9a-z]((\.(?!\.))|[-

!#\$%&'*\+/=\?\^`\{\}\|~\w])*)(?<=[0-9a-

z])@))(?(\[)(\[(\d{1,3}\.){3}\d{1,3}\])|(([0-9a-z][-\w]*[0-9a-z]*\.)+[a-z0-

9]{2,17}))$

How does one become proficient in writing regular expression? This paper

mailto:nickflor@unm.edu

Journal of Digital Forensics, Security and Law, Vol. 7(4)

126

presents an app that I use to train students in writing regular expressions. The app

is written in C# for Windows 8 devices, but the code is brief and the objects used

are found in many other languages and platforms. Thus, it can be easily ported

and extended to non-Windows devices (see Appendix A for app’s source code).

The intent of this article is not to teach users how to write regular expressions as

there are many good online resources including the “Regular Expression

Language – Quick Reference” (http://msdn.microsoft.com/en-

us/library/az24scfc.aspx).

USER INTERFACE

The user interface consists of two primary input boxes (refer to Figure 1): (1) a

one-line textbox where a user can enter a regular expression; and (2) a multi-line

textbox where a user can either type or paste the data to be searched. To recreate

this interface so that it works with the code in Appendix A, you must name the

textboxes txRegEx and txSource, as well as naming the “Go” button btnGo.

Figure 1 The User Interface for the Regular Expression Self-Learning App

SAMPLE OPERATION

Suppose a user wants to write a regular expression to find all phone numbers in a

file. The user first guesses that the correct regular expression is \(\d{3}\)\d{3}-

\d{4} and enters it into the first textbox. That regular expression looks for 3 digits

inside matching parentheses, followed by 3 digits, a dash, and 4 digits. The user

pastes test data that contains phone numbers into the second textbox, then presses

Journal of Digital Forensics, Security and Law, Vol. 7(4)

127

the “Go” button. Upon doing so, the program highlights the information that

matches the regular expression (see Figure 2).

Figure 2 After tapping the “Go” button, the program highlights the first match

Continuing to press “Go” will cycle between all strings that match the pattern (see

Figure 3). Note that the first and third phone numbers were not highlighted

because of the lack of a dash and the inclusion of a space after the area code,

respectively.

Figure 3 Pressing “Go” again will highlight other matches.

Thus, the user gets an interactive and a visual indication that his or her regular

expression was not quite correct. Thus, the user can try entering another regular

Journal of Digital Forensics, Security and Law, Vol. 7(4)

128

expression such as: \(\d{3}\)\s*\d{3}(-|\s)\d{4}, which would capture all the phone

numbers in the test data. And by entering new test data, the user can further

refine the regular expression—ideally until a regular expression is developed that

handles all possible phone numbers.

HOW THE CODE WORKS

The first step in writing an app that uses regular expressions is to include the

namespace System.Text.RegularExpressions (refer to Appendix A). This

namespace defines the main objects used to process regular expressions

including: Regex, MatchCollection, and Match.

The Regex is the primary object. The Regex.Matches method takes two strings

as input: (1) the string to be searched and (2) a string denoting the regular

expression. The method then returns a MatchCollection consisting of zero or

more Matches. The line of code that applies the regular expression to the test

data is:

mcAllMatches = Regex.Matches(txSource.Text, txRegEx.Text);

A Match instance contains several properties including .Index, which contains

the position in the searched string where the pattern was found, and .Length, the

number of characters in the pattern. Highlighting a match in the test data is

accomplished by setting the test data’s .SelectionStart property to the Match’s

.Index, and setting the .SelectionLength property to .Length. The lines of code

that highlight the match are:

txSource.SelectionStart = mCurrMatch.Index;

txSource.SelectionLength = mCurrMatch.Length;

txSource.Focus(Windows.UI.Xaml.FocusState.Programmatic);

DISCUSSION AND CONCLUSION

As one can see, writing a regular expression trainer is straightforward in

Windows. Possible extensions to the code include reading the data from a file,

and saving the results found to a file. Another good extension would be to specify

a URL containing the data, or to read the data from a database. I should mention

that in order to make the code easy to understand and to extend, I removed the

input and error handling from the app. I hope you enjoy this little app and that

you will use it to train either yourself or others in the writing of regular

expressions.

REFERENCES

Kleene, S. C. (1956). Representation of Events in Nerve Nets and Finite

Automata. In Automata Studies (pp. 3-41), C. Shannon, J. McCarthy, and W.

Ashby (Eds.). Princeton, NJ: Princeton University Press.

Microsoft (n.d.). How to: Verify that Strings Are in Valid Email Format.

Journal of Digital Forensics, Security and Law, Vol. 7(4)

129

Microsoft.com. Retrieved 1/25/2013 from http://msdn.microsoft.com/en-

us/library/01escwtf.aspx

Stewart, J., & Uckelman, J. (2011). Searching Massive Data Streams Using

Multipattern Regular Expressions. In G. Peterson & S. Shenoi (Eds), Advances

in Digital Forensics VII (pp. 49-63).

Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E., & Ioannidis, S.

(2009). Regular expression matching on graphics hardware for intrusion

detection. In E. Kirda, S. Jha, D. Balzarotti (Eds.) Recent Advances in Intrusion

Detection (pp. 265-283). Springer Berlin/Heidelberg.

Thompson, K. (1968). Regular Expression Search Algorithm.

Communications of the ACM, 419-422.

Journal of Digital Forensics, Security and Law, Vol. 7(4)

130

APPENDIX A CODE FOR REGULAR EXPRESSIONS TRAINER

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

using System.Text.RegularExpressions;

namespace RegEx

{

 public sealed partial class MainPage : Page

 {

 public MainPage()

 {

 this.InitializeComponent();

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 }

 string sLastSearch="";

 MatchCollection mcAllMatches;

 Match mCurrMatch;

 private void btnGo_Tapped(object sender, TappedRoutedEventArgs e)

 {

 if (txRegEx.Text != sLastSearch)

 {

 sLastSearch = txRegEx.Text;

 mcAllMatches = Regex.Matches(txSource.Text, txRegEx.Text);

 if (mcAllMatches.Count!=0)

 {

 mCurrMatch = mcAllMatches[0];

 txSource.SelectionStart = mCurrMatch.Index;

 txSource.SelectionLength = mCurrMatch.Length;

 txSource.Focus(Windows.UI.Xaml.FocusState.Programmatic);

 }

 }

 else

 {

 if (mcAllMatches.Count!=0)

 {

 mCurrMatch = mCurrMatch.NextMatch();

 if (mCurrMatch.Success == false) mCurrMatch = mcAllMatches[0];

 txSource.SelectionStart = mCurrMatch.Index;

 txSource.SelectionLength = mCurrMatch.Length;

 txSource.Focus(Windows.UI.Xaml.FocusState.Programmatic);

 }

Journal of Digital Forensics, Security and Law, Vol. 7(4)

131

 }

 }

 private void btnGo_DoubleTapped(object sender, DoubleTappedRoutedEventArgs e)

 {

 sLastSearch = "";

 }

 }

}

Journal of Digital Forensics, Security and Law, Vol. 7(4)

132

	Technology Corner: A Regular Expression Training App
	Recommended Citation

	Technology Corner: A Regular Expression Training App

