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Abstract

Robust nonlinear control design strategies using sliding mode control (SMC) and

integral SMC (ISMC) are developed, which are capable of achieving reliable and

accurate tracking control for systems containing dynamic uncertainty, unmodeled

disturbances, and actuator anomalies that result in an unknown and time-varying

control direction. In order to ease readability of this dissertation, detailed explana-

tions of the relevant mathematical tools is provided, including stability definitions,

Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other

basic nonlinear control tools. The contributions of the dissertation are three novel con-

trol algorithms for three different classes of nonlinear systems: single-input multiple-

output (SIMO) systems, systems with model uncertainty and bounded disturbances,

and systems with unknown control direction. Control design for SIMO systems is

challenging due to the fact that such systems have fewer actuators than degrees of

freedom to control (i.e., they are underactuated systems). While traditional nonlinear

control methods can be utilized to design controllers for certain classes of cascaded

underactuated systems, more advanced methods are required to develop controllers

for parallel systems, which are not in a cascade structure. A novel control technique is

proposed in this dissertation, which is shown to achieve asymptotic tracking for dual

parallel systems, where a single scalar control input directly affects two subsystems.

The result is achieved through an innovative sequential control design algorithm,

whereby one of the subsystems is indirectly stabilized via the desired state trajectory

that is commanded to the other subsystem. The SIMO system under consideration



does not contain uncertainty or disturbances. In dealing with systems containing

uncertainty in the dynamic model, a particularly challenging situation occurs when

uncertainty exists in the input-multiplicative gain matrix. Moreover, special consid-

eration is required in control design for systems that also include unknown bounded

disturbances. To cope with these challenges, a robust continuous controller is de-

veloped using an ISMC technique, which achieves asymptotic trajectory tracking for

systems with unknown bounded disturbances, while simultaneously compensating for

parametric uncertainty in the input gain matrix. The ISMC design is rigorously

proven to achieve asymptotic trajectory tracking for a quadrotor system and a syn-

thetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed

that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator

control directions) are known. A much more challenging scenario is encountered in

designing controllers for classes of systems, where the uncertainty in the input gain

matrix is extreme enough to result in an a priori-unknown control direction. Such a

scenario can result when dealing with highly inaccurate dynamic models, unmodeled

parameter variations, actuator anomalies, unknown external or internal disturbances,

and/or other adversarial operating conditions. To address this challenge, a SMC-

based self-reconfigurable control algorithm is presented, which automatically adjusts

for unknown control direction via periodic switching between sliding manifolds that

ultimately forces the state to a converging manifold. Rigorous mathematical analyses

are presented to prove the theoretical results, and simulation results are provided to

demonstrate the effectiveness of the three proposed control algorithms.
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Chapter 1

Introduction

Control of nonlinear dynamic systems is complicated due to the fact that the corre-

sponding dynamic equations (i.e., nonlinear differential equations) cannot be solved

analytically. To cope with this challenge, Lyapunov-based control design methods are

popularly utilized. Lyapunov-based analysis is a well-established method for analyz-

ing the stability and convergence properties of nonlinear systems without explicitly

solving the dynamic equations. Additional complications arise in control design for

dynamic systems containing parametric uncertainty and unknown nonlinear distur-

bances. To cope with these challenges, robust and adaptive nonlinear control methods

can be amalgamated with Lyapunov-based techniques to achieve reliable and accu-

rate control of nonlinear systems subjected to underactuation, dynamic uncertainty,

and disturbances. Active research in robust control has produced a number of novel

techniques for systems containing dynamic uncertainty and disturbances. Some ex-

amples include H-infinity loop-shaping, quantitive feedback theory, gain scheduling,

loop transfer recovery, and others. The primary methods utilized in this dissertation

2
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are sliding mode control (SMC) and integral of SMC, which falls in the general class of

control methods called variable structure control (VSC) (DeCarlo, Zak, & Matthews,

1988).

Detailed studies of sliding mode control (SMC) systems as subset of variable

structure systems (VSS) appeared in the 1950s and 1960s at the Institute of Con-

trol Sciences in Moscow and Moscow University, USSR, see references in (DeCarlo,

Drakunov, & Li, 2000). The first development of SMC was by Irmgard Flugge-Lotz,

S.V Emelianov, and V.I Utkin. Continuing research shows that SMC are capable of

compensating for model uncertainty, unknown disturbances, and nonlinearities with-

out the need for parameter adaptation, estimation, or linearization. This robustness

has resulted in SMC being successfully utilized in various applications, such as auto-

motive systems, spacecraft systems, power systems, process control, and others. The

challenges associated with VSC involve defining so-called switching surfaces, at which

the system instantaneously changes its structure to enable new state trajectories that

might not be inherent in the original system structure. These new trajectories are

called sliding modes. By exploiting the robustness of VSS, SMC can be used to

address the challenges involved in designing controllers for underactuated systems,

parallel systems with a single input, systems containing dynamic uncertainty and

bounded disturbances, and systems with unknown control direction. SMC can also

be applied to distributed parameter, systems with delay and more general described

by semigroups (Drakunov & Utkin, 1992).

While SMC can compensate for systems with model uncertainty and disturbances,

underactuated parallel systems, or SIMO (single-input multiple-output) systems,

present particular control design challenges, because multiple states are directly cou-
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pled through a single control input. An example of a SIMO system is the inverted

pendulum on a cart; there is only one input to control the acceleration of the cart,

and that input simultaneously affects both the translation of the cart and the angle

of the pendulum. One of the contributions of this dissertation is a novel control law

that can stabilize a class of underactuated parallel systems using a SMC technique.

This novel control law can stabilize all system states via a single (scalar) control in-

put by designing an innovative sliding surface that allows the states to converge in

a sequential manner. This novel technique can be applied to spacecraft dynamics,

photovoltaic power generation systems, unmanned aerial vehicles (UAV), and others.

The robust integral of the signum of the error (RISE) control technique is a feed-

back control strategy that contains an integral signum control term that can com-

pensate for smooth bounded disturbances. The technique was originally developed

by Zhihua Qu in 1998 (Qu, 1998). The RISE control method is capable of achieving

asymptotic convergence in the presence of bounded nonlinear disturbances distur-

bances. Moreover, the structure of the RISE controller is continuous, which means

that it does not require infinite bandwidth as standard SMC does. By exploiting the

RISE control structure, new robust algorithms are proposed in this dissertation for

an unmanned quadrotor systems and synthetic jet actuator-(SJA) based systems.

Versatile unmanned aerial vehicles such as the quadrotor have garnered traction

as a reliable and practical vehicle for reconnaissance, search and rescue, scouting,

mapping, and more. The quadrotor is an underactuated system, because it has six

degrees of freedom and only four control inputs. Fortunately, the four control inputs

can be used in unison to control both attitude and translation, allowing the quadrotor

to be fully controllable. Recently developed methods for quadrotor control include
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PID control, adaptive control, robust control, differential flatness, dynamic inversion,

backstepping, neural network, and SMC (Salih, Moghavvemi, Mohamed, & Gaeid,

2010; Huang, Hoffmann, Waslander, & Tomlin, 2009; J. Wang et al., 2011; Das, Sub-

barao, & Lewis, 2009; Al-Younes, Al-Jarrah, & Jhemi, 2010; Vries & Subbarao, 2010;

Mian & Daobo, 2008; Dydek, Annaswamy, Company, & Beach, 2010; Gillula, Huang,

Vitus, & Tomlin, 2010; Zhu & Huo, 2010; Tayebi & McGilvray, 2006; Waslander

& Wang, 2009; Madani & Benallegue, 2007; Achtelik, Bierling, Wang, & Holzapfel,

2011; Chamseddine, Zhang, Rabbath, Fulford, & Apkarian, 2011; Chamseddine &

Zhang, 2010; D. Lee et al., 2009; Dierks & Jagannathan, 2010; Besnard, Shtessel, &

Landrum, 2007). For quadrotor control in the presence of parametric uncertainty and

unknown disturbances, adaptive and SMC methods are popular (Chamseddine et al.,

2011; D. Lee et al., 2009; Dierks & Jagannathan, 2010). Adaptive control methods

can require observers and online parameter adaptation schemes that can be compu-

tationally expensive, while robust control methods are designed to compensate for a

worst-case scenario, without the need for online adaptation. Another contribution of

the research in this dissertation is the design of a continuous robust control method

using RISE to compensate for the model uncertainty and norm-bounded disturbances

inherent in real-world quadrotor systems. The control technique can compensate for

significant parametric uncertainty in the control input dynamics in addition to reject-

ing bounded, non-vanishing disturbances.

After a non-trivial reworking of the controller design, the RISE control technique

can also be used to controlling synthetic jet actuator (SJA)-based systems, where

the dynamic model contains actuator nonlinearities in addition to model uncertainty

and disturbances. Synthetic jet actuators are small in size, easy to operate, and in-
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expensive, making them a promising tool in aircraft tracking control applications.

Aircraft tracking control objectives are traditionally achieved using mechanical de-

flection surfaces (i.e., elevators, ailerons, and rudders). However, mechanical limits in

the actuators along with limitations on the operational range of angle of attack can

hinder control performance. Active flow control methods using SJAs could reduce

flow separation near aircraft wings, thereby improving aerodynamic performance and

expanding the operational envelope (Deb, Tao, Burkholder, & Smith, 2005a). SJAs

work via the periodic ejection and suction of fluid (i.e., air) through an orifice, which

is produced from a vibrating diaphragm. Resulting trains of air vortices (or jets)

achieve the transfer of momentum to the system with zero net mass injection across

the boundary. Thus, there is no need for an external fuel supply. Nonlinear control

algorithms using neural networks and adaptive control methods are often applied to

SJA-based systems (Tchieu, Kutay, Muse, Calise, & Leonard, 2008; Mondschein, Tao,

& Burkholder, 2011; Deb et al., 2005a; Deb, Tao, Burkholder, & Smith, 2005b, 2006,

2007, 2008; Liu et al., 2006; Liu, 2008; Singhal, Tao, & Burkholder, 2009; Tao, 2003,

1996; Jee et al., 2009; Shageer, Tao, & Burkholder, 2008). Although these intelligent

and adaptive control methods can achieve good performance, one of the contribu-

tions in this dissertation is the design of a computationally minimal robust feedback

control strategy that can achieve tracking control performance that is comparable to

adaptive or neural network-based methods. Although this technique is robust with

respect to parametric uncertainty in the control input matrix, heavier uncertainty,

such as unknown sign of the control input direction, requires more advanced control

design methods.

While SMC methods can be used to compensate for uncertainty and bounded
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disturbances in a dynamic model, unmodeled variations in the commanded control

direction represent further complications to be addressed in the control design. In

1983, Morse’s famous conjecture states that systems with unknown control signs

cannot be asymptotically stabilized (Mudgett & Morse, 1984). Nussbaum, however,

showed that systems with unknown control direction can be stabilized through a class

of smooth functions, called Nussbaum functions, using adaptive control (Nusssbaum,

1983). Challenges in this control design include the requirement for infinite control

gain. In (Drakunov, 1993), Drakunov showed that a purely robust SMC can com-

pensate for unknown control direction. This method is based on self-reconfiguration,

where the sliding surface σ is extended in sliding space, and the control automatically

adjusts itself to the unknown changing control sign. Partial knowledge of the input

matrix for this method is required. The third contribution of this dissertation research

is the development of a self-reconfigurable control law similar to (Drakunov, 1993),

which can compensate for unknown control direction without partial knowledge of

the input matrix. The control algorithm is purely robust, requiring no online adapta-

tion, observers, or function approximators. Additional research has developed novel

methods to deal with the unknown control direction problem using robust control,

adaptive control, and SMC with monitoring functions (Lozano & Brogliato, 1992;

Xudong & Jingping, 1998; Kaloust & Qu, 1997; Yan & Xu, 2004; Hsu, Oliveira, &

Peixoto, 2006; Yan, Hsu, Costa, & Lizarralde, 2008; Yang, Yam, Li, & Wang, 2009;

Bartolini & Pisano, 2008; Bartolini, Ferrara, & Giacomini, 2003; Ferrara, Giacomini,

& Vecchio, 2009; Bartolini, Punta, & Zolezzi, 2010, 2011).



1.1. CONTRIBUTIONS 8

1.1 Contributions

The contributions of this dissertation are

• design a novel technique to stabilize a class of underactuated parallel systems

• develop a robust control algorithm to compensate for systems with norm-bounded

disturbances and parametric uncertainty

• use sliding mode control to stabilize a class of systems with unknown control

direction

The chapters are organized as follows: Chapter 2 introduces the mathematical

background of Lyapunov stability for linear and nonlinear systems. Nonlinear control

tools such as backstepping, adaptive control law, and RISE are also discussed, along

with properties of SMC. Chapter 3 deals with underactuated parallel systems. A novel

control technique is presented, and simulation results are provided to demonstrate its

effectiveness. Chapter 4 introduces the second-order dynamic system of the quadro-

tor. A continuous robust controller is designed, and simulation results are provided

to show the performance of the control law. Chapter 5 deals with SJA-based control,

where the dynamic model contains actuator nonlinearities in addition to parametric

uncertainty and unknown nonlinear disturbances. The approach uses RISE to com-

pensate for the uncertainty, and simulation results are presented to demonstrate the

effectiveness of the proposed control algorithm. Chapter 6 deals with a general class

of dynamic systems with unknown control direction. The approach used is an exten-

sion of the method in (Drakunov, 1993), in which sign of input matrix is uncertain.

Chapter 7 summarizes the results and discusses future work.



Chapter 2

Math Background

This chapter covers the mathematical background involved in the subsequent devel-

opments presented in this research. Lyapunov-based stability theorems for linear

and nonlinear systems are analyzed. Then, nonlinear control design methods, such

as integrator backsteppping, adaptive control, and RISE, are presented for differ-

ent classes of systems. The mathematical background for variable structure control

(VSC) is explained and two relevant functions, the sat and sign, are compared to

show their advantages and disadvantages in real-world implementation. Sliding mode

control (SMC), a form of VSC, is presented to demonstrate its robustness to distur-

bances and model uncertainty. A Lyapunov-based analysis is used to show that SMC

achieves finite-time convergence to a stable sliding manifold. A brief discussion of the

existence of solutions for systems with discontinuous right-hand sides is presented.

The method of equivalent control is then presented to show how real sliding motion

occurs when a system is near the vicinity of the discontinuous surface. Finally, an

application of VSC for a system with unknown control direction is presented.

9



2.1. LYAPUNOV STABILITY 10

2.1 Lyapunov Stability

Stability is an indispensable aspect of any discussion involving systems theory and

control system design. There are many different definitions of stability in dynam-

ical systems, but the focus in this section is on the stability of equilibrium points.

The mathematical development of stability of equilibrium points was originally de-

veloped by the Russian mathematician Aleksandr Lyapunov in the late 19th century

(Liapunov, 1992). Equilibrium points can generally be categorized into two groups:

stable and unstable. An equilibrium point is said to be stable if solutions starting

at nearby points remain within a neighborhood of the equilibrium points throughout

the time-evolution of the system state. An equilibrium point is unstable if it is not

stable. An equilibrium point is asymptotically stable if all solutions starting within

a neighborhood of an equilibrium point converge to the equilibrium point as time

approaches infinity. An illustration of a stable equilibrium is in Figure 2.1. Even

if there is a small perturbation imposed on the ball in the figure, it would oscillate

at the bottom of the bowl; and in the presence of friction, the ball would converge

to the bottom of the bowl (asymptotic stability). An unstable equilibrium point is

illustrated in Figure 2.2. If there is a small perturbation on the ball, it would fall off

the bowl and would never return to its original position.

bowl

ball

Figure 2.1: Stable Equilibrium Point

The mathematical theorems developed by Lyapunov can be applied to analyze the
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ball

bowl

Figure 2.2: Unstable Equilibrium Point

stability properties of dynamic systems without having to explicitly solve the equa-

tions for an analytical solution. This is especially important for nonlinear systems or

systems containing unmodeled disturbances, where explicit solutions can be difficult

or impossible to obtain. Lyapunov’s original work proposes two stability theorems to

analyze stability: Lyapunov’s First Stability Theorem, or the indirect method

of Lyapunov, uses system linearization to analyze nonlinear system stability near an

equilibrium point; Lyapunov’s Second Stability Theorem, or the direct method

of Lyapunov, uses a so-called Lyapunov function, which is analogous to an energy

function, to analyze system stability without the need for linearizing the system dy-

namics.

Before the Lyapunov theorems are described, an introduction to the Lipzschitz

condition will be provided. A function f : Rn × R→ Rn is considered Lipschitz if it

satisfies the inequality

‖f (x, t)− f (y, t)‖ ≤ L ‖x− y‖ (2.1)

for all (x, t) and (y, t) in some neighborhood of (x0, t0), where L is a positive constant

called the Lipschitz constant. The function f (x, t) is globally Lipschitz if it is Lipschitz

∀ x ∈ Rn. Moreover, the function f (x, t) is locally Lipschitz on a domain D ⊂ Rn
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if each point in D has a neighborhood D0 such that f (x, t) satisfies the Lipschitz

condition for all points in D0 with some Lipschitz constant L0 (Khalil, 2002).

For the scalar case where f (x) : R→ R is autonomous, the Lipschitz condition

can be expressed as

[f (x)− f (y)]

|x− y| ≤ L. (2.2)

The inequality in (2.2) implies that the Lipschitz condition is that the slope of f (x)

be finite. Any function that has an infinite slope at a point is not going to be Lipschitz

at that point, and any discontinuous function is not Lipschitz at the discontinuity.

In the following, Lyapunov’s first and second stability theorems will be described.

2.1.1 Linear Systems

Linear systems have been studied extensively by Pierre-Simon Laplace, Harry Nyquist,

Edward John Routh, Adolf Hurwitz and others (Ogata, 2002). At first, feedforward or

open-loop control was sufficient for certain control systems, but there are limitations

to the design. To overcome the limitations of open-loop control, feedback control

was introduced, and pole placement techniques were invented to achieve desirable

tracking objectives for linear systems. Feedback control system outputs information

measured from sensors (feedback) to continuously update the commands delivered

by the control system. This control structure can be visualized as a feedback signal

that connects the output measurement back to the control input; hence, the system

now contains a feedback loop, and is referred to a closed-loop system. Closed-loop

systems can be employed to reject disturbances, stabilize unstable processes, reduce

sensitivity to variations in the system parameters, improve tracking performance, and
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guarantee convergence in the presence of model uncertainty.

The following derivation presents a simple control design method for linear systems

and shows how the stability of a linearized system can be used to analyze the local

stability properties of the corresponding nonlinear system.

Consider the linear time-invariant (LTI) system

ẋ = Ax+Bu, (2.3)

where x (t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×n, u (t) ∈ Rn. Let the control input u (t) be

designed as the full-state feedback law

u = −Kx, (2.4)

where K ∈ Rn×n is a user-defined (usually diagonal) control gain matrix. Substituting

(2.4) into (2.3), the closed loop system can be obtained as

ẋ = (A−BK)x. (2.5)

Based on (2.5), stability of the origin of the system in (2.3) is completely determined

by the eigenvalues of A − BK, and for a controllable system, the gain matrix K

can be designed to assign arbitrary values for the eigenvalues of A−BK. The linear

differential equation in (2.5), can be solved as

x (t) = e(A−BK)tx (0) . (2.6)
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Thus, provided the real parts of the eigenvalues of A − BK are negative, the state

x(t)→ 0 as t→∞.

The system (2.3) is controllable if rank

[
B AB A2B ... An−1B

]
= n.

2.1.2 Stability Definitions

Consider the nonlinear system in (2.10). Assume that there exists an equilibrium

point x∗ in (2.10) such that (Wie, 2008)

f (t, x∗) = 0 ∀ t ≥ 0. (2.7)

The equilibrium x∗ of (2.10) is

• Lyapunov stable, if ∀ ε > 0, there exists δ = δ (ε, t0) > 0 such that

‖x (t0)− x∗‖ < δ =⇒ ‖x (t)− x∗‖ ≤ ε ∀ t ≥ t0. (2.8)

If δ does not depend on t0, then it is uniformly Lyapunov stable.

• locally asymptotically stable (LAS), if it is Lyapunov stable and

‖x (t0)− x∗‖ < δ =⇒ x (t) −→ x∗ as t→∞. (2.9)

• globally asymptotically stable (GAS), if it is Lyapunov stable and x (t) → x∗

as t→∞ for all x (t0) .

• unstable, if not stable.
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A necessary condition for an equilibrium point to be locally asymptotically stable

is that it be isolated. A necessary condition for an equilibrium point to be global

asymptotically stable is that it be the only equilibrium point.

Conceptually, in (2.8) Lyapunov stable implies that the solution starts within δ

distance of the equilibrium point will remain close within distance ε. In (2.9) local

asymptotic stability means that the system starts with δ distance away from the

equilibrium and eventually converges to the equilibrium. Global asymptotic stability

implies that it does not matter where x(t0) resides, the system (2.10) will converge

to the equilibrium point x∗.

2.1.3 Stabilization of Linear and Nonlinear Systems

Consider an nonautonomous system

ẋ = f (t, x) , (2.10)

where x ∈ D, f (x) : [0,∞] × D → Rn locally Lipschitz and piecewise continuous,

and D ⊂ Rn is a domain that contains the origin. By introducing the transformation

z = x− x∗, (2.11)

where x∗ is the equilibrium point, and z (t) is a small perturbation from x∗, the

following can be obtained:

ẋ = ż = f (x∗ + z, t) . (2.12)
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After linearization, Equation (2.12) as can be written as

ż = Az, (2.13)

where A , ∂f
∂x

∣∣
x∗

is a Jacobian matrix evaluated at x∗.

The origin z = 0 of the linearized system (2.13) is asymptotically stable if all

the eigenvalues of A have negative real parts. It is Lyapunov stable if none of the

eigenvalues has a positive real part and there are no repeated eigenvalues on the

imaginary axis. The stability properties of the origin of the linearized system (2.13)

can be utilized to determine the stability properties of the equilibrium point x∗ of the

nonlinear system in the neighborhood of x∗. Lyapunov’s First Stability Theorem

is used to analyze the stability of equilibrium points of nonlinear systems via the

stability of the corresponding linearized system (Wie, 2008).

Theorem 1 Lyapunov’s First Stability Theorem

• If the origin z = 0 of the linearized system is asymptotically stable, then the

equilibrium point x∗ of the nonlinear system is locally asymptotically stable.

• If the origin z = 0 of the linearized system is unstable, then the equilibrium

point x∗ of the nonlinear system is also unstable

• If the origin z = 0 of the linearized system is Lyapunov stable, then nothing can

be said about the equilibrium point x∗ of the nonlinear system based on linear

analysis.

The second Lyapunov’s stability theorem uses a positive definite function call
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Lyapunov function V (x) to show that the system is stable if the time derivative of

V (x) is negative definite.

The following theorem states Lyapunov’s Second Stability Theorem (Khalil, 2002).

Theorem 2 Lyapunov’s Second Stability Theorem

Let x = 0 be an equilibrium point for f (x) and D ⊂ Rn be a domain containing

x = 0. Let V : D → R be a continuously differential function such that

V (0) = 0 and V (x) > 0 in D − {0} (2.14)

V̇ (x) ≤ 0. (2.15)

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.16)

then x = 0 is asymptotically stable.

The function V (x) is radially unbounded if ||x|| → ∞ ⇒ V (x)→∞. Lyapunov’s

second stability theorem gives sufficient conditions for system stability, but they are

not necessary conditions. Lyapunov’s direct method is a conservative analysis: A

system cannot be proven unstable using Lyapunov’s second method; it is always

possible that a different Lyapunov function could be chosen to prove stability for the

system.

An illustration of Lyapunov’s stability definitions can be seen in Figures 2.3 -

2.5. From Figure 2.3, for an equilibrium point x∗ that is Lyapunov stable, state

trajectories beginning within a δ-neighborhood of x∗ remain within an ε-neighborhood
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of x∗ but do not converge directly to x∗. Figure 2.4 shows that an equilibrium

point is asymptotically stable if state trajectories initially in a δ-neighborhood of the

equilibrium point x∗ will converge directly to x∗. Figure 2.5 shows that a system is

not Lyapunov stable if the state trajectory departs the ε-neighborhood of x∗.

ε

x0

δ

x?

Figure 2.3: Lyapunov Stable

ε

x0

δ
x?

Figure 2.4: Lyapunov Asymptotically Stable

This section considered control design of linear systems and stability analysis

methods for nonlinear systems via Lyapunov methods. The next section introduces

nonlinear control algorithms such as integrator backstepping, adaptive control, vari-
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ε

x0

δ
x?

Figure 2.5: Lyapunov unstable

able structure control, and robust control. These nonlinear control tools can be

utilized to cope with model uncertainty and disturbances, which are unavoidable in

real-world dynamic systems.

2.2 Nonlinear Control Design

This section discusses nonlinear control tool such as adaptive control, robust integral

of the signum of the error (RISE), and integrator backstepping. These nonlinear

control methods leverage well-accepted mathematical theorems, including LaSalle’s

invariance principle and Barbalat’s lemma. Details of these theorems can be found

in (Khalil, 2002) and are summarized in the following.

Theorem 3 Barbalat’s Lemma

Let φ : R → R be a uniformly continuous function on [0,∞]. Suppose that

limt→∞
∫ t

0
φ (τ) dτ exists and is finite. Then,

φ (τ)→ 0 as t→∞. (2.17)
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Theorem 4 LaSalle’s Theorem

Let Ω ⊂ D be a compact set that is positively invariant with respect to (2.10). Let

V : D → R be a continuously differential function such that V̇ (x) ≤ 0 in Ω. Let E be

the set of all points in Ω where V̇ (x) = 0. Let M be the largest invariant set in E.

Then every solution starting in Ω approaches M as t→∞.

LaSalle’s theorem and Barbalat’s Lemma will be utilized in the subsequent non-

linear control development.

2.2.1 Integrator Backstepping

Backstepping was developed in the early 1990s by Petar V. Kokotovic and others

to stabilize a class of nonlinear cascade systems (Kokotovic, 1992). It was based on

hierarchical method of control design suggested in (V. Utkin, Drakunov, Izosimov,

Lukjanovand, & Utkin, 1984; Drakunov, Izosimov, Lukjanov, Utkin, & Utkin, 1991a,

1991b), also known as block control principle. This special class of systems contains

coupled subsystems such that all subsystems are affected by the control input, but

only some or one of the subsystems are directly influenced by the control input. Back-

stepping is a recursive scheme that starts with the design of a virtual control input(s)

to stabilize the subsystem(s) that do not explicitly contain the control input, and

then using the virtual control(s) in the final control input design to stabilize the en-

tire system. The following example below demonstrates the backstepping technique.

Consider the system

η̇ = f (η) + g (η) ξ (2.18)

ξ̇ = u, (2.19)
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where η (t) ∈ Rn, ξ ∈ R, f : D → Rn, g : D → Rn, and u (t) ∈ R is the control

input. The functions f (η) and g (η) are smooth in the domain D ∈ Rn that contains

f (η = 0) = 0. It is assumed that the functions f (η) and g (η) are known. The

control objective is to design a state feedback control law that stabilizes the origin

(η = 0, ξ = 0) . Suppose that there exists a state feedback control law ξ = φ (η), with

φ (0) = 0, that stabilizes subsystem (2.18) in the sense that the origin of

η̇ = f (η) + g (η)φ (η) (2.20)

is asymptotically (Khalil, 2002). Suppose further that there exists a positive definite

function V1 (η) that satisfies the inequality

V̇1 =
∂V1

∂η
[f (η) + g (η)φ (η)] ≤ −W (η) ∀ η ∈ D, (2.21)

where W (η) is a positive definite function. Adding and subtracting g (η)φ (η) to the

right hand side of (2.18) yields

η̇ = [f (η) + g (η)φ (η)] + g (η) [ξ − φ (η)] (2.22)

ξ̇ = u, (2.23)

By using the change of variables

z = ξ − φ (η) , (2.24)
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the system (2.22) - (2.23) can be expressed as

η̇ = [f (η) + g (η)φ (η)] + g (η) z (2.25)

ż = u− φ̇ (2.26)

The time-derivative of the function φ (η) can be obtained as

φ̇ =
∂φ

∂η
[f (η) + g (η) ξ] , (2.27)

where (2.18) was utilized. To express the system to the cascade connection, let

v = u− φ̇, and the system can be rewritten as

η̇ = [f (η) + g (η)φ (η)] + g (η) z (2.28)

ż = v (2.29)

The system in (2.28) and (2.29) is similar to the original system, but now subsystem

(2.28) has an asymptotically stable origin when the input v is zero. Consider the

Lyapunov function candidate

V2 (η, ξ) = V1 (η) +
1

2
z2. (2.30)

Taking the time derivative of V2 (η, ξ) along trajectories of (2.28) and (2.29) yields

V̇2 =
∂V1

∂η
[f (η) + g (η)φ (η)] +

∂V1

∂η
g (η) z + zv (2.31)

≤ −W (η) +
∂V1

∂η
g (η) z + zv. (2.32)
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Choosing the control input v as

v = −∂V1

∂η
g (η)− kz, (2.33)

where k > 0 is a positive constant, V̇2 can be upper bounded as

V̇2 ≤ −W (η)− kz2. (2.34)

The inequality in (2.34) shows that the origin (η = 0, ξ = 0) is asymptotically stable.

The system presented has two subsystems, but the technique can be extended to

systems containing n subsystems.

Example Consider the system

ẋ1 = x1 + x2 (2.35)

ẋ2 = x2
2 + x1 + u, (2.36)

where x1 (t) ∈ R, x2 (t) ∈ R are the states, and u (t) ∈ R is the scalar control input.

A positive definite function is chosen as

Vn =
1

2
x2

1 +
1

2
x2

2. (2.37)

After taking the time derivative of Vn (x1, x2) and substituting (2.35), V̇n can be

expressed as

V̇n = x2
1 + x1x2 + x2

(
x2

2 + x1 + u
)
. (2.38)
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From (2.38), the control input u (t) cannot be designed to cancel the x2
1 term due to

the presence of the input-multiplicative term x2 (t)u (t). It is undesirable to design the

control input with the term x−1
2 , because u (t) would approach infinity as x2 (t)→ 0.

To implement the backstepping technique, the first step is to consider x2 (t) as

the virtual control input φ (x1) such that

ẋ1 = x1 + φ (x1) (2.39)

is asymptotically stable. Choosing the positive definite function

V11 =
1

2
x2

1, (2.40)

it follows that designing φ (x1) as

φ (x1) = −2x1, (2.41)

renders the time derivative of V11 negative definite as

V̇11 = −x2
1. (2.42)

Hence, x1 (t) is asymptotically stable and approaches zero exponentially.

The next objective is for x2 (t) to converge to φ (x1). To achieve this objective,

consider the change of variables

z = x2 − φ (x1) . (2.43)
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By substituting (2.41) into (2.35), adding and subtracting φ (x1), then using the

definition of z (t) above, the dynamics in (2.35) - (2.36) can be expressed as

ẋ1 = −x1 + z (2.44)

ż = x2
2 − x1 + z + u. (2.45)

If the control input can be designed to stabilize z (t) to the origin, it follows from

(2.44) that x2 (t) → φ (x1), thereby achieving the objective. Consider the positive

definite function

V22 =
1

2
x2

1 +
1

2
z2. (2.46)

After taking the time derivative of V22 (x1, z) and substituting (2.44) - (2.45), V̇22 can

be expressed as

V̇22 = x1 (−x1 + z) + z
(
x2

2 − x1 + z + u
)
. (2.47)

Based on (2.47), the control input u (t) is designed as

u = −x2
2 − (k + 1) z. (2.48)

where k > 0 is a control gain. After substituting the control input u (t) into (2.47),

the following is obtained:

V̇22 = −x2
1 − kz2 < 0. (2.49)

The expression in (2.49) can be used to prove that x1 (t)→ 0 and z (t)→ 0 as t→∞.
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Based on the transformation in (2.43), (2.49) implies that

x1, z → 0⇒ 0⇒ x2 → φ (0)⇒ x2 → 0. (2.50)

Thus, the objective is achieved.

The integrator backstepping technique demonstrated in this section is provided for

the purpose of comparing it with the control technique presented in the subsequent

chapter dealing with parallel systems. Integrator backstepping can be applied to

cascade systems with a scalar control input in only one of the subsystems. However,

for parallel system that have a scalar control present in all of the subsystems, more

advanced techniques are required in the control design. The previous demonstration

of backstepping is based on the assumptions that all states are measurable and that

the system dynamics are known exactly. How can the control design be modified to

compensate for uncertainty in the model dynamics?

2.2.2 Adaptive Control

To adapt means to adjust to new or different environments. Adaptive control, as

the name implies, is a control method that is used to automatically compensate for

uncertainty present in a system’s dynamics. To be more specific, (Lyapunov-based)

adaptive control is an algorithm that uses time-varying parameters in the control

law, which generate online parameter estimates that can be used to compensate for

uncertainty to stabilize a system.

Adaptive control was developed in the early 1950s for autopilots to stabilize high-

performance aircrafts operating in different flight conditions, where constant-gain
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feedback laws are insufficient to cope with the wide range of operating conditions

(Ioannou & Fidan, 2006). Since then, various developments on adaptive control

allow the technique to cover a wide class of systems containing uncertainty, including

systems with parametric uncertainty premultiplying the control input. The following

example demonstrates the effectiveness of adaptive control to compensate for input-

multiplicative uncertainty.

Control Design

Consider the system

ẋ = f (x) + bu, (2.51)

where x (t) ∈ R, f : R→ R, u (t) ∈ R is the control input, and b ∈ R is an unknown

constant. The objective is to drive the dynamics in (2.51) to the origin x = 0. To

facilitate the adaptive control design, the control term bu (t) will be linearly parame-

terized as

bu = Y θ, (2.52)

where Y (t) ∈ R is a measurable regressor, and θ ∈ R is an unknown constant (i.e., θ

contains the parametric uncertainty in b). Equation (2.52) can be re-parameterized

as

Ωu = Y θ, (2.53)

where Ω ∈ R contains the uncertainty premulitplying u (t). The motivation for defin-

ing multiple parameterizations is based on the desire to use standard notation in

the following adaptive control design example; in this simplified example, multiple

parametrizations are not really necessary. To facilitate the adaptive control design,
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an estimate Ω̂ of the uncertain term Ω is defined via the parameterization

Ω̂u = Y θ̂, (2.54)

where θ̂ (t) ∈ R is an adaptive estimate of Ω. By substituting (2.52) in to (2.51) and

adding and subtracting the term Y θ̂, the open-loop dynamics can be expressed as

ẋ = f (x) + Y θ − Y θ̂ + Y θ̂ (2.55)

= f (x) + Y θ̃ + Ω̂u, (2.56)

where the parameter estimate mismatch θ̃ (t) ∈ R is defined as

θ̃ , θ − θ̂. (2.57)

Based on the subsequent Lyapunov-based stability analysis, the control input is de-

signed as

u = −Ω̂−1 (f (x) + kx) , (2.58)

where k ∈ R is a positive constant control gain. Based on the subsequent stability

analysis, the adaptive estimate θ̂ (t) is designed via the adaptive update law

·

θ̂ = proj {Y x} , (2.59)

where proj (·) is a standard projection algorithm, which is utilized to ensure that the

estimate θ̂ (t) remains within a certain prescribed limits (i.e., to ensure that θ̂ (t) ∈ L∞
∀ t).
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Remark 1 It should be noted that the adaptive update law in (2.59) is designed to

stabilize the system based on the following Lyapunov-based analysis; it is not designed

to identify the value of the unknown parameter b. To actually estimate the value

of the unknown parameter, more advanced techniques are required (e.g., utilizing the

persistence of excitation condition).

Stability Analysis

To analyze the stability of the adaptive control law in (2.58) and (2.59), a positive

definite function is defined as

V
(
x, θ̃
)

=
1

2
x2 +

1

2
θ̃. (2.60)

After taking the time derivative of (2.60) and using the fact that ˙̃θ (t) = − ˙̂
θ (t), V̇

can be expressed as

V̇ = x
(
f (x) + Y θ̃ + Ω̂u

)
− θ̃ ˙̂

θ (2.61)

where (2.56) was utilized. After substituting (2.58) and (2.59) into (2.61), the follow-

ing is obtained:

V̇ (t) = −kx2 ≤ 0. (2.62)

The inequality in (2.62) implies that V̇ (t) is negative semidefinite. To prove that

x (t)→ 0, Barabalat’s lemma can be utilized. To this end, it is first pointed out that

V̇ (t) ≤ 0⇒ V (t) ∈ L2 ∀ t.
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After integrating both sides of (2.62), the following is obtained

∫ t

0

V̇ (τ) dτ ≤ −k
∫ t

0

‖x (τ)‖2 dτ∫ t

0

‖x (τ)‖2 dτ ≤ 1

k
(V (0)− V (t)) <∞. (2.63)

Since V (t) is always constant or decreasing from V (0), taking the limit as t → ∞

infinity yields

lim
t→∞

∫ t

0

‖x (τ)‖2 dτ ≤ lim
t→∞

1

k
(V (0)− V (t)) <∞. (2.64)

Thus, the inequality in (2.64) implies that x (t) ∈ L2.

Since V (t) is bounded, it follows that x (t), Y (x) ∈ L∞. Given that Y (x) ∈ L∞
and x (t) ∈ L∞, the assumption that x (t) ∈ L∞ ⇒ f (x) ∈ L∞ can be used along

with the fact that θ̂ (t) ∈ L∞ to prove that u (t) ∈ L∞ from (2.58). Since u (t) ,

f (x) , θ̂ (t) , Y (x) ∈ L∞, (2.56) can be used to show that ẋ (t) ∈ L∞. Thus, x (t) is

uniformly continuous. Since x (t) ∈ L2 and x (t) is uniformly continuous, Barbalat’s

lemma can be invoked to conclude that ‖x (t)‖ → 0.

A challenge with adaptive control is that the estimate θ̂(t) might cross zero during

adaptation, which would lead to a singularity from dividing by zero. There is no

guarantee that this would not happen if the adaptive estimate is initialized with a

sign that is opposite the sign of the actual unknown parameter θ(t). For example,

if the unknown parameter θ(t) = −1, the estimate θ̂(t) might be initialized at +1

because the sign of θ(t) is unknown. If this happens, then the adaptive estimate θ̂(t)

could cross zero during adaptation, since the projection region must include the value
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−1.

Although adaptive control can be utilized to achieve good control performance in

the presence of parametric uncertainty, the controller structure is complicated due to

the additional loop required to implement the adaptive update law (i.e., see Equation

(2.59)). Moreover, the adaptive control algorithm presented here can only compensate

for constant or slowly time-varying parametric uncertainty. A block diagram of the

adaptive control system presented here is given in Figure 2.6. The next section

describes a sliding mode control (SMC) design and demonstrates the capability of

SMC to compensate for unknown bounded disturbances and state- and time-varying

unknown control input direction.

desired state
control Plant

output

Estimator

Figure 2.6: Block diagram of adaptive control

2.2.3 Variable Structure Control (VSC)

Detailed analysis of variable structure systems (VSS) appeared at Moscow University

and Institute of Control Sciences, USSR, in the late 50s and early 60s (V. I. Utkin,

1992). The analysis showed that new trajectories can be obtained by allowing the

control to instantaneously switch between members of a set of possible continuous

functions of the state. The challenges of variable structure control (VSC) design en-

tail selecting appropriate control structure parameters and defining proper switching
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logics. The strength of VSC lies in the combination of useful properties of multiple

individual structures. Specifically, the resulting VSS can exhibit new properties that

are not present in the individual structures. For example, a VSS consisting of two

structures could yield asymptotic stability, even though neither of the constituent

structures is asymptotically stable. The following demonstrates the advantages of

VSC.

Controller Structure

Consider the second-order system

ẍ = −ux, (2.65)

where u (t) ∈ R is the control input, and x (t) ∈ R is the state. The system or plant

in (2.65) has two possible controller structures u = α2
1 and u = α2

2, where α2
1 > α2

2.

Figure 2.7(a) illustrates the path of the structure α2
1, and Figure 2.7(b) shows the

path of α2
2, where neither structure is asymptotically stable (V. Utkin, 1977). By

combining the two structures with a switching logic as

u =

 α2
1 if xẋ > 0

α2
2 if xẋ < 0

the origin of the system is now asymptotically stable, as shown in Figure 2.7(c);

and the VSC switching logic drives the state space to a chosen sliding surface and

maintains the state along the trajectory.

One possible control form used in VSC is the saturation function sat(u) (see Fig.
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(a) u = α2
1 (b) u = α2

2 (c) switching logic

Figure 2.7: Possible path of system (2.65) for different α1 (Adapted from (V. Utkin,
1977))

2.9(b)):

sat(u) =

 u if |u| ≤ ε

±1 if |u| > ε
(2.66)

where ε is positive constant. The saturation function does not require infinite band-

width, unlike the sign function shown in Fig. 2.9(b), but asymptotic stability is

generally not achievable in the presence of norm-bounded disturbances. The trade-

off between the sign and sat functions can be illustrated through Lyapunov analysis.

VSC Design Example

The sat function, despite its advantage over the sign function in terms of finite

bandwidth, generally cannot achieve asymptotic stability in the presence of norm-
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bounded disturbances. To show this, consider the system

ẋ1 = x2

ẋ2 = u+ d(t) (2.67)

where d(t) ∈ R is a norm-bounded disturbance satisfying |d(t)| ≤ d1, x1 (t) , x2 (t) ∈ R

are the states, u (t) ∈ R is the control input, and d1 ∈ R is a positive bounding

constant. The control objective is to force the states x1 (t) and x2 (t) to zero. One of

the possible sliding surfaces σ ∈ R is chosen as σ = x1 + x2. The surface is chosen so

that when the sliding manifold is reached, σ = 0, resulting in x2 (t) = −x1 (t), which

implies that x1 = x0e
−t, where x0 is the initial condition.

A Lyapunov-based analysis will be utilized to demonstrate the performance of a

VSC design. After taking the time derivative of the Lyapunov function

V =
1

2
σ2, (2.68)

where x =

[
x1 x2

]T
, the following is obtained:

V̇ = σ

(
∂σ

∂x

)
ẋ

= σ

[
1 1

] ẋ1

ẋ2


= σ(x2 + u+ d(t)). (2.69)
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By designing u = −x2 − ksat(σ), the Lyapunov derivative can be expressed as

V̇ = σ(−ksat(σ) + d(t))

≤ |σ| d1 − kσsat(σ) (2.70)

Based on (2.66) and (2.70), it can be seen that for |σ| < 1, k cannot compensate

for d (t) as σ approaches zero. Figure 2.8 shows that as σ approaches zero, the term

σ2 cannot dominate |σ|d1. This illustrates the limitation of using the sat function.

Figure 2.8 shows that as ε→ 0, the sat function will behave like a sign function.
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Figure 2.8: Comparison of σ2 vs. σ and |σ|d1 vs. σ

2.2.4 Sliding Mode Control (SMC)

SMC is a form of VSC that changes the dynamics of linear and nonlinear systems

by applying a discontinuous control signal that forces the original system to “slide”

along the intersections of designed manifolds. The feedback law of SMC use high-
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frequency control switching to change from one continuous structure to another based

on the current state of the system. SMC’s high bandwidth provides the means to

design effective and robust control of linear and nonlinear plants, allowing rejection

of bounded disturbances in the system’s model, making it desirable in control design.

Despite the practical drawback of SMC in requiring infinite bandwidth, the high-

speed switching achievable using modern-day circuitry and technology have made

implementation of SMC a more feasible and attractive option.

The time during which the system’s trajectory is approaching the sliding surface is

referred to as the reaching phase. Once the trajectory reaches the sliding surface, the

system has reached the sliding mode. Once the system is in sliding mode, convergence

to the desired state is inevitable.

SMC uses the sign function to express the switching among surfaces. The sign

function can be expressed as (see Figure 2.9(a))

sign(u) =


1 if u > 0,

0 if u = 0,

−1 if u < 0,

(2.71)

Note that this is a simplification of the sign function to simplify the Lyapunov-

based analysis. The official definition of the sign function is that the value at zero is

contained in the set (−1, 1) . Using the sign definition would require Filippov-based

arguments, which includes differential inclusions (Filippov, 1964).
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(a) sign(u) (b) sat(u)

Figure 2.9: The signum and saturation functions (Adapted from (Khalil, 2002))

Existence and Uniqueness of SMC

The existence of a sliding mode implies that the plant intersects the sliding surface at

t0, and sliding motion exists for t ≥ t0, provided that σ(x(t0)) = 0. In other words,

sliding mode existence implies that

σ(x) = 0,
∂σ

∂x
ẋ = 0. (2.72)

Sliding mode control, despite its inherent property to reject disturbances, produces

a discontinuous right-hand side of (2.67), which fails to satisfy classical theorems

on existence and uniqueness of solutions. One of the earlier conceptual proofs of the

existence of a sliding mode utilizes the method of Filippov. Conceptually, the resulting

behavior, from the method of Filippov, of the system from the discontinuous controller

moving along the trajectory σ(x) = 0 is approximated by the smooth dynamics of

σ̇(x) = 0 (DeCarlo et al., 1988). The method of Filippov can be briefly described as

follows: Take an nth order system with single input (DeCarlo et al., 1988)
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ẋ(t) = f(t, x, u), (2.73)

with a control strategy of

u =

 u+(t, x) if σ(x) > 0

u−(t, x) if σ(x) < 0.
(2.74)

From (Filippov, 1964), it can be shown that the state trajectories in (2.73) with the

control in (2.74) on σ(x) = 0 are the solutions to

ẋ(t) = αf+ + (1− α)f− = f 0, 0 ≤ α ≤ 1,

where α is a parameter that depends on the vector as f+, f−; and grad σ denotes the

gradient of σ(x), shown in Figure (2.10). The functions

f+ = f(t, x, u+) f− = f(t, x, u−) (2.75)

and f 0 are the velocity vectors of the state trajectory resulting from sliding mode.

Solving 〈gradσ, f 0〉 = 0 for α, i.e., where gradσ is perpendicular to the vector f 0,

yields

α =
〈gradσ, f−〉

〈gradσ, (f− − f+)〉 , (2.76)

where 〈a, b〉 denotes the inner product of a and b, provided that

a) 〈gradσ, (f− − f+)〉 > 0 b) 〈gradσ, f+〉 ≤ 0 c) 〈gradσ, f−〉 ≥ 0. (2.77)
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f+

grad σ f− f0 σ = 0

Figure 2.10: Illustration of Flippov method for determining the desired velocity vector
in sliding mode (Adapted from (DeCarlo et al., 1988))

Thus, on average, the solution of equation (2.73) with the control in (2.74) exists and

is unique on the sliding surface σ(x) = 0. Filippov’s method is one of the techniques

used to determine the sliding motion of a system; but the method of equivalent

control, which will be discussed later, is more straightforward to apply for multi-

input systems. The next section uses Lyapunov-based analysis to demonstrate the

robustness of the sign function.

Lyapunov-based Convergence Analysis of SMC

To analyze the performance characteristics of SMC, consider the system

ẋ1 = x2,

ẋ2 = u+ d(t) (2.78)

where x1 (t), x2 (t) ∈ R denote the states, u (t) ∈ R is the control input, and d(t) is

a disturbance that is bounded as |d(t)| ≤ d1, where d1 ∈ R is a positive bounding
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constant. Based on the dynamics in (2.78), the sliding surface σ (x) is selected as

σ = x1 + x2. (2.79)

To design the controller and analyze the stability of the closed-loop system, a positive

definite function (i.e., a Lyapunov function candidate) is defined as

V =
1

2
σ2. (2.80)

Taking the time derivative of (2.80) along trajectories of (2.78) yields

V̇ = σσ̇

= σ (x2 + u+ d(t)) . (2.81)

Based on the expression in (2.81), the sliding mode controller is designed as

u = −x2 − ksgn(σ)

where k > d1. Note here that the sign function is written in shorthand as sgn.

After substituting u (t) into (2.81), the Lyapunov derivative can be upper bounded

as follows:

V̇ = −kσsgn(σ) + σd

≤ − |σ| (k − d1)

≤ −
√

2k1V
1/2, (2.82)
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where k1 , k − d1. By defining W = V 1/2, the time derivative of W can be obtained

as

Ẇ =
1

2

V̇

V 1/2
. (2.83)

Equation (2.82) can be rewritten as

Ẇ ≤ −
√

2k1

2
, (2.84)

and solving for W yields

W (V (t)) ≤ −
√

2k1

2
t+W (V (0)). (2.85)

Since V ≥ 0, W = V 1/2 ≥ 0, and W has to reach W = 0 in finite time, which implies

that V reaches 0 in finite time. Thus,

σ = x1 + x2 → 0⇒ ẋ1 = −x1.

Hence, x1(t) → x1 (0) e−t, and x1 (t) → 0 as t → ∞. The sign controller allows the

system to have uniform stability and causes the closed-loop system to reach the sliding

surface σ (x) = 0 in finite time in the presence of disturbances. This is an advantage

over the sat function, which generally yields convergence to a small neighborhood of

the origin.

Advantages and Disadvantages of Sliding Mode

The inherent robustness of SMC makes it an attractive control method for systems

with unknown disturbances. However, there are both advantages and disadvantages
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in implementing sliding mode control. One of the advantages of sliding mode control

is its ability to reject bounded disturbances. It also reduces the system order by

one and restricts the plant’s trajectories to the sliding manifold (V. I. Utkin, 1992).

Consider the system

 ẋ1

ẋ2

 =

 0 1

0 0


 x1

x2

+

 0

1

u, (2.86)

and define the sliding surface as σ = s1x1 +x2, where s1 is a positive constant. Small

values of s1 yield the trajectory shown in Figure 2.11(a), and large values of s1 yield

a different trajectory as shown in Figure 2.11(b) (DeCarlo et al., 1988). The system’s

behavior depends only on the slope s1 on the sliding line σ = 0. Solving for x1 (t)

from σ = 0 = s1x1 + x2 yields

x1 = x0e
−s1t, (2.87)

where x0 is a constant. Equation 2.87 implies that the system is insensitive to any

perturbations or variations within the plant parameter in (2.86).

The limitations of SMC are the requirements for infinite bandwidth during its slid-

ing phase and the chattering caused by the discontinuous structure of the controller.

In a realistic system, no motors can switch infinitely fast. Thus, the discontinuous

signum function is not practically implementable. Work has been done in twisting

control (Levant, Taleb, & Plestan, 2011), integral SMC, and other methods to reduce

the bandwidth requirement of the controller.

In digital implementation, the finite-time convergence and close to sliding motion

without chattering can be achieved by using a continuous approximation of the dis-
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continuous sign function in a small ε-vicinity of the sliding manifold. The correct

choice of ε will result in convergence to the vicinity of the sliding manifold that may

be sufficient for practical purposes.

(a) The system’s trajectory for small s1

(b) The system’s trajectory for large s1

Figure 2.11: Phase planes of the closed-loops system for different s1 (Adapted from
(DeCarlo et al., 1988)).

2.2.5 Integral Sliding Mode

Integral SMC is an extension of the standard SMC method that has the benefit of

being continuous. Integral SMC (ISMC) eliminates the need for infinite bandwidth in

SMC while retaining robustness with respect to norm-bounded disturbances. Figure
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2.12 shows the block diagram of a general robust controller structure. It can be seen

that robust control is simpler in structure than that of the adaptive control design in

Figure 2.6 due to the single-loop structure in the closed-loop system.

desired state
control Plant

output

Figure 2.12: Block diagram of robust control

To demonstrate the convergence and disturbance rejection properties of ISMC,

consider the second-order system

ẋ1 = x2 (2.88)

ẋ2 = u+ d(t), (2.89)

where x1 (t) , x2 (t) ∈ R are the system states, d(t) ∈ R is an unknown nonlinear

disturbance, and u (t) ∈ R is the control input. The control objective is to force the

system state x1 (t) to track the desired state xd (t). To quantify the control objective,

the state tracking error and filtered tracking errors are defined as (Zhang & Zhang,

2010)

e1 , x1 − xd, e2 , ė1 + α1e1, r , ė2 + α2e2. (2.90)

The open-loop tracking error dynamics can be developed by taking the time derivative

of r (t) and utilizing the expressions in (2.88) and (2.90) to obtain the following

expression

ṙ(t) = α1ë1 + α2ė2 − ...
x d + u̇+ ḋ (t) . (2.91)
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To facilitate the following analysis, it will be assumed that the desired trajectory and

its first four derivatives are bounded (i.e., xd (t) , ẋd (t) , ..., x
(4)
d (t) ≤ ζ0, where ζ0 is

a known bounding constant). It will also be assumed that the disturbance d (t) is

sufficiently smooth in the sense that

‖d(t)‖ ≤ ζ1,
∥∥∥ḋ(t)

∥∥∥ ≤ ζ2,
∥∥∥d̈(t)

∥∥∥ ≤ ζ3, (2.92)

where ζ1, ζ2, ζ3 ∈ R are known, positive bounding constants. Equation (2.91) can be

rewritten as

ṙ = Nd + Ñ + u̇− e2, (2.93)

where Nd(xd, t) ∈ R and Ñ(x, xd, e1, e2, ė1, ė2, t) ∈ R are unknown, unmeasurable

auxiliary functions defined as

Nd , ḋ (t)− ...
x d, (2.94)

Ñ , α1ë1 + α2ė2 + e2. (2.95)

The motivation for defining the auxiliary terms in (2.94) and (2.95) is based on the fact

that the quantities Ñ(x, xd, e1, e2, ė1, ė2) and Nd(xd, ẋd,
...
x d, t) and the time derivative

of Nd(xd, ẋd,
...
x d, t) can be upper bounded as

Ñ ≤ ρ (‖z‖) ‖z‖ , Nd ≤ ζNd
, Ṅd ≤ ζṄd

, (2.96)

where ζNd
, ζṄd

∈ R are known positive bounding constants, and z (t) ∈ R3x1 is
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defined as

z ,

[
e1 e2 r

]T
. (2.97)

In (2.96), ρ (·) ∈ R is a positive, globally invertible, nondecreasing function. Based

on the expression in (2.93) and the subsequent stability analysis, the control input is

designed via

u̇ = −βsgn(e2)− (k1 + 1)r, (2.98)

where β, k1 ∈ R are positive constant control gains. Note that the sliding surface in

this design is taken to be e2 (t) , ė1 (t) + α1e1 (t). Note also that if e2 (t) → 0, then

e1 (t)→ 0, and x (t)→ xd (t).

Remark 2 Integration by parts can be used in (2.98) to show that the control input

u (t) requires measurements of x (t) and ẋ (t) only; no acceleration measurements are

necessary.

After substituting (2.98) into (2.93), the closed-loop error system is obtained as

ṙ(t) = Nd + Ñ − βsgn(e2)− (k1 + 1)r − e2. (2.99)

Although the system under consideration (i.e., (2.88) and (2.89)) is only second order,

it is trivial to extend this control methodology to n-order systems. For higher-order

system, additional filtered tracking errors must be defined; the overall control struc-

ture would remain the same. By integrating both sides of (2.98), it follows that

the control input u (t) contains its integral, thereby resulting in a continuous signal

This eliminates the requirement for infinite bandwidth, which is inherent in standard

SMC. In the Lyapunov analysis, it can be proven, using Theorem 8.4 of Khalil (Khalil,
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2002), that the closed-loop system is asymptotically stable; and it can be shown that

all system signals remain bounded throughout closed-loop controller operation.

Theorem 1 The controller given in (2.98) ensures semiglobal asymptotic trajectory

tracking in the sense that

‖e1(t)‖ → 0 as t→∞, (2.100)

provided the control gain k1 introduced in (2.98) is selected sufficiently large, and β

is selected according to the sufficient condition

β > ζNd
+
ζṄd

α2

, (2.101)

where Nd(t) and Ṅd(t) are introduced in (2.94), and α2 is introduced in (2.90). The

control gains α1, α2, β, and k are selected to yield desirable performance characteris-

tics in terms of overshoot, settling time, tracking accuracy, etc.

To facilitate the following analysis, an auxiliary function P (t) ∈ R is defined as

the generalized solution to the differential equation

Ṗ (t) = −L (t) , (2.102)

P (0) = β |e2 (0)| −NT
d (0) e2 (0) , (2.103)

where the auxiliary function L(t) ∈ R is defined as

L(t) = r (Nd − βsgn (e2)) . (2.104)
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Lemma 1 If β satisfies the gain condition in (2.101), then the integral

∫ t

0

L(τ)dτ ≤ β |e2 (0)| −NT
d (0) e2 (0) . (2.105)

Hence, (2.105) can be used to prove that P (t) ≥ 0.

Similar proof of Lemma 1 is provided in Appendix (A).

Proof. (See Theorem 1) Consider the nonnegative function

V (w, t) ,
1

2
e2

1 +
1

2
e2

2 +
1

2
r2 + P, (2.106)

where

w(t) ,

[
zT

√
P (t)

]T
. (2.107)

The function V (w, t) satisfies the inequality

U1 (w) ≤ V (w, t) ≤ U2 (w) , (2.108)

where the positive definite functions U1(w), U2(w) ∈ R are defined as

U1 ,
1

2
‖w‖2 , U2 , ‖w‖2 . (2.109)

After taking the time derivative of (2.106) along trajectories of (2.99), canceling

common terms and utilizing the bounding arguments in (2.96), the upper bound on
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V̇ (t) can be expressed as

V̇ (w, t) ≤ −
(
λ0 −

ρ2 (‖z‖)
4k1

)
‖z‖2 , (2.110)

where k1 > 0, and λ0 , min
{
α1 − 1

2
, α2 − 1

2
, 1
}
.

The following expression can be obtained from (2.110):

V̇ (w, t) ≤ −U(w), (2.111)

where U(w) = c ‖z‖2, for some positive constant c ∈ R, is a continuous, positive

semi-definite function that is defined on the following domain:

D ,
{
w ∈ R2m+1 | ||w|| < ρ−1

(
2
√
λ0k1

)}
. (2.112)

It follows directly from Lyapunov analysis that r (t) , e2 (t) , e1 (t) ∈ L∞ in D.

This implies that ė2 (t) , ė1 (t) ∈ L∞ in D from the definitions given in (2.90). Given

that r (t) , e2 (t) , ė1 (t) ∈ L∞ in D, it follows that ë1 (t) ∈ L∞ from (2.90). Since

e1 (t), ė1 (t), ë1 (t) ∈ L∞ in D, (2.90) can be used along with the assumption that the

desired trajectories are bounded to show that x1 (t), ẋ1 (t), ẍ1 (t) ∈ L∞ in D. Since

ẍ1 (t) ∈ L∞ in D, ẋ2 (t) ∈ L∞ in D, and (2.89) can be used along with (2.92) to

show that u (t) ∈ L∞ in D. Since r (t) ∈ L∞ in D, (2.98) can be used to show that

u̇ (t) ∈ L∞ in D. Given that r (t) , e2 (t) , e1 (t) ∈ L∞, (2.99) can be used along with

(2.96) and (2.97) to prove that ṙ (t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in D,

e1 (t) , e2 (t) , and r (t) are uniformly continuous in D. Thus, the definitions for U(w)

and w(t) can be used to prove that U(w) is uniformly continuous in D.
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Let S ⊂ D denote a set defined as follows:

S ,

{
w(t) ∈ D|U2 (w(t)) <

1

2
ρ−1

(
2
√
λ0k1

)2
}
. (2.113)

Theorem 8.4 of Khalil (Khalil, 2002) can now be invoked to state that

c ‖z‖2 → 0 as t→∞ ∀ w(0) ∈ S. (2.114)

Based on the definition of z (t), (2.114) can be used to show that

‖e1(t)‖ → 0 as t→∞ ∀ w(0) ∈ S. (2.115)

For the case where Ñ ≤ ρ (‖z‖) ‖z‖, the result is semi-global asymptotic stability

(SGAS), meaning that asymptotic stability is achieved provided the initial conditions

are within a bounded region which can be made arbitrarily large by increasing the

control gain k1. For the case where Ñ ≤ ρ0 ‖z‖, where ρ0 is a constant, the result is

global asymptotic stability (GAS). The drawback of this controller is the additional

derivative required of the systems dynamics to prove convergence in the Lyapunov

stability analysis. However, the benefit gained by using this controller structure is

the elimination of the requirement for infinite bandwidth.

The example presented has unity input gain, whereas the quadrotor, introduced

in the later chapter, has an uncertain input matrix. The advantage of robust control

over adaptive control is the simple single-loop controller structure. An advantage of

RISE over standard SMC is the continuous controller structure, which eliminates the

need for infinite bandwidth.
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2.2.6 Method of Equivalent Control

Another method to determine a system’s trajectory on a sliding surface is through the

method of equivalent control. The discontinuous right-hand side produced by SMC

in (2.71) - (2.78) does not satisfy classical theorems on existence and uniqueness of

solutions (V. Utkin, 1977). Various non-idealities such as time-delay, hysteresis, and

other types should be taken into consideration to treat SMC carefully. These non-

idealities determine how the real sliding mode behaves when it is in the vicinity of

the discontinuity surface σ(x) = 0. If the non-idealities go to zero, the motion of the

system goes to the ideal sliding mode.

The method of equivalent control is one possible technique used to determine

equations of ideal sliding modes (V. Utkin, 1977). The technique involves differenti-

ating the surface σ(x) along the system trajectory and setting it equal to zero to solve

for the control vector. The resulting control vector is called the equivalent control.

Substituting the equivalent control into the original system results in equations of

ideal sliding mode. The equivalent control method, from a geometric point of view,

is the means to find a continuous control that directs the velocity vector along the

intersection of the discontinuity surfaces.

Consider the system

ẋ = f(t, x) +B(t, x)u (2.116)

u = kσ (x) , (2.117)

where x (t) ∈ Rn×1, f (t, x) ∈ Rn×1, B ∈ Rn×m, u (t) ∈ Rm, σ (x) ∈ Rm are known

and continuous. To solve for the equivalent control ueq (t), it is desirable to obtain
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an equation for sliding mode in the manifold σ (x) = 0. The equivalent control is

obtained by calculating the solution of σ̇ (x) = 0 with respect to u(t) along trajectories

of (2.116) as

σ̇ =
∂σ

∂x

∂x

∂t
=
∂σ

∂x
(f(t, x) +B(t, x)ueq) = 0 (2.118)

ueq = −
[
∂σ

∂x
B(t, x)

]−1
∂σ

∂x
f(t, x). (2.119)

Substituting (2.119) into (2.116), the motion with equivalent control can be written

as

ẋ =

[
I −B(t, x)

(
∂σ

∂x
B(t, x)

)−1
∂σ

∂x

]
f(t, x). (2.120)

Equation (2.120) is valid with the assumption that [∂σ/∂x]B(t, x) is nonsingular for

all t and x. When [∂σ/∂x]B(t, x) is singular, the equivalent control is not unique, or

it does not exist. For the first situation where the equivalent control is not unique,

a variety of sliding modes may occur depending on the non-idealities or limiting

processes of the plant. For the second situation when the equivalent control does not

exist, sliding modes cannot appear, which implies that the state leaves the sliding

surface. Also, for systems that are nonlinear with respect to the control, if a unique

equivalent control does exist, the differential equations for sliding mode, in general,

are not unique, depending on the limiting processes of the plant. Note that the

motion on the sliding surface is governed by a reduced-order set of equations because

of the set σ(x) = 0. One of the applications of equivalent control is the super-twisting

control given in (Levant et al., 2011).

The next chapter uses the mathematical background developed in this chapter to
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solve for underactuated parallel systems with single input.



Chapter 3

Dual Parallel Systems with Single

Input

3.1 Introduction

There has been a great deal of research devoted to control design for underactuated

systems in recent years. This class of systems has a variety of real world applications,

including the inverted pendulum, cars, spacecraft, unmanned underwater vehicle,

overhead cranes, and others. Control algorithm design for underactuated systems is

particularly challenging due to the fact that there are fewer control actuators than

there are degrees of freedom. While there have been several approaches to the under-

actuated control problem, there remains a need for novel control techniques that can

achieve desirable performance for general underactuated dynamic systems consist of

a single control input and multiple outputs.

There are many works that contribute to the control problem of underactuated

54
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systems. A general approach was proposed in (Reyhanoglu, Schaft, McClamroch,

& Kolmanovsky, 1999), where a theoretical control framework was developed for a

general class of underactuated mechanical systems with nonintegrable dynamics. In

(Cornejo & Alvarez-Icaza, 2007), a passivity-based control was designed to compen-

sate for systems with nonlinear friction effects. In (Mnif & Ghommem, 2002), a

special class of mechanical systems in nontriangular form was investigated, where

general construction of the nonlinear control law was developed by defining a change

of coordinates. Nordkvist et al. (Nordkvist & Bullo, 2008) proposed a novel control

algorithm for a class of underactuated systems that are invariant on a Lie group. The

design in (Nordkvist & Bullo, 2008) is based on iterative small-amplitude control

forces. In (Olfati-Saber, 2000), a change of control is utilized to partially linearize

an underactuated system to develop partially linear cascade normal forms, which are

convenient in control design for underactuated systems. In (Shiriaev & Kolesnichenko,

2000), Shiriaev et al. proposed stabilizing a class of systems with respect to part of the

state variables, where it is assumed that part of the state variable is directly affected

by the control. In (Bullo & Lynch, 2001), Bullo et al. worked on underactuated

systems where the motion of kinematically controllable underactuated mechanical

systems for which it is possible to decouple trajectories planning between zero veloc-

ity states. This form the basis for efficient collision-free trajectory planning for a class

of underactuated mechanical systems. In (Arai, Tanie, & Shiroma, 1998), Arai et al.

considers stabilization of a 3-DOF planar underactuated manipulator. The technique

is based on composite of translational trajectory segment and rotational trajectory

segment. In (Pettersen & Egeland, 1996), Pettersen et al. developed a continuous

periodic time-varying feedback law for underactuated surface vessel.
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Other control method such as adaptive control has proven to be useful in con-

trolling underactuated systems. In (An-Chyau & Yung-Feng, 2010), An-Chyau et al.

utilized the method developed in (Olfati-Saber, 2000) to transform an underactuated

system dynamics into a special cascade form, then a control algorithm, composed

of an adaptive multiple-surface sliding mode that is based on function approxima-

tion techniques, was developed. In (Kung, Chen, & Huang, 2009), an underactuated

system is divided into two subsystems, then sliding surfaces for each of the subsys-

tems are defined. Fuzzy models are then employed to estimate an unknown function,

and an adaptive fuzzy sliding-mode controller was developed. In (Han, Wei, & Li,

2008), Han et al. used adaptive neural network control for switched underactuated

systems. It was shown that sudden changes in control gains at switching times could

be overcome using a smooth approximation of the discontinuous adaptive controller.

In (Kim, Kim, & Jun, 2012), Kim et al. utilized adaptive sliding mode control that

uses slack variables to overcome the underactuated properties of the systems. In

(Orlov, Aguilar, & Acho, 2005), Orlov et al. develops a quasi-homogeneous control

algorithm that used switching controller to drive the pendubot to the origin. The

idea is based on generating the pendubot zero dynamics by a reference model made

from a modified Van Der Pol oscillator.

In addition to adaptive control techniques, backstepping and energy shaping ap-

proaches have been proposed to address the underactuated control problem (Rosas-

Flores, Alvarez-Gallegos, & Castro-Linares, 2000; Ghommam, Bouterra, Mnif, &

Poisson, 2011; Choukchou-Braham, Cherki, & Djemai, 2011; Albu-Schaffer, Ott, &

Hirzinger, 2005; Xin, 2009; Hu, Gans, & Dixon, 2007). In (Rosas-Flores et al., 2000),

backstepping was used to develop a control algorithm for a class of systems after
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a suitable change of coordinates was constructed. Other backstepping-based con-

trol approaches for underactuated systems are presented in (Ghommam et al., 2011;

Choukchou-Braham et al., 2011). The energy shaping method was used to design

a control law for a class of underactuated systems in (Albu-Schaffer et al., 2005).

The idea was to shape a potential energy function via the introduction of a new

control variable that is a function of the collocated state variables. In (Jiang, 2002),

Jiang et al. proposed two control algorithms, passivity-based feedback and cascade-

backstepping, through Lyapunov’s direct method for an underactuated ships with

only two propellers. The passivity-based feedback has better transient performance

than the cascade-backstepping method. In (Xin & Kaneda, 2002), Xin et al. designed

a swing up control for the acrobot based on energy approach. The idea is to force the

system to converge to the potential energy of its top upright position, which cause

the system to converge to a homoclinic orbit. Other energy shaping-based control

methods for underactuated systems can be found in (Xin, 2009; Hu et al., 2007).

Sliding mode is a popular control strategy because of its robustness to bounded

disturbances and uncertainty. Despite its robustness, SMC design for underactuated

systems is still challenging because underactuated systems are usually made of several

subsystems, and among these subsystems, the parameters have no obvious differential

relationship among them, so common sliding mode surfaces might not be appropriate.

In (Hao, Yi, & Zhao, 2008), Hao et al. however, was able to use sliding mode control

to stabilize a class of underactuated system using a combination of different sliding

surfaces. Similarly, in (W. Wang, Yi, Zhao, & Liu, 2004; Yi, Wang, Zhao, & Liu,

2005; S. H. Lee, Park, & Choi, 2009; Qian, Yi, & Zhao, 2007; Qian & Yi, 2010),

sliding mode control was implemented by dividing the single-input multiple-output
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(SIMO) underactuated system into subsystems so that hierarchical sliding surfaces

could be manipulated. In (Yi et al., 2005), Yi et al. presented a sliding mode con-

troller for large-scale underactuated systems. The large-scale system was divided into

subsystems and the sliding surfaces was designed to include all of the subsystems. In

(S. H. Lee et al., 2009), a hierarchical sliding mode approach was developed for a

class of underactuated systems where the structure is divided into two layers: termi-

nal sliding surfaces for each subsystem and a whole sliding surface that is a linear

combination of the terminal sliding surfaces. In (Xu, Guo, & Lee, 2010), integral

sliding mode control was utilized to stabilize a class of underactuated systems with

uncertainty. Sliding mode control was also used in (Xu, Guo, & Lee, 2012), where the

focus on the norm model was used to describe a class of underactuated systems. Also,

a combination of fuzzy logic and sliding mode control was used for output tracking

of uncertain underactuated systems (Chiang, 2012).

The contribution of this chapter is the design of a novel control method for a small

class of underactuated system: parallel systems with SIMO (single-input multiple-

output). The general control algorithm proposed is based on two steps: the first step

is to drive subsystem 2 to a region of stability near the origin by tracking a bounded

time-varying desired function; the second step is to indirectly drive subsystem 1 to the

origin via the desired function. To facilitate the analysis, properties of a slowly time-

varying desired function is exploited. The proposed controller is computationally

inexpensive (i.e., a single feedback loop), requiring no online adaptive updates, or

function approximators. This computationally minimal design is motivated by the

desire to improve controller performance in implementation by reducing the required

computation time.
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3.2 Problem Formulation

Consider a class of underactuated systems whose dynamics can be expressed as

ẋ1 = f1 (x1,x2) + b1 (x1,x2)u, (3.1)

ẋ2 = f2 (x2) + b2 (x2)u, (3.2)

where x1 ∈ Rn1 and x2 ∈ Rn2 are the states, f1(x1, x2) ∈ Rn1 and f2(x2) ∈ Rn2 are

the drift terms, b1 (x2) ∈ Rn1 and b2 (x2) ∈ Rn2 are the input vectors, u (t) ∈ R is the

scalar control input, and n1, n2 ∈ Z+. The system under consideration is illustrated in

Fig. 3.1. The state x1 (t) does not directly influence the dynamics in (3.2), however,

the state x2 (t) is inherent in both subsystems. This kind of system is difficult to

control because there is only one control input, which directly affects both channels.

The control goal is to drive the system in (3.1) and (3.2) to the origin. To overcome

the challenges involved in controlling the underactuated parallel system in (3.1) and

(3.2), the control algorithm is divided into two stages 1) Drive the subsystem in (3.2)

to an area of stability near the origin by tracking a desired function x∗2 = x∗2 (x1), 2)

stabilize Subsystem (3.1) through the bounded slowly state-varying desired function

x∗2 (x1) while keeping (3.2) in an area of stability near the origin.

Assumption 1 The dynamics are assumed to satisfy

f1 (0, 0) = 0 f2 (0) = 0. (3.3)

Consider Fig. 3.2, where B3 ∈ B2 ∈ B1, with x2 (t) , ẋ2 (t) ∈ B1. The objective

is to drive x2 (t) to x∗2 (x1) in Subsystem (3.2), thereby driving x2 (t) from the set



3.3. CONTROL DESIGN 60

B1 to B2, where it will stay in B2. Then, the bounded slowly time-varying desired

function x∗2 (x1) is designed to drive Subsystem (3.1) (x1 (t)) to zero. Once x1 (t) = 0,

x2 (t) approaches B3, and both states will converge to zero. Throughout this chapter,

Subsystem (3.1) is referred to as Subsystem 1 and Subsystem (3.2) is referred to as

Subsystem 2.

u

subsystem 1

subsystem 2

x1

x2

control

Figure 3.1: Block diagram of the considered system

3.3 Control Design

To stabilize Subsystem 2 to an area near the origin, the control u (t) is designed as

u = g(x2,x
∗
2), (3.4)

where x∗2 = x∗2 (x1) is a bounded slowly time-varying desired tracking state. The

function g (x2, x
∗
2) can be obtained from a variety of nonlinear control methods, such

as sliding mode control, adaptive control, backstepping, and others.

Assumption 2 There exists a control g(x2,x
∗
2) in (3.4) that can track track x∗2 (x1)

in the sense that x2 (t) → x∗2 (x1), and there exists a control algorithm u (x2, x
∗
2) =
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g (x2, 0) that can stabilize Subsystem 2 to the origin.

For the first part of the control design, instead of driving Subsystem 2 to the

origin, the goal is for x2 (t) to track the desired state x∗2 (x1) such that

|x2 − x∗2| → 0. (3.5)

Based on (3.5), Subsystem 2 converges to x∗2 (x1) instead of directly going to origin.

Once the tracking objective in (3.5) has been achieved, x2 (t) = x∗2 (t), and Subsystem

2 can be expressed as

ẋ∗2 = f2(x∗2) + b2(x∗2)ueq(x
∗
2), (3.6)

where ueq (x∗2) is the equivalent control. To solve for ueq (x∗2), Equation (3.6) is set

equal to zero resulting in

ueq = ψ (x∗2) = −f2 (x∗2)

b2 (x∗2)
. (3.7)

The motivation for setting Equation (3.6) to zero to solve for ueq (x∗2) is based on

equivalent control analysis in sliding mode control, which can be found in (V. I. Utkin,

1992). For the method proposed in this chapter, the equivalent control ueq (x∗2) governs

the behavior of Subsystem 1 when Subsystem 2 is at the origin, thus allowing the

design of the fictitious control x∗2 (x1) to drive Subsystem 1 to the origin by forcing

x2 (t) to track the function x∗2 (x1).

Remark 3 If g(x2,x
∗
2) is continuous, then ψ (x∗2) = g(x∗2,x

∗
2); if g(x2,x

∗
2) is discontin-

uous, then ψ (x∗2) = {g(x2,x
∗
2)}eq.
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After Substituting ueq (x∗2) into Subsystem 1, Equation (3.1) becomes

ẋ1 = f1(x1, x
∗
2) + b1 (x1,x

∗
2)ψ (x∗2) . (3.8)

The control u (x∗2) in Subsystem 1 is replaced by the equivalent control ueq (x∗2), be-

cause x2 (t) is tracking x∗2 (x1) once the tracking objective in (3.5) has been achieved.

Assumption 3 There exists a function x∗2 (x1) that can stabilize Subsystem 1 to the

origin.

The function x∗2 (x1) can be obtained by selecting appropriate linear or nonlinear

control methods based on the dynamics in (3.8).

Based on preliminary analysis, the desired state x∗2 (x1) should meet the properties

below.

Properties of x∗2 (x1)

1. |x∗2 (x1)| ≤ c1, where c1 > 0 and c1 is small,

2. x∗2 (x1) is slowly changing such that x2 (t) can track it, i.e. x2 (t) = x∗2 (x1),

3. x∗2(0) = 0,

4. When the state x1 (t) is far away from the origin, |x∗2 (x1)| behaves like a con-

stant.

There are several functions that satisfy the properties in (1)-(4). An example of a

function that satisfies the properties above is the hyperbolic tangent function tanh (·).

When the argument (·) is far away from the origin, tanh (·) behaves like a constant,
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and when the argument (·) is close to the origin, tanh (·) behaves like a linear system.

When x∗2 (x1) is far away from the origin, x2 (t) tracks x∗2 (x1) like a constant that can

drive the dynamics in Subsystem 1 toward the vicinity of the origin; when Subsystem

1 is close to the origin, the dynamics can be linearized to see that x∗2 (x1) stabilizes

Subsystems 1 and 2 to the origin at the same time.

This method is not backstepping. Traditional backstepping cannot be used to

solve the parallel system presented. In backstepping, the design parameters are used

to stabilize all the variables by branching out until the actual control is reached, but in

this method, Subsystem 1 is stabilized to an area of stability near the origin, then the

desired function x∗2 (x1) indirectly drives Subsystem 2 to the origin. Note here that the

fictitious control is the state x∗2 (x1), not the equivalent control ueq (x2). As Subsystem

2 decreases and goes to some vicinity around the origin, the designed x∗2 (x1) forces

Subsystem 1 to go to the origin at the same time. Eventually, as Subsystem 1 goes

to the origin, so does Subsystem 2. Additionally, the backstepping method has the

control input in one of the subsystems and indirectly affects the other subsystems via

the states. In the parallel system, the scalar control input is in all of the subsystems

and directly affects all the states at once, making it a highly challenging problem to

overcome.

3.3.1 Stability Proof

To prove the stability of the general method described above, a positive definite

function is defined as

V1 = V1 (x1, x
∗
2) . (3.9)
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Taking the time derivative of (3.9), V̇1 (x1, x
∗
2) can be expressed as

V̇1 =
∂V1

∂x1

ẋ1 +
∂V1

∂x∗2
ẋ∗2, (3.10)

where ẋ1 (x1, x
∗
2) is obtained using (3.8). From Assumption (3), the fictitious control

function x∗2 (x1) stabilizes (3.8) to the origin; thus, for a slowly time-varying function

x∗2 (x1), Equation (3.10) satisfies the inequality

V̇1 < −W1 (x) , (3.11)

where W (x) is a positive definite function, and x , [x1, x2]T .

Consider a second candidate Lyapunov function

V2 = V2 (x2) . (3.12)

The time derivative of (3.12) can be expressed as

V̇2 =
∂V2

∂x2

ẋ2, (3.13)

where ẋ2 (x2) is obtained from (3.2). From Assumption 2, there exists a control

u (x2, x
∗
2) = g(x2,0) that stabilizes Subsystem 2, and Equation (3.13) can be upper

bounded as

V2 ≤ −W2 (x) , (3.14)

where W2 (x) is a positive definite function.
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After adding (3.9) and (3.12), a composite Lyapunov function is obtained as

V3 = V1 + V2. (3.15)

The control input u (x2, x
∗
2) can be designed to track x∗2 (x1) to yield Inequality (3.11).

Since the dynamics in (3.1)-(3.2) contain a scalar control in all the subsystems, one

way to track x∗2 (x1) is through the state x2 (t). Once x2 (t)→ x∗2 (x1) after some time

interval [0, t1], the inequality in (3.11) is satisfied because of the equivalent control

ψ (x∗2) in (3.8). This implies that u (x2, x
∗
2) = g(x2,0) after another time interval

[t1, t2], so that Inequality (3.14) is satisfied. Therefore, the composite function V3

satisfies the inequality

V̇3 < −W3 (x) , (3.16)

where W3 (x) is a positive definite function. Based on the results in (3.9)-(3.16) and

the fact that x∗2 (x1) → 0, the assumption that x∗2 (0) = 0 can be used to show that

the system in (3.1) converges to the origin; and based on Assumption 2, Subsystem

(3.2) also converges to the origin.

A more rigorous stability proof considering a mechanical system in the form of

(3.1)-(3.2) is shown in the Simulation Results section.

The nature of this type of design is different from the integrator backstepping,

where a scalar control appears in only one of the subsystems, which allows success-

ful application of the recursive techniques developed by Petar V. Kokotovic. The

method presented in this chapter has scalar control in all the subsystems, which

makes backstepping algorithm not possible to apply. Instead of the standard back-

stepping technique, which uses the integral of the control input through successive



3.4. SIMULATION RESULTS 66

schemes, the proposed approach uses the state x2 (t) to track x∗2 (x1) to stabilize the

subsystems through equivalent control. Moreover, backstepping and other schemes

start from Subsystem 1 and create a fictitious controller, then move on to Subsystem

2 to track the fictitious control in subsystem 1 if there is a scalar control only in

Subsystem 2; the algorithm proposed in this chapter starts with Subsystem 2, where

the control u (x2, x
∗
2) stabilizes it around some region around the origin, then designed

a fictitious controller that manipulates x1 (t) by manipulating the behavior of x2 (t).

These are two completely different approaches.

x2

ẋ2

(ẋ2(∞), x2(∞))

(ẋ2(0), x2(0))

B1

B2

B3

Figure 3.2: Sketch of the Lyapunov function regions

3.4 Simulation Results

The proposed control algorithm can be implemented using a variety of nonlinear

control methods, but in this example, the authors use sliding mode control to stabilize

the inverted pendulum system. Consider the inverted pendulum mechanical system
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that has the form in (3.1) and (3.2) with the definitions (Wie, 2008)

b1(x1, x2) =

 0

b11(x2)

 b2(x1, x2) =

 0

b22(x2)

 ,

f1(x1, x2) =

 ż

f11(x2)

 f2(x1, x2) =

 θ̇

f22(x2)

 , (3.17)

where x1 =

[
z ż

]T
∈ R2 are the horizontal position and velocity, and x2 =[

θ θ̇

]T
∈ R2 are the angular position and angular velocity. The states are illus-

trated in Fig. 3.3. The drift and input vector functions f11 (x1, x2), b11 (x2), f22 (x2),

and b22 (x2) are defined as

f11(θ, θ̇) =
mlθ̇

2
sin θ −mg sin θ cos θ

(M +m)−m cos2 θ
, (3.18)

b11 (θ) =
1

(M +m)−m cos2 θ
, (3.19)

f22(θ, θ̇) =
mlθ̇

2
sin θ cos θ − (M +m)g sin θ

l (m cos2 θ − (M +m))
, (3.20)

b22(θ) =
cos θ

l (m cos2 θ − (M +m))
, (3.21)

where M, m, l, g ∈ R denote the cart mass, ball mass, pendulum length, and gravity,

respectively.

Assumption 4 The states (x, ẋ, θ, θ̇) are measurable.
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The equivalent control ueq in (3.6) is obtained by setting ẋ2 to zero, yielding

ueq = −f22 (x∗2)

b22 (x∗2)
. (3.22)

Substituting ueq into (3.1) gives

z̈∗ = f11(x∗2)− b11 (x∗2)
f22 (x∗2)

b22 (x∗2)
. (3.23)

From (3.23), x∗2 (x1) ∈ R2 can be designed to stabilize the subsystem 1. After utilizing

(3.18) - (3.21) and working out the algebra, equation (3.23) becomes

z̈∗ = g tan (θ) = g tan (θ∗1 (x1)) . (3.24)

Now, the desired function x∗2 (x1) can be designed as

x∗2 =

 θ∗1 (x1)

0

 , (3.25)

where |θ∗1 (x1)| ≤ c1 and c1 > 0. In the equation (3.25), the bottom element of x∗2 (x1)

is zero because θ∗1 (x1) is slowly time-varying and it is a desired state. Based on (3.24),

the desired states and sliding surfaces are defined as

θ∗1 (z, ż) = −k tanh (σ) , (3.26)

σ = ż + k2 tanh z, (3.27)

s = θ̇ + θ − θ∗1 (z, ż) , (3.28)
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where k, k2 > 0 are positive small constants, and s (θ, θ∗1) is the sliding surface. The

desired state θ∗1 (x1) is chosen as a hyperbolic tangent because Equation (3.24) has

the tan (·) function. Based on the properties of the tan (·) function, it the tanh (·)

function is chosen to ensure the upper limit on the magnitude of θ∗1 (z, ż). Since

θ∗1 (z, ż) is limited in magnitude, and based on the subsequent analysis, θ∗1 (z, ż) is

designed to be small so that (3.24) behaves like a second order system, which can

be analyzed by finding appropriate gains k, k2 that can stabilize (3.24) to the origin.

The sliding surface s (θ, θ∗1) is chosen so that the θ (t) can track θ∗1 (z, ż). After taking

the time derivative of the sliding surface s (θ, θ∗1) in (3.28) and based on Lyapunov

arguments, the control law is proposed as

u1 = −f22 + θ̇ + h (x) sech2 σ +M1sgn (s)

b22 + kb11 sech2 σ
, (3.29)

h (x) = kf11 + kk2ż sech2 z,

γ = b22 + kb11 sech2 σ, (3.30)

where M1 > 0 is a user-defined positive constant or function, and sgn (·) is a sign (·)

function. The control in (3.29) is obtained from the Lyapunov function below.

Remark 4 Singularity Issues Based on (3.29), singularity occurs when the de-

nominator γ is zero. To ensure that the control law u (θ, θ∗1) is singularity-free, the

control signal is designed as

u =

 δ

u1

if |γ| < |δ|

otherwise
(3.31)

where δ ∈ R is a small parameter.
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Proof. The proof is divided into two parts. The first part of the proof is to show

convergence of the surface s(x2, x
∗
2) in 3.28) is attractive to ensure that x2 can track

x∗2 (x1). The second part is to show the design of the fiticious control x∗2 (x1) in (3.26)

can stabilize subsystem 1.

Consider the surface s (x2, x
∗
2) to be

s = θ̇ + θ − θ∗1 (x1) . (3.32)

A Lyapunov candidate function is selected as

V1 =
1

2
s2. (3.33)

Taking the time derivative of (3.33) and substituting (3.29) yields

V̇1a = sṡ

= s
(
θ̈ + θ̇ − θ̇∗1 (x1)

)
= s

(
f22 + b22u+ θ̇ − θ̇∗1 (x1)

)
= −M1 |s| . (3.34)

The expressions in (3.33) and (3.34) can be used to show that s (x2, x
∗
2) → 0 in

finite time. Thus, (3.32) can be used to show that θ̇ + θ − θ∗1 (x1)→ 0 in finite time.

It then follows that θ̇ + θ → 0 provided θ∗1 (x1) → 0. In the subsequent analysis, it

will be shown that z (t) → 0 as t → ∞, from which it follows directly from (3.26)

that θ∗1 (x1)→ 0.
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It follows from equation (3.24) and properties in 1)-4 from the previous section,

the function |θ∗1 (x1)| ≤ c1, where c1 is small, then base on the property of the trigono-

metric tangent function tan (·) ≈ (·) for small values (·) near the origin, thus the

translational acceleration in (3.24) can be approximated as

z̈∗ = g tan (θ) = g tan (θ∗1 (x1)) ,

= g tan (−k tanh (ż + k2 tanh z)) ,

≈ −gk tanh (ż + k2 tanh z) . (3.35)

Consider another positive definite function

V2a = ln cosh (ż + k2 tanh z) (3.36)

Take the time derivative of (3.36) and substituting (3.35) yields

V̇2a =
(
z̈ + k2ż sech2 z

)
tanh (ż + k2 tanh z) ,

=
(
−gk tanh (ż + k2 tanh z) + k2ż sech2 z

)
·

tanh (ż + k2 tanh z) ,

= −gk tanh2 (ż + k2 tanh z) + k2ż sech2 z ·

tanh (ż + k2 tanh z) . (3.37)

Based on (3.35), when ż (t) is large

z̈∗ = −gksign (ż) (3.38)
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thus, ż (t) decreases and goes toward some constant until it no longer dominates

k2 tanh z, i.e ż (t)→ |ż (t)| ≤ |k2 tanh z| . When ż (t) decreases toward some position

z (t)→ c2; if c2 is large, and based on the property of the function sech (·), when (·)

is large, sech (·) ≈ 0, then from (3.37)

V̇2a < 0. (3.39)

Based on (3.36)-(3.37) and (3.39), the translational velocity can written as

ż = −k2 tanh z, (3.40)

therefore, ż (t) and z (t) will head toward some small vicinity around the origin (0, 0) .

Based on (3.38), (3.39), and (3.40), equation (3.35) can be approximated as

z̈

gk
= −ż − k2z, (3.41)

0 =
z̈

gk
+ ż + k2z, (3.42)

Based on the second order differential equation in (3.42), small value of k and k2 can

be chosen in such a way that

ri =
−1±

√
1− 4 k2

gk

2
gk

=
−gk ± gk

√
1− 4 k2

gk

2
< 0, (3.43)

where i = 1, 2; then the solution to (3.42) can be solved as

z (t) = c3e
r1t cos (βt) + c4e

r2t sin (βt) . (3.44)
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where β is a constant. If the real part of the constants r1,r2 satisfy the condition

(3.43), then based equation (3.44) z (t)→ 0 as t→∞. Hence based on the fact that

s → 0 in finite time can be used along with (3.32) to prove that θ → 0 as t → ∞,

which satisfies Assumption 2-3. Base on the analysis in (3.9)-(3.16), subsystems 1

and 2 go to the origin, achieving our objective.

θ

M

u

mg

z

l

Figure 3.3: The Inverted Pendulum

A numerical simulation was created to demonstrate the performance of the pro-

posed controller. The plant model utilized in the simulation is given by (3.17). The

physical parameters of the inverted pendulum were chosen as in (Wie, 2008)

M = 0.5kg m = 0.2kg l = 0.3m g = 9.8m/s2

The control gain parameters were chosen as

k =
5π

180
k2 = 0.21 M1 = 0.1
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The initial conditions used in the simulation are

θ(0) = −3.61 deg θ̇(0) = −11.75 deg / s

z(0) = 0.725 m ż(0) = 0.715 m / s
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ż
(m

/
s)

Figure 3.4: States versus time

3.4.1 Discussion of Results

From Fig. 3.4, for the first 15 seconds, the angle θ oscillates around the origin until it

reaches zero, which in turn causes θ∗1 in Fig. 3.5 to be zero around the same moment.

Since θ∗1 = 0, it causes (z, ż) to converge to the origin around the 30th second. The

control plot in Fig. 3.5 shows the control input, and the control commands remain

within reasonable limits.
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Figure 3.5: Control input u and tracking state θ∗1 versus time

3.5 Conclusion

The contribution of this chapter is the design of a novel control method that is based

on two steps: the first step is to drive one subsystem to a region of stability near the

origin by tracking a bounded time-varying desired function; the second step is to indi-

rectly drive the second subsystem to the origin via the desired function. To facilitate

the analysis, properties of a slowly time-varying desired function is exploited. The

proposed controller is computationally inexpensive (i.e., a single feedback loop), re-

quiring no observers, online adaptive updates, or function approximators. A detailed

mathematical analysis is utilized to prove the theoretical result. An inverted pendu-

lum system is presented as a numerical example to demonstrate the effectiveness of

the proposed control algorithm.

This chapter has presented a novel SMC algorithm to stabilize a class of un-

deractuated parallel systems. Future work involves extending the current result to

n-parallel systems. The technique presented in this chapter deals with a challeng-
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ing underactuated parallel system that does not containing parametric uncertainty.

Systems that contain disturbances and uncertainty in the control input require a

different approach from what is presented. In the next chapter, systems containing

norm-bound disturbances and parametric uncertainty in the input matrix is compen-

sated by using robust integral of the signum error (RISE). Specifically, the system is

derived for a second order dynamics of the quadrotor.



Chapter 4

Robust Attitude Tracking Control

of a Quadrotor Helicopter in the

Presence of Uncertainty

4.1 Introduction

This chapter develops a robust nonlinear control algorithm for quadrotor systems that

contain parametric uncertainty and disturbances. The following work can be found

in (Ton & Mackunis, 2012).

Unmanned four-rotor helicopters (quadrotors) have been an increasingly popu-

lar research topic in recent years due their low cost, maneuverability, and ability to

perform a variety of tasks, including reconnaissance, search and rescue, area map-

ping, and more. Although several quadrotor control methods have been proposed in

literature, design of nonlinear tracking controllers for quadrotors in the presence of

77
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system uncertainty, unmodeled disturbances, and actuator failures remains a chal-

lenging task.

While linear, PID-based control approaches have been successful at controlling

quadrotor systems (e.g., see (Salih et al., 2010) and (Huang et al., 2009)), a variety

of nonlinear control techniques have also been presented in controls literature. A dy-

namic inversion (DI)-based technique was presented in Wang et al. (J. Wang et al.,

2011) to develop a two-loop controller that allows direction position commands. In

the scheme in (J. Wang et al., 2011), the inner loop controls the angular rate, while

the outer loop controls the position. The approach in (J. Wang et al., 2011) enabled

decoupling of the quadrotor dynamics without compromising controller robustness,

and it eliminated singularities in attitude control when the pitch angle is 90 degrees.

A DI-based technique was also used in Das et al. (Das et al., 2009) to create a robust

controller that guarantees stabilization of the internal dynamics. Backstepping-based

quadrotor control designs have been investigated by many researchers (Al-Younes et

al., 2010),(Vries & Subbarao, 2010),(Mian & Daobo, 2008). Younes et al. (Al-Younes

et al., 2010) developed an adaptive integral backstepping-based nonlinear control law,

which was shown to achieve an improved dynamic response over PID and LQR. Ad-

ditionally, Vries et al. (Vries & Subbarao, 2010) developed multi-loop control laws

based on backstepping and tested them via both linear and nonlinear simulations.

In (Mian & Daobo, 2008), feedback linearization was used for the translational por-

tion of the system, and a Lyapunov-based backstepping approach was used for the

rotational portion of the controller. In (Dydek et al., 2010), adaptive control was

utilized to augment an existing linear controller through Lyapunov stability argu-

ments. The controller in (Dydek et al., 2010) used full system feedback, assuming
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availability of position, angular velocity, and angular acceleration measurements. In

(Gillula et al., 2010), a Hamilton-Jacobi differential game formulation was utilized

to construct reachable sets so that complex maneuvers could be discretized into safe

and feasible maneuvers. The technique in (Gillula et al., 2010) was implemented to

enable a quadrotor to perform backflips. Zhu et al. (Zhu & Huo, 2010) divided the

quadrotor model into four subsystems (i.e., position kinematics, attitude kinematics,

position dynamics, and attitude dynamics), then designed a controller based on tra-

jectory linearization control by neglecting the gyroscopic dynamic effects. In (Tayebi

& McGilvray, 2006), a quaternion-based control law was presented, which achieves

attitude stabilization in vertical takeoff and landing of a quadrotor. Although the

aforementioned quadrotor control techniques performed well in their respective tasks,

tracking control for quadrotors in the presence of input-multiplicative parametric un-

certainty and unmodeled, nonlinear, nonvanishing disturbances remains a challenging

task. While sliding mode control (SMC) techniques can be applied to compensate for

norm-bounded disturbances, the inherent requirement of infinite bandwidth presents

limitations in practical implementation.

Various practical factors can hinder the operation of quadrotors and create chal-

lenges in the control design. To achieve reliable and accurate tracking control of

quadrotors over a wide envelope of operating conditions, controllers must be designed

to compensate for model uncertainty, external disturbances, motor failures, and par-

tial actuator failures. Various control techniques have been proposed in literature

to address these difficulties. In (Waslander & Wang, 2009), a wind model and on-

board sensors were utilized to estimate wind disturbances and adjust the controller

to take the appropriate actions. This is especially necessary when the quadrotors
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are flying near obstacles or in formation. A controller based on backstepping and a

sliding mode observer was developed in (Madani & Benallegue, 2007), which yielded

good performance in the presence of wind disturbances. In (Achtelik et al., 2011),

a model reference adaptive control (MRAC) technique was utilized in a nonlinear

control structure based on dynamic inversion. The control design in (Achtelik et al.,

2011) was robust enough to handle power loss in one of the motors, but requires a

fast update rate of 1 kHz. MRAC was also utilized in (Chamseddine et al., 2011)

to compensate for partial loss in one of the rotors, partial damage of a propeller,

and partial loss in total thrust. The scheme in (Chamseddine & Zhang, 2010) uti-

lized an optimal trajectory planning approach along with an adaptive control law.

Lyapunov-based robust control and backstepping were also utilized in (D. Lee et al.,

2009) to compensate for parametric uncertainty in the quadrotor model. In (Dierks &

Jagannathan, 2010), a nonlinear controller for a quadrotor was developed using neu-

tral networks and output feedback. The controller in (Dierks & Jagannathan, 2010)

was designed to learn the dynamics of the quadrotor online, and the effectiveness

of the controller was demonstrated in the presence of unknown, nonlinear dynamics

and disturbances. The control methods presented in the aforementioned research are

capable of compensating for parametric uncertainty and disturbances; however, the

problem of purely robust tracking control for quadrotors with minimal computational

complexity remains a challenging problem.

The contribution in this chapter is the design of a continuous robust controller,

which achieves asymptotic attitude trajectory tracking for a quadrotor in the pres-

ence of input-multiplicative uncertainty and unknown, nonlinear, nonvanishing dis-

turbances. The advantage of the controller is its ability to compensate for unknown
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multiplicative uncertainty in the control input and nonvanishing additive disturbance

without an observer or adaptive updates used in (Waslander & Wang, 2009; Madani &

Benallegue, 2007; Achtelik et al., 2011; Chamseddine et al., 2011; D. Lee et al., 2009;

Dierks & Jagannathan, 2010). Input-multiplicative parametric uncertainty in the

quadrotor dynamics can significantly hinder controller effectiveness. This difficulty

is mitigated through careful algebraic manipulation in the error system development

along with a robust feedback control term. A robust integral sliding mode technique

is also employed to compensate for model uncertainty and disturbances. The con-

troller is designed to be practically implementable, requiring no observers, function

approximators, or online adaptive updates, allowing the control to update quickly and

be computationally efficient. Moreover, the proposed approach demonstrates robust

performance in the presence of significant input-multiplicative parametric uncertainty

using only position and velocity measurements for feedback. Another benefit of the

proposed control design is that it completely rejects norm-bounded disturbances us-

ing a continuous control structure; it does not explicitly contain the discontinuous

signum term that is inherent in standard sliding mode approaches. A Lyapunov-based

stability analysis is utilized to prove the theoretical result, and numerical simulation

results are provided to demonstrate the performance of the proposed controller in the

presence of exogenous disturbances and high levels of input-multiplicative parametric

uncertainty.
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4.2 Quadrotor Model and Properties

The dynamic model for the quadrotor helicopter under consideration in this chapter

can be expressed as (Achtelik et al., 2011), (Chamseddine & Zhang, 2010), (Besnard

et al., 2007):

ẍ = f (x, ẋ) + g (x)u+ d (t) , (4.1)

where f(x, ẋ) ∈ Rn denotes an unknown, nonlinear vector function, g(x) ∈ Rn×n is

an uncertain input matrix, u(t) ∈ Rn is a vector of control inputs, and d(t) ∈ Rn is

an unknown, nonlinear disturbance. In (4.1), x (t) ∈ Rn denotes the configuration

vector, which is defined as

x ,

[
z1 φ θ ψ

]T
, (4.2)

where z1 (t) ∈ R denotes altitude, and φ (t), θ (t), ψ (t) ∈ R denote roll, pitch, and

yaw angles, respectively. Also in (4.1), the functions f(x, ẋ) and g(x) are defined as
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(Zhang & Zhang, 2010)

f(x, ẋ) =



−g
−θ̇ψ̇(Jz−Jy)

Jx

−φ̇ψ̇(Jx−Jz)
Jy

−θ̇φ̇(Jy−Jx)

Jz


, (4.3)

g(x) =



cos θ cosφ
m

0 0 0

0 l
Jx

0 0

0 0 l
Jy

0

0 0 0 l
Jz


, (4.4)

where m, l ∈ R denote the uncertain quadrotor mass and arm length; and Jx, Jy,

Jz ∈ R represent the uncertain moments of inertia.

Remark 5 The explicit definition of f (x, ẋ) in (4.3) is provided for completeness

in defining the dynamic model only. In the subsequent controller development and

stability analysis, f (x, ẋ) is assumed to be an unknown nonlinear function and is not

used in the control design.

Assumption 1: The roll and pitch angles θ (t) and φ (t) are assumed to satisfy

the following inequalities:

−π
2
< θ (t) <

π

2
, −π

2
< φ (t) <

π

2
.

Assumption 2: The disturbance d (t) is sufficiently smooth and bounded in the

sense that

‖d(t)‖ ≤ ζ1,
∥∥∥ḋ(t)

∥∥∥ ≤ ζ2,
∥∥∥d̈(t)

∥∥∥ ≤ ζ3,
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where ζ i are known bounding constants for i = 1, 2, 3. The disturbance needs to be

bounded, otherwise the system in (4.1) becomes uncontrollable.

Assumption 1 is mild in the sense that, due to the geometry of the system, violation

of the assumption results in loss of controllability of the quadrotor (Zhang & Zhang,

2010).

4.3 Control Development

In this section, a continuous robust control technique is presented, which yields

asymptotic tracking for a quadrotor helicopter in the presence of parametric uncer-

tainty in a state-varying input matrix in addition unknown, nonlinear, non-vanishing

disturbances. The subsequent development is based on the assumption that x (t) and

ẋ (t) (i.e., position and velocity only) are measurable. By utilizing minimal system

knowledge and a feedforward estimate of the uncertain input matrix, a continuous

robust integral sliding mode control structure is developed to compensate for the

disturbances and input-multiplicative uncertainty.

4.3.1 Control Objective

The objective is to design a robust tracking controller, which ensures that the system

track a desired time-varying trajectory xd (t) ∈ Rn despite uncertainty and norm-

bounded disturbances present in the dynamic model. To quantify this objective, a

position tracking error, denoted by e1 (t) ∈ Rn, is defined as

e1 , x− xd. (4.5)
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To facilitate the subsequent analysis, filtered tracking errors, denoted by e2 (t) , r (t) ∈

Rn, are also defined as

e2 , ė1 + α1e1, r , ė2 + α2e2, (4.6)

where α1, α2 ∈ R denote positive, constant control gains. The filtered tracking error

r (t) is not measurable since the expression in (4.6) depends on ẍ (t). Note that, based

on the definitions in (4.6), r (t)→ 0⇒ e2 (t)→ 0⇒ e1 (t)→ 0.

Based on the tracking error definition in (4.5), the control objective can be stated

as

‖e1 (t)‖ → 0. (4.7)

4.3.2 Error System Development

The open-loop tracking error dynamics can be developed by taking the time derivative

of r (t) and utilizing the expressions in (4.1), (4.5), and (4.6) to obtain the following

expression:

ṙ(t) = ḟ (x, ẋ)− ḟ (xd, ẋd) + α1ë1 + ġ (x)u+ g (x) u̇

+α2ė2 + ḟ (xd, ẋd) + ḋ (t)− ...
x d. (4.8)

Assumption 3: The desired trajectory xd (t) is bounded and sufficiently smooth

in the sense that

‖xd (t)‖ , ‖ẋd (t)‖ , ‖ẍd (t)‖ ≤ ζ4, (4.9)

where ζ4 ∈ R is a known positive bounding constant.
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4.3.3 Controller Formulation

A challenge in the control design is that the control input is premultiplied by a state-

varying matrix containing parametric uncertainty. To compensate for the uncertainty

premultiplying the control input, the matrix g (x) will be segregated in terms of a

known, nominal matrix go (x) ∈ Rn×n and an uncertain constant matrix ∆g ∈ Rn×n

as follows:

g(x) = go(x)∆g. (4.10)

Assumption 4: The uncertain constant matrix ∆g in (4.10) is assumed to satisfy

the inequalities

1− ε ≤ ||∆g||i∞ ≤ 1 + ε, (4.11)

where ε ∈ (0, 1) is a known positive bounding constant, and ‖·‖i∞ denotes the induced

infinity norm of a matrix. The uncertain constant matrix ∆g is a diagonal matrix

that represents parametric uncertainty in Jx, Jy, Jz, m, and l.

Remark 6 Preliminary results show that Assumption 4 is mild in the sense that

(4.11) is satisfied for a wide range of parametric uncertainty in g (x).

After using the decomposition in (4.10), the open loop error system in (4.8) can

be rewritten as

ṙ = Nd + Ñ + ∆g(ġo (x)u+ go(x)u̇)− e2, (4.12)

where Nd(t, xd) ∈ Rn and Ñ(x, xd, e1, e2, ė1, ė2) ∈ Rn are auxiliary functions defined
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as

Nd , ḋ (t) + ḟ (xd, ẋd)− ...
x d, (4.13)

Ñ , ḟ (x, ẋ)− ḟ (xd, ẋd) + α1ë1 + α2ė2 + e2. (4.14)

In (4.12), the quantities Ñ andNd and the time derivative of Nd can be upper bounded

as follows (Xian, Dawson, Queiroz, & Chen, 2004), (Patre, MacKunis, Makkar, &

Dixon, 2008):

Ñ ≤ ρ (‖z‖) ‖z‖ , Nd ≤ ζNd
, Ṅd ≤ ζṄd

, (4.15)

where ζNd
, ζṄd

∈ R are known positive bounding constants, and z (t) ∈ R3n is defined

as

z ,

[
eT1 eT2 rT

]T
.

In (4.15), ρ (·) ∈ R is a positive, globally invertible, nondecreasing function. Based

on the expression in (4.12) and the subsequent stability analysis, the control input is

designed via

u̇ = −go(x)−1(βsgn(e2) + (k1 + 1)r + ġo (x)u), (4.16)

where β, k1 ∈ Rn×n are positive constant control gain matrices.

Remark 7 The control design in (4.16) does not require knowledge of f(x, ẋ) in

(4.1). Note that equation (4.14) can bounded by mean value theorem.

Remark 8 Integration by parts can be used in (4.16) to show that the control input

u (t) requires measurements of x (t) and ẋ (t) only; no acceleration measurements are

necessary.
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After substituting (4.16) into (4.12), the close-loop error system is obtained as

ṙ(t) = Nd + Ñ + ∆g(−βsgn(e2)− (k1 + 1)r)− e2. (4.17)

4.4 Stability Analysis

Theorem 1 The controller given in (4.16) ensures asymptotic trajectory tracking in

the sense that

‖e1(t)‖ → 0 as t→∞, (4.18)

provided the control gain k1 introduced in (4.16) is selected sufficiently large, and β

is selected according to the sufficient condition

β >
1

1− ε

(
ζNd

+
ζṄd

α2

)
, (4.19)

where Nd(t) and Ṅd(t) are introduced in (4.13), ε is introduced in (4.11), and α2 is

introduced in (4.6). The control gains α1, α2, β, and k are selected to yield desirable

performance characteristics such as overshoot, settling, tracking accuracy, etc.

The following lemma is utilized in the proof of Theorem 1.

Lemma 1 Let D ⊂ R3n+1 be a domain containing w(t) = 0, where w(t) ∈ R2n+1 is

defined as

w(t) ,

[
zT

√
P (t)

]T
. (4.20)

In (4.20), the auxiliary function P (t) ∈ R is the generalized solution to the differential
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equation

Ṗ (t) = −L (t) , (4.21)

P (0) = ∆gβ |e2 (0)| −NT
d (0) e2 (0) , (4.22)

where the auxiliary function L(t) ∈ R is defined as

L(t) = rT (Nd(t)−∆gβsgn (e2)) . (4.23)

Provided the sufficient conditions in (4.19) is satisfied, the following inequality can be

obtained: ∫
L(τ)dτ ≤ ∆gβ |e2 (0)| −NT

d (0) e2 (0) . (4.24)

Hence, equation (4.24) can be used to conclude that P (t) ≥ 0.

Proof of the bound in (4.24) can be found in Appendix A or (Ton & Mackunis,

2012).

Proof. (See Theorem 1) Let V (w, t) : D× [0,∞)→ R be defined as the nonnegative

function

V (w, t) ,
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rT r + P, (4.25)

where e1(t), e2(t), and r(t) are defined in (4.5) and (4.6), respectively; and the positive

definite function P (t) is defined in (4.21). The function V (w, t) satisfies the inequality

U1(w) ≤ V (w, t) ≤ U2(w), (4.26)

provided the sufficient condition introduced in (4.19) is satisfied, where the positive
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definite functions U1(w), U2(w) ∈ R are defined as

U1 ,
1

2
‖w‖2 , U2 , ‖w‖2 . (4.27)

After taking the time derivative of (4.25) and utilizing (4.5), (4.6), (4.17), and (4.21),

V̇ (w, t) can be expressed as

V̇ (w, t) = eT1 (e2 − α1e1) + eT2 (r − α2e2) + rT (Ñ +Nd −∆gβsgn (e2)

−∆g (k1 + 1) r − e2)− rT (Nd −∆gβsgn (e2)) . (4.28)

After canceling common terms and rearranging, (4.28) can be rewritten as

V̇ (w, t) = −α1 ‖e1‖2 − α2 ‖e2‖2 + eT1 e2 + rT Ñ −∆g (k1 + 1) rT r. (4.29)

After using (4.15) and (4.11), (4.29) can be upper bounded as

V̇ (w, t) ≤ −
(
α1 −

1

2

)
‖e1‖2 −

(
α2 −

1

2

)
‖e2‖2 − ε0 ‖r‖2

−ε0k1 ‖r‖2 + ρ (‖z‖) ‖z‖ ‖r‖ , (4.30)

where ε0 , 1 − ε, and the fact that eT1 e2 ≤ 1
2
‖e1‖2 + 1

2
‖e2‖2 was utilized. After

completing the squares in (4.30), the upper bound on V̇ (w, t) can be expressed as

V̇ (w, t) ≤ −
(
α1 −

1

2

)
‖e1‖2 −

(
α2 −

1

2

)
‖e2‖2 − ε0 ‖r‖2

−ε0k1

(
‖r‖ − ρ (‖z‖)

2ε0k1

‖z‖
)2

+
ρ2 (‖z‖)
4ε0k1

‖z‖2 . (4.31)
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Since ε0, k1 > 0, the upper bound in (4.31) can be expressed as

V̇ (w, t) ≤ −
(
λ0 −

ρ2 (‖z‖)
4ε0k1

)
‖z‖2 , (4.32)

where λ0 , min
{
α1 − 1

2
, α2 − 1

2
, ε0

}
.

The following expression can be obtained from (4.32):

V̇ (w, t) ≤ −U(w), (4.33)

where U(w) = c ‖z‖2, for some positive constant c ∈ R, is a continuous, positive

semi-definite function that is defined on the following domain:

D ,
{
w ∈ R2m+1 | ||w|| < ρ−1

(
2
√
ε0λ0k1

)}
. (4.34)

It follows directly from Lyapunov analysis that r (t) , e2 (t) , e1 (t) ∈ L∞ in D.

This implies that ė2 (t) , ė1 (t) ∈ L∞ in D from the definitions given in (4.6). Given

that r (t) , e2 (t) , ė1 (t) ∈ L∞ in D, it follows that ë1 (t) ∈ L∞ from (4.6). Since e1 (t),

ė1 (t), ë1 (t) ∈ L∞ in D, (4.5) can be used along with Assumption 4 to show that x (t),

ẋ (t), ẍ (t) ∈ L∞ in D. Since ẋ (t) ∈ L∞, then (4.2) and (4.3) can be used to show

that f (x) ∈ L∞. Given that ẍ (t), f (x) ∈ L∞, Assumptions 1 and 2 can be used

along with (4.1) to prove that u (t) ∈ L∞ in D. Since r (t), u (t) ∈ L∞, (4.16) can be

used along with Assumption 1 to show that u̇ (t) ∈ L∞ in D. Given that r (t) , e2 (t) ,

e1 (t) , ẋ (t) , x (t) , u̇ (t) ∈ L∞, (4.15) can be used along with (4.12) and Assumption

4 to prove that ṙ (t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in D, r (t) , e2 (t) , e1 (t)

are uniformly continuous in D. Thus, the definitions for U(w) and w(t) can be used
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to prove that U(w) is uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,

{
w(t) ∈ D|U2 (w(t)) <

1

2
ρ−1

(
2
√
ε0λ0k1

)2
}
. (4.35)

Theorem 8.4 of Khalil (Khalil, 2002) can now be invoked to state that

c ‖z‖2 → 0 as t→∞ ∀ w(0) ∈ S. (4.36)

Based on the definition of z (t), (4.36) can be used to show that

‖e1(t)‖ → 0 as t→∞ ∀ w(0) ∈ S. (4.37)

4.5 Simulation Results

4.5.1 Simulation Model

A numerical simulation was created to demonstrate the performance of the proposed

controller. The plant model utilized in the simulation is given by (4.1), (4.3), and

(4.4), where f(x, ẋ) ∈ R4×1, g(x) ∈ R4×4, u (t) ∈ R4×1, and d(t) ∈ R4×1. The phys-

ical parameters used in the simulation are based on the experimentally determined

parameters of the Embry-Riddle quadrotor test bed.

In order to develop a realistic stepping stone to actual experimental demonstra-

tion of the proposed quadrotor controller, the simulation parameters were selected
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based on detailed data analyses and specifications. The thrust limit and the quadro-

tor’s physical properties were determined via model testing. Each of the four rotors

has a thrust limit of approximately 38 N , yielding a total maximum thrust limit of

approximately 152 N . The uncertain matrix ∆g is defined as

∆g =



b1 0 0 0

0 b2 0 0

0 0 b3 0

0 0 0 b4


, (4.38)

where bi ∈ (0, 1) ∀ i = 1, ..., 4 denote subsequently defined uncertain parameters that

represent the uncertainty in the parameters Jx, Jy, Jz, m, and l. The quadrotor

physical properties are selected as follows:

Jx = 0.6768 kg ·m2, Jy = 0.6768 kg ·m2,

Jz = 0.011kg ·m2, l = 0.6768 m,

m = 6.804 kg.

The initial conditions used in the simulation are

x(0) =

[
0 m 0.1 rad 0.1 rad 0.1 rad

]T
,

ẋ(0) =

[
0 m 0 rad 0 rad 0 rad

]T
.

The nonlinear disturbance term d(t) introduced in (4.1) is modeled as noise drawn

from the normal (Gaussian) distribution in the simulation. The disturbance d(t) can
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be explicitly defined as

d (t) =



N (0, 1)

N (0, 0.5)

N (0, 0.5)

N (0, 0.5)


The function f (x, ẋ) and the disturbance d (t) are utilized in the simulation to develop

the plant model only, they are not used in the control law. The robust elements in

the control law compensate for these effects.

The objective is to force the state x (t) to follow the desired time-varying trajectory

xd (t) given by

xd =



0.1t+ 6

20π
180

sin( t
10

)

20π
180

sin( t
10

+ π
3
)

20π
180

sin( t
10

+ π
6
)


. (4.39)

The control gains for the robust controller were selected such that the controller

exhibits the best possible performance (e.g., in terms of settling time, overshoot,

steady state error). Figs. 4.1 and 4.2 show the simulation results of the closed-loop

system with control gains selected as follows:

k1 = diag(1, 6, 3, 3), β = diag(1, 1, 1, 1),

α1 = diag(1, 1, 1, 1), α2 = diag(1, 1, 1, 1),

where diag(·) denotes the diagonal matrix. Fig. 4.1 shows the time evolution of

the height, roll angle, pitch angle, and yaw angle errors, and Fig. 4.2 shows the
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commanded control inputs during closed-loop operation.

4.5.2 Simulation Results

In the following simulation results, the uncertain elements of the ∆g matrix (see

(4.38)) are selected as b1 = 0.8, b2 = 0.5, b3 = 0.7, b4 = 0.6. These values correspond

to 20% − 50% uncertainty in the mass and inertia parameters. From Fig. 4.1, the

altitude (i.e., z1 (t)) tracking error converges in approximately 10 seconds, and the

attitude (i.e., φ (t), θ (t), ψ (t)) tracking errors also converge after approximately 10

seconds. The maximum rate and magnitude of the control inputs in Fig. 4.2 are well

within practical control limits. The control input and performance of the quadrotor

is well within acceptable region when compared to experimental work done in (Huang

et al., 2009), (Dydek et al., 2010), (Achtelik et al., 2011), (Chamseddine & Zhang,

2010). Real-time applications of the controller should be computationally efficient

because there is no online learning.

4.5.3 Discussion of Results

Based on the results from the error plots, the proposed controller is capable of achiev-

ing accurate trajectory tracking. The input-multiplicative uncertainty is compensated

at the cost of a slightly higher feedback gain β (i.e., see (4.19)); however, the max-

imum control command is less than 152 N as seen in Fig. 4.2, which is well within

the actuator limits of the Embry-Riddle quadrotor test bed. The robust structure of

the controller enables the closed loop system to converge, even when the unknown

parameters bi ∀ i = 1, ..., 4 are off from nominal by up to 50%. The chattering in

the control is largely due to the Gaussian noise injected into the system. The simu-
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lation yields satisfactory results despite various unknown, nonlinear disturbances in

the dynamic model and parametric uncertainty.
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Figure 4.1: Tracking error response achieved during closed-loop controller operation.
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Figure 4.2: Control commands used during closed-loop controller operation.

4.6 Conclusion

A tracking controller for a quadrotor is presented, which achieves asymptotic track-

ing, where the dynamic model contains input-multiplicative parametric uncertainty
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and norm-bounded nonlinear disturbances. Moreover, the result is achieved using a

control law that is computationally inexpensive, requiring no observers, function ap-

proximators, or online adaptive update laws. A robust integral sliding mode control

technique is employed to compensate for parametric input uncertainty and unknown,

nonlinear, non-vanishing disturbances. The proposed control design has the advan-

tage of being continuous, eliminating the need for infinite actuator bandwidth. A

Lyapunov-based stability analysis is provided to verify the theoretical result, and

simulation results are provided to demonstrate the performance of the controller in

the presence of significant parametric uncertainty and exogenous perturbations. Fu-

ture work will focus on improving controller robustness with respect to complete loss

of effectiveness in one or more actuators.



Chapter 5

Robust Nonlinear Aircraft

Tracking Control Using Synthetic

Jet Actuators

5.1 Introduction

In this chapter, a robust nonlinear tracking control method is presented for aircraft

systems equipped with synthetic jet actuators. This work can be found in (MacKunis

et al., 2013).

Due to their small size, ease of operation, and low cost, synthetic jet actuators

(SJA) are promising tools for aircraft tracking control and flow control applications.

SJA transfer linear momentum to a flow system by using a vibrating diaphragm,

which creates trains of vortices through the alternating ejection and suction of fluid

through a small orifice. Since these vortices (i.e., jets) are formed entirely from the

98
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fluid (i.e., air) of the flow system, a key benefit of SJA is that they achieve this transfer

of momentum with zero net mass injection across the flow boundary. Thus, SJA do

not require space for a fuel supply. SJAs can be utilized to modify the boundary

layer flow field near the surface of an aircraft wing, which can improve aerodynamic

performance. Moreover, synthetic jet actuators can expand the usable range of angle

of attack, which can improve maneuverability (Amitay, Smith, Kibens, Parekh, &

Glezer, 2001). In addition to flow control applications, arrays consisting of several

SJAs can be employed to achieve tracking control of aircraft, possibly eliminating the

need for mechanical control surfaces. The benefits of utilizing SJAs on aircraft as

opposed to mechanical control surfaces include reduced cost, weight, and mechanical

complexity.

Uncertainties inherent in the dynamics of SJA present significant challenges in

control design, however. Specifically, the input-output characteristic of each SJA is

nonlinear and contains parametric uncertainty. Additional challenges exist in control

design in low Reynolds number (low-Re) flight conditions inherent in the dynamics of

smaller, lighter aircraft (e.g., small unmanned aerial vehicles). While much research

has addressed SJA-based flow and flight control design, the majority of the recently

developed SJA-based control designs are typically investigated using computational

fluid dynamics-based numerical methods, without detailed mathematical performance

analysis (e.g., see (Hong, 2012; Kim, Kim, Kim, Kim, & Kim, 2011; Kim et al.,

2012; Kotapati et al., 2010; Kourta & Leclerc, 2013; Liu et al., 2006; Mejia, Moser,

Brzozowski, & Glezer, 2011; Luo, Xia, & Xie, 2007; Ozawa, Lesbros, & Hong, 2010;

Tamburello & Amitay, 2008; Ozawa, Lesbros, & Hong, 2012; Travnicek, Nemcova,

Kordik, Tesar, & Kopecky, 2012; Tseng, Yang, & Lin, 2011; Vukasinovic, Glezer,
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Gordeyev, Jumper, & Kibens, 2009; Zhang & Zhang, 2010)). While computational

methods have proven useful in analyzing the complex dynamics inherent in control

of fluid flow and SJA-based fight tracking control, one of the contributions of the

research presented in this chapter is theoretical development of a SJA-based aircraft

tracking controller that includes rigorous analysis of controller performance.

While nonlinear methods are popularly utilized in control system design, nonlin-

ear control techniques are not often applied to SJA-based control systems. Recently

developed nonlinear SJA-based control designs utilize online adaptive control algo-

rithms, neural networks, and/or complex fluid dynamics computations in the feedback

loop (e.g., see (Tchieu et al., 2008; Mondschein et al., 2011; Deb et al., 2005a, 2005b,

2006, 2007, 2008; Liu et al., 2006; Singhal et al., 2009; Tao, 1996; Jee et al., 2009)). In

(Muse et al., 2009) a low-order model was utilized to develop a neural network-based

adaptive output feedback control scheme using SJA. The control design in (Muse

et al., 2009) achieves uniformly ultimately bounded model reference tracking in the

presence of actuator disturbances; the controller performance was demonstrated via

computer simulation and experiment. In (Jee et al., 2009), a neural network is coupled

with a computational fluid dynamics model to develop SJA-based flow and pitching

and plunging control laws for an airfoil. The controller performance in (Jee et al.,

2009) is demonstrated via numerical computer simulation. The aforementioned neural

network-based control laws are shown to perform well at their respective tasks; how-

ever, neural networks can increase the computational complexity of feedback control

systems.

Adaptive control is another method that is popularly utilized in SJA-based con-

trol design. An adaptive approach is presented in (Mondschein et al., 2011), which
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is shown to compensate for synthetic jet actuator nonlinearities and disturbances.

The approach in (Mondschein et al., 2011) utilizes a linear time-invariant dynamic

model containing actuator nonlinearities and non-constant disturbances, and it is

proven that the adaptive controller achieves asymptotic trajectory tracking. Adap-

tive inverse schemes are utilized in (Deb et al., 2005a, 2006, 2007, 2008) to achieve

tracking performance in the presence of synthetic jet actuator nonlinearities. In (Deb

et al., 2005a) and (Deb et al., 2005b), an adaptive inverse technique is utilized to

compensate for the SJA nonlinearity, and a Lyapunov-based analysis is provided to

prove asymptotic trajectory tracking using a linear time-invariant plant model in the

absence of disturbances. Adaptive control methods can achieve good control perfor-

mance in the presence of uncertainty at a reduced computational cost as compared

to neural network-based methods. The research presented in this chapter seeks an

answer to the question: Can a computationally minimal robust feedback control strat-

egy be utilized to achieve SJA-based tracking control performance that is comparable

to adaptive or neural network-based methods?

The contribution in this chapter is the development of a robust nonlinear control

method, which is proven to achieve accurate flight tracking control in the presence

of SJA nonlinearities, parametric uncertainty and external disturbances (e.g., wind

gusts). The structure of the control law is continuous, making the proposed de-

sign amenable to practical application. Moreover, the control method presented in

this chapter is designed to be inexpensively implemented, requiring no online adap-

tive laws, function approximators, or complex fluid dynamics computations in the

feedback loop. A matrix decomposition technique is utilized along with innovative

manipulation in the error system development to compensate for the dynamic SJA
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uncertainty. The robust controller is designed with an implicit learning law, which is

shown to compensate for bounded disturbances. A Lyapunov-based stability analysis

is utilized to prove global asymptotic trajectory tracking in the presence of external

disturbances, actuator nonlinearities, and parametric uncertainty in the system and

actuator dynamics. Numerical simulation results are provided to complement the

theoretical development.

5.2 Dynamic Model and Properties

The uncertain aircraft dynamic model under consideration in this chapter is assumed

to contain parametric uncertainty due to linearization errors and unmodeled nonlin-

earities. Specifically, the aircraft system can be modeled via a linear time-invariant

system as (Mondschein et al., 2011; Deb et al., 2005a, 2007, 2008; Nelson, 1998;

Tchieu et al., 2008; Singhal et al., 2009)

ẋ = Ax+Bu+ f (x, t) (5.1)

where A ∈ Rn×n denotes the uncertain state matrix, B ∈ Rn×m represents the un-

certain input matrix, and f (x, t) ∈ Rn is a state- and time-dependent unknown,

nonlinear disturbance. For example, f (x, t) could include exogenous disturbances

(e.g., due to wind gusts) or nonlinearities not captured in the linearized dynamic

model. Also in (5.1), the control input u (t) ,

[
u1 (t) u2 (t) · · · um (t)

]T
∈ Rm

represents the virtual surface deflections due to m arrays of synthetic jet actuators

(SJA). Based on experimental data, the dynamics of the SJA can be modeled as (Deb
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et al., 2008, 2005a, 2006, 2007)

ui = θ∗2i −
θ∗1i
vi
, i = 1, 2, . . . ,m (5.2)

where vi (t) = A2
ppi (t) ∈ R denotes the peak-to-peak voltage acting on the ith SJA

array, and θ∗1i, θ
∗
2i ∈ R are unknown positive physical parameters. One of the control

design challenges is that the control terms ui (t) depend nonlinearly on the voltage

signal vi (t) and contain parametric uncertainty due to θ∗1i and θ∗2i. This challenge

will be handled using a robust, continuous nonlinear control technique.

Using the expressions in (5.2) and (5.1), the dynamics can be expressed in terms

of the ith SJA array as

ẋ = Ax+
m∑
i=1

biui + f (x, t) . (5.3)

In (5.3), bi ,

[
b1i b2i · · · bni

]T
∈ Rn ∀ i = 1, 2, . . . ,m, where bij denotes the

(i, j)th element of the matrix B in (5.1).

Assumption 1: If x (t) ∈ L∞, then f (x, t) is bounded. Moreover, if x (t) ∈ L∞,

then the first and second partial derivatives of the elements of f (x, t) with respect to

x (t) exist and are bounded.

5.2.1 Robust Nonlinearity Inverse

The contribution in this chapter is development that shows how a purely robust feed-

back control strategy can be utilized to compensate for the control input nonlinearity

and input parametric uncertainty in (5.2). To this end, a robust inverse vi (t) will be

utilized, which contains constant feedforward “best-guess” estimates of the uncertain
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parameters θ∗1i and θ∗2i. The robust inverse that compensates for the uncertain jet

array nonlinearities in (5.2) can be expressed as

vi (t) =
θ̂1i

θ̂2i − udi (t)
, i = 1, ...,m (5.4)

where θ̂1i, θ̂2i ∈ R+ are constant feedforward estimates of θ∗1i and θ∗2i, respectively,

and udi (t) ∈ R ∀ i = 1, ...,m are subsequently defined auxiliary control signals.

Remark 9 Singularity Issues Based on (5.4), the control signal vi (t) will en-

counter singularities when udi (t) = θ̂2i. To ensure that the control law in (5.4) is

singularity-free, the control signals udi (t) for i = 1, 2, . . . ,m will be designed using

the following algorithm (Mondschein et al., 2011):

udi (t) =

 θ̂2i − δ if g (µ0 (t) , µ1 (t)) ≥ θ̂2i − δ

g (µ0 (t) , µ1 (t)) otherwise
(5.5)

where δ ∈ R+ is a small parameter, g (·) is a subsequently defined function, and µ0 (t),

µ1 (t) ∈ Rm are subsequently defined feedback control terms. Note that the parameter

δ can be selected arbitrarily small such that the subsequent stability analysis remains

valid for an arbitrarily large range of positive control voltage signals vi (t).

In addition, the control terms ui (t) in (5.2) will encounter singularities when

vi (t) = 0, which occurs when θ̂1i = 0 for any i. Since θ̂1i is a constant, user-defined

feedforward estimate of the uncertain parameter θ∗1i, the singularity at vi (t) = 0 can

be easily avoided by selecting θ̂1i > 0 for i = 1, 2, . . . ,m.

Remark 10 Preliminary results show that the auxiliary control signal udi (t) in (5.4)

can be designed to achieve asymptotic tracking control and disturbance rejection for
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the uncertain dynamic model in (5.1) and (5.2) over a wide range of feedforward

estimates θ̂ji 6= θ∗ji, j = 1, 2.

5.2.2 Control Development

The control objective is to force the system state x (t) to track the state of a model

reference system. Based on (5.1), a reference model is selected as

ẋm = Amxm +Bmδ (5.6)

where xm (t) ∈ Rn denotes the reference state, Am ∈ Rn×n is a Hurwitz state matrix,

Bm ∈ Rn denotes the reference input matrix, and δ (t) ∈ R is the reference input

signal. The reference model in (5.6) is designed to exhibit desirable performance

characteristics.

Assumption 2: The model reference state xm (t) is bounded and sufficiently

smooth in the sense that xm (t), ẋm (t), ẍm (t),
...
xm (t) ∈ L∞ ∀ t ≥ 0.

To quantify the control objective, the tracking error e (t) ∈ Rn is defined as

e = x− xm. (5.7)

To facilitate the subsequent analysis, a filtered tracking error r (t) is also defined as

r = ė+ αe (5.8)

After taking the time derivative of (5.8) and using (5.1) and (5.7), the open loop
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tracking error dynamics are obtained as

ṙ = Aė+ Aẋm +
m∑
i=1

bi

(
θ∗1i

θ̂1i

u̇di (t)

)
+ ḟ (x, t)− ẍm + αė (5.9)

Remark 11 Although the constant portion of the control input term vanishes upon

taking the time derivative of the dynamics as in (5.9), the plant model used in the

subsequent numerical simulation retains the complete actuator dynamics. In the sim-

ulation, the control input ui (t) is generated using (5.2) and (5.4); thus, the simulation

model includes the complete actuator dynamics.

The expression in (5.9) can be rewritten as

ṙ = Ñ +Nd + Ωu̇d (t)− Se (5.10)

where Ω ∈ Rn×m denotes a constant uncertain matrix, S ∈ Rn×n is a subsequently

defined uncertain matrix and the control vector ud(t)

ud (t) ,

[
ud1 (t) ud2 (t) · · · udm (t)

]T
∈ Rm (5.11)

In (5.10), the unknown, unmeasurable auxiliary functions Ñ (t) and Nd (t) are defined

as

Ñ , Aė+ αė+ Se+
(
ḟ (x, t)− ḟ (xm, t)

)
(5.12)

Nd , Aẋm − ẍm + ḟ (xm, t) (5.13)

The selective grouping of terms in (5.12) and (5.13) is motivated by the fact that
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Assumptions 1 and 2 can be utilized to develop the following inequalities:

∥∥∥Ñ∥∥∥ ≤ ρ0 ‖z‖ , ‖Nd‖ ≤ ζNd
,

∥∥∥Ṅd

∥∥∥ ≤ ζṄd
(5.14)

where ρ0, ζNd
, ζṄd

∈ R+ are known bounding constants and z (t) ∈ R2n is defined as

z ,

[
eT rT

]T
. (5.15)

5.2.3 Closed-loop Error System

Based on the open-loop error system in (5.10), the auxiliary control ud (t) is designed

as

ud (t) = Ω̂# (µ0 − µ1) (5.16)

where Ω̂ ∈ Rn×m is a constant, best-guess estimate of the uncertain matrix Ω, and [·]#

denotes the pseudoinverse of a matrix. In (5.16) µ0 (t) , µ1 (t) ∈ Rn are subsequently

defined feedback control terms. After substituting the time derivative of (5.16) into

(5.10), the error dynamics can be expressed as

ṙ = Ñ +Nd + Ω̃ (µ̇0 − µ̇1)− Se (5.17)

where the constant uncertain matrix Ω̃ ∈ Rn×n is defined as

Ω̃ = ΩΩ̂#. (5.18)

Assumption 3: Bounds on the uncertain matrix Ω are known such that the
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feedforward estimate Ω̂ can be selected such that the product Ω̃ can be decomposed

as (Morse, 1993)

Ω̃ = ST (5.19)

where S ∈ Rn×n is a positive definite symmetric matrix, and T ∈ Rn×n is a unity

upper triangular matrix, which is diagonally dominant in the sense that

ε ≤ |Tii| −
n∑

k=i+1

|Tik| ≤ Q, i = 1, . . . , n− 1. (5.20)

In inequalities (5.20), ε ∈ (0, 1) and Q ∈ R+ are known bounding constants, and

Tik ∈ R denotes the (i, k)th element of the matrix T .

Remark 12 Preliminary results show that Assumption 3 is mild in the sense that

(5.20) is satisfied over a wide range of Ω̂ 6= Ω. Specifically, simulation results show

that the auxiliary control signal udi (t) in (5.4) and (5.16) can be designed to achieve

asymptotic tracking control and disturbance rejection for the uncertain dynamic model

in (5.1) and (5.2) when the mean values of the constant feedforward estimates θ̂j1 and

θ̂j2 ∀ j = 1, ..., 6 differ from the mean values of the actual parameters θ∗j1 and θ∗j2 ∀

j = 1, ..., 6 as

mean
(
θ̂j1

)
= 14.05, mean

(
θ∗j1
)

= 25.28

mean
(
θ̂j2

)
= 7.25, mean

(
θ∗j2
)

= 12.08

The values for θ̂j1 and θ̂j2 ∀ j = 1, ..., 6 used in the simulation can be found in Table

1 of Section 5.4. This preliminary result demonstrates the capability of the robust

control design to compensate for significant dynamic uncertainty using only a simple
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feedback controller structure.

After utilizing the decomposition in (5.19), the error dynamics in (5.17) can be

expressed as

S−1ṙ = Ñ1 +Nd1 + T (µ̇0 − µ̇1)− e (5.21)

where

Ñ1 , S−1Ñ , Nd1 , S−1Nd. (5.22)

Since S is positive definite, Ñ1 (t) and Nd1 (t) satisfy the inequalities

∥∥∥Ñ1

∥∥∥ ≤ ρ1 ‖z‖ , ‖Nd1‖ ≤ ζNd1
,

∥∥∥Ṅd1

∥∥∥ ≤ ζṄd1
(5.23)

where ρ1, ζNd1
, ζṄd1

∈ R+ are known bounding constants. By utilizing the fact that

the uncertain matrix T is unity upper triangular, the error dynamics in (5.21) can be

rewritten as

S−1ṙ = Ñ1 +Nd1 + µ̇0 + T̄ µ̇0 − T µ̇1 − e (5.24)

where T̄ , T − In×n is a strictly upper triangular matrix, and In×n denotes an n× n

identity matrix. Based on the open-loop error system in (5.24), the auxiliary control

terms µ0 (t) and µ1 (t) are designed as

µ0 = − (ks + In×n) e (t)− (ks + In×n) e (0) (5.25)

−
∫ t

0

α (ks + In×n) e (τ) dτ .

µ1 =

∫ t

0

βsgn (e (τ)) dτ (5.26)

where β ∈ R is a constant, positive control gain, ks ∈ Rn×n is a constant, positive
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definite, diagonal control gain matrix, and α is introduced in (5.8). After substituting

the time derivative of (5.25) into (5.24), the closed-loop error system is obtained as

S−1ṙ = Ñ1 + T̄ µ̇0 +Nd1 − (ks + In×n) r − T µ̇1 − e. (5.27)

After taking the time derivative of (5.25), the term T̄ µ̇0 can be expressed as

T̄ µ̇0 =



∑n
j=2 T̄1jµ̇0j∑n
j=3 T̄2jµ̇0j

...

T̄(n−1)nµ̇0n

0


=

 Λρ

0

 (5.28)

where the auxiliary signal Λρ ,

[
Λρ1 Λρ2 · · · Λρ(n−1)

]T
∈ Rn−1, with the indi-

vidual elements defined as

Λρi , −
n∑

j=i+1

T̄ij (ksj + 1) rj (5.29)

∀ i = 1, . . . , n−1 where the subscript j indicates the jth element of the vector. Based

on the definitions in (5.25) and (5.28), Λρ satisfies the inequality

‖Λρ‖ ≤ ρΛ1 ‖z‖ (5.30)

where z (t) is defined in (5.15), and ρΛ1 ∈ R is a known positive bounding constant.

Remark 13 Note that based on (5.28) and (5.29), the bounding constant ρΛ1 depends
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only on elements i + 1 to n of the control gain matrix ks due to the strictly upper

triangular nature of T̄ . Thus, the element µ̇01 (t) of the control vector µ̇0 (t) does not

appear in the term Λρ. This fact will be utilized in the subsequent stability proof.

By utilizing (5.28), the error dynamics in (5.27) can be expressed as

S−1ṙ = Ñ2 +Nd1 − (ks + In×n) r − T µ̇1 − e (5.31)

where

Ñ2 = Ñ1 +

 Λρ

0

 . (5.32)

Based on (5.23), (5.30), and (5.32), Ñ2 (t) satisfies the inequality

∥∥∥Ñ2

∥∥∥ ≤ ρ2 ‖z‖ (5.33)

where ρ2 ∈ R is a known bounding constant.

To facilitate the subsequent stability analysis, the control gain β introduced in

(5.26) is selected to satisfy

β >
1

ε

(
ζNd1

+
1

α
ζṄd1

)
(5.34)

where ζNd1
and ζṄd1

are introduced in (5.23), and ε is introduced in (5.20).
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5.3 Stability Analysis

To facilitate the subsequent stability analysis, let D ⊂ R2n+1 be a domain containing

w (t) = 0, where w (t) ∈ R2n+1 is defined as

w (t) ,

[
zT (t)

√
P (t)

]T
. (5.35)

In (5.35), the auxiliary function P (t) ∈ R is defined as the generalized solution to

the differential equation

Ṗ (t) = −L (t) , P (0) = βQ |e (0)| − eT (0)NT
d1 (0) (5.36)

where the auxiliary function L(t) ∈ R is defined as

L(t) = rT (Nd1 (t)− T µ̇1) . (5.37)

Lemma 2 Provided the sufficient gain condition in (5.34) is satisfied, the following

inequality can be obtained:

∫ t

0

L (τ) dτ ≤ βQ |e (0)| − eT (0)Nd1 (0) . (5.38)

Hence, (5.38) can be used to conclude that P (t) ≥ 0.

Proof of Lemma 2 is in Appendix (B) or (MacKunis et al., 2013), and it is omitted

here for brevity.

Theorem 1 The robust control law given by (5.4), (5.16), (5.25), and (5.26) ensures



5.3. STABILITY ANALYSIS 113

asymptotic trajectory tracking in the sense that

‖e (t)‖ → 0, as t→∞ (5.39)

provided the control gain matrix ks introduced in (5.25) is selected sufficiently large

(see the subsequent proof), and β is selected to satisfy the sufficient condition in

(5.34).

Proof. Let V (w, t) : D× [0,∞) → R be a continuously differentiable, radially

unbounded, positive definite function defined as

V =
1

2
eT e+

1

2
rTS−1r + P. (5.40)

After taking the time derivative of (5.40) and utilizing (5.8), (5.31), (5.36), and (5.37),

V̇ (t) can be expressed as

V̇ ≤ −
(
λ0 −

ρ2
2

4λmin (ks)

)
‖z‖2 (5.41)

where λ0 , min {α, 1}, and λmin (·) denotes the minimum eigenvalue of the argument.

Inequality (5.41) can be used to show that V (w, t) ∈ L∞; hence, e (t) , r (t) ,

P (t) ∈ L∞. Given that e (t) , r (t) ∈ L∞, (5.8) can be utilized to show that ė (t) ∈ L∞.

Since e (t) , ė (t) ∈ L∞, (5.7) can be used along with the assumption that xm (t) ,

ẋm (t) ∈ L∞ to prove that x (t) , ẋ (t) ∈ L∞. Based on the fact that x (t) ∈ L∞,

Assumption 1 can be utilized to show that f (x, t) ∈ L∞. Given that x (t) , ẋ (t) ,

f (x, t) ∈ L∞, (5.1) can be used to show that u (t) ∈ L∞. Since e (t) , r (t) ∈ L∞,

the time derivative of (5.25) and (5.26) can be used to show that µ̇0 (t) , µ̇1 (t) ∈ L∞.



5.4. SIMULATION RESULTS 114

Given that e (t) , r (t) , µ̇1 (t) ∈ L∞, (5.31) can be used along with (5.33) to show that

ṙ (t) ∈ L∞. Since ė (t) , ṙ (t) ∈ L∞, (5.15) can be used to show that z (t) is uniformly

continuous. Since z (t) is uniformly continuous, V (w, t) is radially unbounded, and

(5.40) and (5.41) can be used to show that z (t) ∈ L∞ ∩ L2. Barbalat’s Lemma

(Khalil, 2002) can now be invoked to state that

‖z (t)‖ → 0 as t→∞ ∀ w (0) ∈ R2n+1. (5.42)

Based on the definition of z (t), (5.42) can be used to show that

‖e (t)‖ → 0 as t→∞ ∀ w (0) ∈ R2n+1.

5.4 Simulation Results

A numerical simulation was created to verify the performance of the control law

developed in (5.2), (5.4), (5.16), (5.25), and (5.26). The simulation is based on the

dynamic model given in (5.1) and (5.2), where n = 3 and m = 6. Specifically, the

control input ui (t) , i = 1, 2, ..., 6, consists of 6 synthetic jet arrays, and the 3-DOF

state vector is defined in terms of the roll, pitch, and yaw rates as

x =

[
x1 x2 x3

]T
.
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The state and input matrices A and B and reference system matrices Am and Bm are

defined based on the Barron Associates nonlinear tailless aircraft model (BANTAM)

(for details of the sim model, see (Deb et al., 2007)).

The 3-DOF linearized model for the BANTAM was obtained analytically at the

trim condition: Mach number M = 0.455, angle of attack α = 2.7 deg, and side

slip angle β = 0 (Deb et al., 2007). The linearized dynamic model does not produce

the same result as the full nonlinear system with mechanical control surfaces, but the

angular accelerations caused by the virtual surface deflections are predicted accurately

using the matrix B. The actual (i.e., θ∗1i and θ∗2i, i = 1, 2, . . . , 6) and estimated (i.e.,

θ̂1i and θ̂2i, i = 1, 2, . . . , 6) values of the SJA parameters (see (5.2) and (5.4)) are

shown in Table 1.

Table 1

Array i 1 2 3 4 5 6

θ∗1i [volt-deg] 32.9 29.8 26.7 24.0 20.5 17.8

θ∗2i [deg] 14.7 13.8 12.8 11.7 10.0 9.5

θ̂1i [volt-deg] 16.5 15.9 14.5 13.4 12.1 11.9

θ̂2i [deg] 9.1 8.3 7.2 6.8 6.5 5.6

The external disturbance used in the simulation is given by

d =


0.2 sin (0.5t)

0.1 sin (0.5t) + 0.2 sin (0.5t)

0.15 sin (0.3t)

 .
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The reference input δ (t) used in the simulation is given by (Deb et al., 2007)

δ (t) =

 0.5 sin (t) , 0 ≤ t ≤ 50

0.5 sin (t) + sin (2t) 50 < t ≤ 100
(5.43)

Figures 5.1-5.2 illustrate the performance of the proposed controller with control gains

selected as

α = 0.3, β = diag {3.3, 0.3, 0.8} , ks = diag {0.10, 0.15, 2.3}

The first plot shows the tracking error response, which demonstrate the rapid con-

vergence of the closed-loop system, and the final plot shows the control commands

during closed-loop operation. The effects of the instantaneous change in the reference

input δ (t) (i.e., see (5.43)) at t = 50s are apparent in the e1 (t) and e3 (t) plots in

Figure 5.1, but the tracking errors converge to zero quickly in spite of this sudden

switch in the reference command. The control commands remain within reasonable

limits, and the level of chattering is minimal.

5.5 Conclusion

A robust nonlinear control strategy is presented, which is capable of achieving accu-

rate tracking for an aircraft using synthetic jet actuators. The proposed controller

is shown to achieve global asymptotic tracking of a model reference system, where

the plant dynamics contain input-multiplicative parametric uncertainty and actua-

tor nonlinearities in addition to unknown, additive external disturbances. Moreover,
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Figure 5.1: Tracking error plots achieved during closed-loop controller operation.

the structure of the control law is continuous, making the proposed design amenable

to practical application. The controller is designed to be practically implementable,

requiring no observers, function approximators or adaptive laws. By exploiting min-

imal knowledge of the structure of the SJA dynamic model, a matrix decomposition

technique is utilized along with careful algebraic manipulation in the error system

development to compensate for the input-multiplicative parametric uncertainty. A

Lyapunov-based stability analysis is provided to prove the theoretical result, and

numerical simulation results are provided to demonstrate the performance of the pro-

posed controller. Future work will address simultaneous flow and flight control of

using SJA.

A second order dynamic system with parametric uncertainty and disturbance is
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Figure 5.2: Control signals vi (t), i = 1, ..., 6 [Volts] used during closed-loop controller
operation.

presented in this chapter. To extend the current work to a more general class of

systems that contain heavy uncertainty or unmodeled variations that manifest them-

selves as a priori unknown changes in the control direction, can the SMC technique

presented in this section be extended to systems where the sign of the matrix g(x) is

unknown, i.e., unknown control direction? The next chapter presents an extension to

handle a more general case where there is uncertainty in the control input direction.



Chapter 6

Self-Reconfigurable Control

6.1 Introduction

This chapter develops a sliding mode control algorithm that compensates for systems

containing unknown control direction, and this work can be found in (Price, Ton,

MacKunis, & Drakunov, 2013; Drakunov, 1994).

Systems with unknown control direction has been an interesting research area

within the past two to three decades. The challenge of an unknown direction control

vector has led to some creative ways to circumvent the problem. Various areas of

research in adaptive control, sliding mode control (SMC), and robust control have

contributed to the solution.

The problem of unknown control direction had an early interest in the area of

adaptive control when Morse proposed a conjecture that one-dimensional linear sys-

tems with relaxed assumption in the control direction, i.e., unknown control sign,

cannot be globally stabilized via adaptive control law (Morse, 1998). Nussbaum,

119
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however, was able to show that linear systems with unknown signs can be stabi-

lized through suitable adaptive control gain named Nussbaum function (Nusssbaum,

1983). Although the Nussbaum function can stabilize systems with unknown con-

trol direction, it needs infinite bandwidth to compensate for the uncertainty in the

dynamics.

Adaptive control has made further progress in the area of unknown control direc-

tion in the input matrix since Nussbaum’s proposed control algorithm. In (Ferrara et

al., 2009), Ferrara et al. has developed an adaptive sliding mode control for uncertain

nonholonomic systems with unknown control direction. This method segregates the

known states from the uncertain parameters, then an estimate for the uncertainty is

designed. Lozano et al. have designed an updated version of the adaptive controller

that does not require knowledge of the sign of the control direction, and the scheme

is free from singularities (Lozano & Brogliato, 1992). In (Xudong & Jingping, 1998),

a method using adaptive design is applied to n-order system. However, the design

has the flaw of over parameterization, which decreases effect of parameter conver-

gence and system robustness because of the controller’s dynamic order. The system

contains an unknown but constant sign direction. They key idea is based on back-

stepping and implementing the Nussbaum-type function. Reference type functions

are also defined in (Xudong & Jingping, 1998) to ease the analysis, and the result is

a global adaptive control that can be designed for nonlinear systems with unknown

parameters.

There are also novel algorithms invented to solve the problem of unknown control

direction. A differential approach was used in (Kaloust & Qu, 1997), where the first

and second derivative was used to detect sign changes, and the nominal system is
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assumed to be stable, which restricts the applicable class of systems. This approach

used the Lyapunov method to design a continuous robust control that has an online

algorithm to identify the change in the control direction and a shifting law that

smoothly changes the control. Since it is a robust controller, bounding of the unknown

functions and on the rate of change of the control direction are required. Yang et al.

divide up the state x (t) ∈ R into convergent and non-convergent sets and analyze

where the signs will switch and the intervals in between the switching (Yang et al.,

2009). The main analysis uses the Nussbaum-type function for periodic switching to

allow convergence of the system. The important aspect of (Yang et al., 2009) is to

prove the bounding of the Nussbaum-type gain where the unknown control directional

is able to smoothly cross zero and change its sign for unlimited number of times. In

(Yan & Xu, 2004; Yan et al., 2008), Yan et al. used a monitoring function that

exponentially decays with time, and they test whether the error function intersects

it. If an intersection happens, this implies that the controller sign is wrong, thus,

switching occurs to change the direction; however, if the assumed control direction is

correct, then the switching does not occur. This method is designed for a constant

unknown sign. In (Hsu et al., 2006), Hsu et al. used variable structure for arbitrary

relative degree n system. The unknown sign direction is constant, and the system

does not have unlimited switching. The variable structure implementation control

algorithm in (Hsu et al., 2006) has a direct advantage over (Yan et al., 2008) due to

its insensitivity to measurement noise.

Sliding mode control, known for its robustness, has also been used to stabilize sys-

tems unknown control direction. In (Bartolini & Pisano, 2008; Bartolini et al., 2003,

2010, 2011), Bartolini et al. rely on a Lyapunov function to derive the control law for



6.1. INTRODUCTION 122

systems with heavy uncertainty, i.e unknown control signs. In (Bartolini et al., 2003),

Bartolini et al. also use sliding mode control to compensate for the uncertain control

input direction with an observer designed to estimate the drift terms to ensure the

attractiveness of the sliding surface. In (Drakunov, 1993), self-reconfigurable control

was suggested compensate the unknown control direction problem. The control al-

gorithm presented in (Drakunov, 1993) uses a purely robust feedback technique to

achieve finite-time convergence in the presence of unknown signs.

The contribution of this chapter is utilizing a control architecture similar to that

(Drakunov, 1993) to compensate for unknown control direction for a general class of

systems. This robust feedback control is computationally inexpensive due to the fact

that it requires on monitoring functions, function approximations, or online adaptive

update.

6.1.1 Multi-Manifold Sliding Mode Control

This section considers the application of sliding mode control, where uncertainty in

the model contribute to unknown control direction. In section 2.2.2, it was shown

that adaptive control is able to adjust itself to an unknown constant in the input

matrix b in (2.51). Adaptive control is computationally expensive due to the online

adaption that is required. Moreover, adaptive control can only compensate constant

uncertainty. For the case where there is high uncertainties and the input matrix is

state- and time-varying, adaptive control is not sufficient to stabilize the system. In

such a case, SMC can be used to compensate for these uncertainty. In the following,

sliding mode control is used to compensate for unknown control direction in a scalar

control input.
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Consider a nonlinear system

ẋ = f (t, x) +B (t, x)u, (6.1)

where x (t) ∈ Rn, B (t, x) ∈ Rn×m, u (t) ∈ Rm. The objective is to design a control

algorithm that does not require the knowledge of the input matrix B (t, x). In SMC,

the objective is to drive the state to the manifold

M = [x ∈ Rn|σ (x) = 0] , (6.2)

where

σ (x) =

[
σ1 (x) σ2 (x) ... σm (x)

]T
(6.3)

is an m-dimensional smooth function such that the system (6.1) is stable when con-

strained to the manifold M. The manifold M can be considered as the intersection of

hypersurfaces of the components σi (x) ∈ R

M =
m⋂
i=1

Mi Mi = {x ∈ Rn : σi(x) = 0}, (6.4)

where Mi is the ith switching surface.

Consider the time derivative of the sliding surface σ along trajectories of the

system (6.1):

σ̇ =
∂σ(x)

∂x
B(t, x)u+

∂σ(x)

∂x
f(t, x). (6.5)

The control function u = u(σ; t, x) that provides stabilization to the surface σ is
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defined by the property of the matrix

∂σ(x)

∂x
B(t, x). (6.6)

Consider the situation when the control designed for the system (6.1) is applied

to the system with uncertainty

ẋ = f̃(t, x) + B̃(t, x)u. (6.7)

In this situation, when B̃(t, x) ≡ B(t, x), where there are no anomalies in the input

matrix, Equation (6.7) can be rewritten as

ẋ = f(t, x) + ∆f(t, x) +B(t, x)u, (6.8)

where f̃(t, x) = f(t, x) + ∆f(t, x). The variable ∆f is a perturbation of the function

f (t, x) , and if ∆f satisfies the matching condition (Drazenovic, 1969)

∆f ∈ range (B)

for all t and x, then sliding mode can make the closed-loop system invariant to the

perturbation. The control u = u(σ; t, x) based on the nominal system in (6.1) can

still be applied to (6.7), provided that control amplitude is large enough dominate

the first term in the equation

σ̇ =
∂σ(x)

∂x
B(t, x)u+

∂σ(x)

∂x
(f(t, x) + ∆f(t, x)) (6.9)
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to guarantee convergence to the sliding surface M.

For the case where B̃(t, x) = B(t, x)+∆B(t, x), the system in (6.7) can be written

as

ẋ = f(t, x) + ∆f(t, x) + (B(t, x) + ∆B(t, x))u. (6.10)

The control designed for the system (6.1) can still be applied to (6.10) to achieve

convergence to the manifold M for certain variations of the matrix B that satisfy the

matching condition

∆f + ∆B(t, x)u ∈ rangeB.

However, if the uncertain input matrix B̃(t, x) is too different from the nominal matrix

B(t, x), the existence of the sliding mode cannot be guaranteed. The time derivative

of σ can be written

σ̇ =
∂σ(x)

∂x
B̃(t, x)u+

∂σ(x)

∂x
f̃(t, x). (6.11)

and the control based on the matrix B(t, x) from (6.1) can no longer guarantee that

σ → 0. There are many variations such as disturbances or unmodeled dynamics that

can change the direction of the control actuation in the input matrix B(t, x), which

can cause instability in the system.

The following mathematical development focuses on one of the applications of

sliding mode control to stabilize systems that control sign uncertainty in the matrix

B(t, x). The underlying idea is to define multiple alternating stable and unstable

surfaces for the dynamic model. As the structure changes, i.e., the sign of B(t, x)

switches, the unstable surfaces will become stable and the stable surfaces will become

unstable. The trajectory of the system will transition to the nearest sliding surface.
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All of the surfaces are designed such that sliding on any of them will achieve the

control objective. Thus, any changes in the sign of B(t, x) will only create short-lived

transients in the system before it converges back to its goal.

Applications of this control technique can be applied to micro-air vehicles that are

susceptible to highly uncertain environmental conditions and vehicle orientation that

produce forces in various combinations. In this situation, rather than resisting by

constantly restructuring the control actions, the autopilot should use the flow to aid

its mission. This strategy would allow a more efficient control actuation and energy

conservation.

The following work provides the mathematical development for a scalar input with

sign uncertainty in the input gain vector.

Scalar Case

The method proposed in (Drakunov, 1993, 1994) is based on partitioning hypersur-

faces into cell-like structures. An illustration of a two dimensional hypersurfaces can

be seen in in Figure 6.1. The hypersurfaces shown in Figure 6.1 are the cellular

structure of the sliding manifolds implemented through periodic switching. These

manifolds are parallel switching surfaces partitioned onto the state space as cells

Mi = {x ∈ Rn : σ̃i(x) = sin(σi(x)) = 0}, (6.12)

where σi(x) = 0 is the traditional switching surface. For the case of the switch-

ing surfaces of equation (6.12), the switching set is the union of the one-component

switching manifolds
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M(k)
i = {x ∈ Rn : σi(x) = πk}, (6.13)

where

Mi =
∞⋃

k=−∞

M(k)
i (6.14)

x

x

S(x) = const

1

n

Figure 6.1: Multiple equilibrium manifolds in the state space for scalar case
(Drakunov, 1994)

Consider the system in (6.1) for the case where the control input is a scalar:

ẋ = f (t, x) + b (t, x)u, (6.15)

where x (t) ∈ Rn, b (t, x) ∈ Rn, u (t) ∈ R. The objective is to stabilize the system to

the desired manifold

M = {x : σ(x) = 0}, (6.16)
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where

σ(x) ∈ R1. (6.17)

The challenge of this system is the vector b(t, x) = [b1(t, x), . . . , bn(t, x)]T defining

actuation direction is time- and state-dependent, and its sign is completely unknown.

Taking the time derivative of the surface σ yields

σ̇ = G(x)f(t, x) +G(x)b(t, x)u, (6.18)

where

G(x) =
∂σ(x)

∂x
. (6.19)

To reach the sliding manifold M without knowledge of the input vector b(t, x), the

proposed control law contains a periodic switching function as

u = M0sign sin
(π
ε
σ̃
)
, (6.20)

where

σ̃ = σ(t) + λ

∫ t

0

sign(σ(τ))dτ , (6.21)

and M0 > 0 is a positive control gain that can be a constant or a function, λ ∈ R

is a positive constant that determines the rate of convergence of the manifolds, and

ε ∈ R is a positive constant that determines the spacing between the manifolds.

If for all t > 0 and x (t) ∈ Rn the function b(t, x) satisfies

G(x)b(t, x) 6= 0, (6.22)
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then the control in Equation (6.20) can stabilize the surface σ to zero in finite time,

provided the variable M0 satisfies the inequality

|G(x)b(t, x)M0(t, x)| > |G(x)f(t, x)|+ λ+ δ, (6.23)

where δ > 0 is some positive constant. From (6.23), it is obvious that by increasing

M0, the control law can compensate for a larger range of uncertainty. Differentiating

σ̃ in (6.21) and substituting the control in (6.20) yields

˙̃σ = Gf +GbTM0sign
[
sin
(π
ε
σ̃
)]

+ λsign(σ). (6.24)

In the neighborhoods of the points where

σ̃ = kε, (6.25)

for k = 0,±2,±4, . . ., the following is obtained:

sign [sin (σ̃)] = sign(σ̃ − kε), (6.26)

and for k = ±1,±3, . . ., the following is obtained:

sign [sin (σ̃)] = −sign(σ̃ − kε). (6.27)

Thus, if the inequality in (6.23) is satisfied, then sliding mode will occur on one of the

manifolds in (6.25) for any sign of G(x)b(t, x)M0. In fact, sliding mode occurs where



6.2. EXAMPLE 130

σ̃ = constant after some moment of time, and after differentiating (6.21) yields

σ̇ = −λsign(σ). (6.28)

Thus (6.28) guarantees that the manifold M = {x : σ(x) = 0} is reached in finite

time.

The control law in (6.20) for a scalar case was designed without knowledge of the

sign of G(x)b(t, x). This sign is allowed to be different in different parts of the state

space, which means that the system switches from one sliding manifolds to another.

However, since the distance between the manifolds can be chosen to be arbitrarily

small by the constant ε, the Equation (6.28) is violated for only a short period of

time, provided that the inequality (6.23) does not coincide with the desired manifold.

From a geometric point of view, there are an infinite number of parallel switching

surfaces partitioned into cells that have stable sliding manifolds for certain sign of

G(x)b(t, x). Thus, based on (6.28), all the parallel manifolds move in the direction of

the manifold σ = 0 and, thus, sliding mode is reached in finite time.

6.2 Example

This section uses the dynamics of the quadrotor expressed in (4.1)

ẍ = f(x) + g(x)u, (6.29)

where f(x, ẋ) ∈ Rn denotes an unknown, nonlinear vector function, g(x) ∈ Rn×n is

an uncertain input matrix with unknown sign, u(t) ∈ Rn is a vector of control inputs,
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and d(t) ∈ Rn is an unknown, nonlinear disturbance. The objective is to track the

desired trajectory xd(t)

xd =

[
3 20π

180
sin t 20π

180
sin
(
π
3

+ t
)

20π
180

sin
(
π
6

+ t
) ]T

. (6.30)

In this example, the magnitude of each element of the g(x) is known but the sign is

unknown. The sliding surface σ(t) is chosen as

σ = (x− xd) + α(ẋ− ẋd), (6.31)

and the control input u(t) be

u = M0sgn

{
sin

[
π

ε

(
σ + λ

∫
sgn(σ(τ))dτ

)]}
. (6.32)

The gain matrix M0 is

M0 =



100 0 0 0

0 1 0 0

0 0 1 0

0 0 0 30


. (6.33)

The matrices α, ε, and λ are chosen as α = diag(.01, .01, .01, .01), ε = diag(.01, .01, .01, .01)

and λ = diag(0.1, 0.1, 0.1, 0.1).

From Figure 6.2, it can be seen that the system in (6.29) converges around 20

seconds with nonlinear, bounded disturbances and unknown direction control.
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Figure 6.2: Quadrotor tracking error with unknown control direction

6.3 Conclusion

A sliding mode control law for a class of systems was presented, which achieves

stability under unknown control direction. To achieve the result, multiple manifolds

were created to adapt to the changing uncertainty in the control direction. The

control algorithm is universal for a class of system where sign the control matrix is

unknown.



Chapter 7

Conclusions

Two novel control methods are presented to deal with underactuated parallel sys-

tems, and dynamical systems containing parametric uncertainty and disturbances.

Underactuated parallel systems were handled by driving a state to some area near

the equilibrium point, then drive the second state to the origin through the design

of a desired function. The dynamical system containing parametric uncertainty and

norm-bound disturbances are dealt with by designing a continuous robust control law

through the integral of the signum error. For systems containing heavy uncertainty

such as unknown control direction input, a self-reconfiguration algorithm is proposed

to adjust itself to the unknown changes. Simulations are shown to demonstrate the

effectiveness of the proposed control laws.

Future research includes

• extending the underactuated dual parallel systems to n-parallel systems,

• design a more general case for second order dynamic with non-symmetric matrix

and time-varying uncertainty,
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• Apply pure sliding mode control to the synthetic jet actuators.

In conclusion, the contributions of this dissertation are

• design a novel technique to stabilize a class of underactuated dual parallel sys-

tems

• develop a robust control algorithm to compensate for systems with norm-bound

disturbance and parametric uncertainty

• use sliding mode control to stabilize a class of systems with unknown control

direction



Appendix A

Quadrotor

A.0.1 Proof of Lemma 1

Integrating both sides of (5.37) yields

∫ t

0

L (σ) dσ =

∫ t

0

rT (σ) (Nd (σ)−∆gβsgn (e2 (σ)))dσ. (A.1)

After using (4.6), (A.1) can be rewrriten as follows:

∫ t

0

L (σ) dσ =

∫ t

0

(
∂e2 (σ)

∂σ

)T
Nd (σ) dσ −

∫ t

0

(
∂e2 (σ)

∂σ

)T
∆gβsgn (e2 (σ)) dσ

+

∫ t

0

α2e
T
2 (σ) (Nd (σ)−∆gβsgn (e2 (σ)))dσ (A.2)
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After evaluating the first integral in (A.2) by parts, the following is obtained:

∫ t

0

L (σ) dσ = NT
d (σ) e2 (σ)

∣∣t
0
−
∫ t

0

(
∂Nd (σ)

∂σ

)T
e2 (σ) dσ

−∆gβ |e2 (σ)|t0 +

∫ t

0

α2e
T
2 (σ) (Nd (σ)

−∆gβsgn (e2 (σ)))dσ (A.3)

where the fact that
∫ t

0

(
∂e2(σ)
∂σ

)
sgn (e2 (σ)) dσ = |e2 (σ)|t0 was utilized. The expression

in (A.3) can be upper bounded as

∫ t

0

L (σ) dσ ≤ ‖e2 (t)‖
(
ζNd
− (1− ε) β

)
+ ∆gβ |e2 (0)| −NT

d (0) e2 (0)

+

∫ t

0

α2 ‖e2 (σ)‖ (
1

α2

ζṄd
+ ζNd

− (1− ε) β)dσ, (A.4)

where (4.11) was utilized. Based on (A.4), inequality (4.24) is clearly satisfied pro-

vided the control gain β is selected to satisfy

β >
1

1− ε

(
ζNd

+
ζṄd

α2

)
. (A.5)



Appendix B

Synthetic Jets Actuator

B.0.2 Proof of Lemma 2

Integrating both sides of (5.37) yields

∫ t

0

L(τ)dτ =

∫ t

0

rT (Nd1 (τ)− T µ̇1) dτ . (B.1)

The expression in (B.1) can be rewritten as

∫ t

0

L(τ)dτ =

∫ t

0

n∑
i=1

ri (τ)

(
−

n∑
j=1

Tijµ̇1j
(τ) +Nd1i (τ)

)
dτ (B.2)
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where ri (t), Nd1i (t), µ̇1i
(t) ∈ R denote the ith elements of r (t), Nd1 (t), and µ̇1 (t),

respectively, and Tij is introduced in (5.28). Substituting (5.8) into (B.2) yields

∫ t

0

L(τ)dτ =
n∑
i=1

ei (t)Nd1i (t)−
∫ t

0

n∑
i=1

ei (τ)
∂Nd1i (τ)

∂τ
dτ

−
∫ t

0

n∑
i=1

∂ei (τ)

∂τ
βsgn

(
ei (τ) +

n∑
j=i+1

T̄ijsgn (ej (τ))

)
dτ

+

∫ t

0

n∑
i=1

αei (τ) (Nd1i (τ)− β (sgn (ei (τ))

+
n∑

j=i+1

T̄ijsgn (ej (τ))

))
dτ −

n∑
i=1

ei (0)Nd1i (0) . (B.3)

In (B.3), the fact that

n∑
j=1

Tijµ̇1j
(t) = β

(
sgn (ei (τ)) +

n∑
j=i+1

T̄ijsgn (ej (τ))

)

∀ i = 1, . . . , n−1 was utilized (note that T̄nn = 0 since T̄ is strictly upper triangular).

Based on Assumption 2, the following equation holds ∀ i = 1, . . . , n− 1:

sgn (ei (t)) +
n∑

j=i+1

T̄ijsgn (ej (τ)) = φsgn (ei (t)) (B.4)

where φ ∈ R+ is a parameter satisfying ε ≤ φ ≤ Q, with ε and Q defined as in (5.20).

After utilizing the fact that

∫ t

0

∂ei (τ)

∂τ
βφsgn (ei (τ)) dτ = βφ |ei (t)| − βφ |ei (0)| (B.5)
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and using (5.20) and (5.23), (B.3) can be upper bounded as

∫ t

0

L(τ)dτ ≤
∫ t

0

n∑
i=1

α |ei (τ)|
(
ζNd1

+
1

α
ζṄd1
− εβ

)
dτ +

n∑
i=1

|ei (t)|
(
ζNd1
− εβ

)
+

n∑
i=1

(βQ |ei (0)| − ei (0)Nd1i (0)) (B.6)

Thus, it is clear from (B.6) that if β satisfies (5.34), then (5.38) holds.
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