Aug 16th, 8:15 AM - 9:45 AM

Assessing General Aviation Pilots' Weather Knowledge and Self-Efficacy

Robert L. Thomas
Embry-Riddle Aeronautical University - Daytona Beach

Jayde M. King
Embry-Riddle Aeronautical University - Daytona Beach, kingj14@my.erau.edu

Yolanda Ortiz
Embry-Riddle Aeronautical University - Daytona Beach, ortizy@my.erau.edu

Thomas A. Guinn Ph.D.
Embry-Riddle Aeronautical University - Daytona Beach, guinnt@erau.edu

Elizabeth L. Blickensderfer Ph.D.
Embry-Riddle Aeronautical University - Daytona Beach, blick488@erau.edu

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/ntas

Thomas, Robert L.; King, Jayde M.; Ortiz, Yolanda; Guinn, Thomas A. Ph.D.; Blickensderfer, Elizabeth L. Ph.D.; and DeFilippis, Nicholas, 'Assessing General Aviation Pilots' Weather Knowledge and Self-Efficacy' (2017). National Training Aircraft Symposium (NTAS), 34.
https://commons.erau.edu/ntas/2017/presentations/34

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Assessing General Aviation Pilots' Weather Knowledge and Self-Efficacy

Presented by
Bob Thomas

Federal Aviation Administration
Ian Johnson, M.S.
Gary Pokodner

Embry-Riddle Aeronautical University
Beth Blickensderfer, Ph.D.
John Lanicci, Ph.D.
Tom Guinn, Ph.D.
Robert Thomas, M.S., CFII, ATP
Jayde King, M.S.
Yolanda Ortiz, M.S.
The Problem...

- General Aviation accounts for a majority of weather related accidents
- Most GA weather-related accidents result in fatality
- NTSB Most Wanted List - loss of control
 - manage weather issues
Contributing Factors to the Unchanging High General Aviation Weather-Related Accident Rate

- Research indicates numerous contributing factors to the General Aviation Weather Problem
 - Lack of Aviation Weather Knowledge & Skills
 - Poor Decision Making
 - Weather Technology & Product Usability
 - Limited Weather Training
 - Conflicting & Out-of-Date Pilot Resources
How to assess pilot weather knowledge?

• Current method is through FAA Knowledge Test Questions
 ▫ Some questions are out of date and easy
 ▫ Very few questions focused on interpretation of current products

• A multidisciplinary team of Human Factors Specialists, Meteorologists, & Pilots developed an Aviation Weather Knowledge Test

• 95 Questions
 1. Basic Weather Theory
 2. Product Interpretation
 3. Weather Sources
204 Pilots Participated

- Both ERAU Students and GA pilots at EAA Airventure
- Average Age: 22.5 years
- Part 61: 60 pilots & Part 141/142: 143 pilots

<table>
<thead>
<tr>
<th>Pilot Certificate and/or Rating</th>
<th>Number of Pilots (Total = 204)</th>
<th>Flight Hours (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>41</td>
<td>35 hours</td>
</tr>
<tr>
<td>Private</td>
<td>72</td>
<td>105 hours</td>
</tr>
<tr>
<td>Private with Instrument</td>
<td>50</td>
<td>172 hours</td>
</tr>
<tr>
<td>Commercial with Instrument</td>
<td>41</td>
<td>260 hours</td>
</tr>
</tbody>
</table>
The Results!
Overall GA Weather Knowledge

- Scores increased with flight experience
- Statistically significant differences between
 - student vs private pilot groups
 - private vs commercial with instrument groups
- These trends were consistent
Basic Weather Theory, Product Interpretation, & Weather Product Sources

- Weather product sources was one of the highest scores

![Score Chart]

<table>
<thead>
<tr>
<th>Aviation Weather Knowledge Categories</th>
<th>Score (in Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Weather Theory</td>
<td>59</td>
</tr>
<tr>
<td>Interpreting Weather Data</td>
<td>58</td>
</tr>
<tr>
<td>Weather Product Resources</td>
<td>69</td>
</tr>
</tbody>
</table>
Impact of Flight Experience on Pilots’ Aviation Weather Knowledge

- Scores increased with more flight experience
Weather Hazard Product Interpretations

![Bar graph showing scores for different weather hazard products]

- Weather RADAR: 51
- AIRMET: 51
- Satellite Data: 54
- METAR & PIREP: 54
- Convective SIGMET: 64
- Surface Charts: 71
- Upper Level Charts: 77

Scores are in percentage.
Pilot Performance on IMC and VFR Knowledge and Skills

- This includes Surface Charts, Satellite Data, & PIREPs involving IMC weather

![Bar Chart showing score in percentage for different flight experience levels: Student (49), Private (58), Instrument Rated (Private & Commercial) (65) for Flight Experience]
Thunderstorm Knowledge and Skills

- Pilots scored low on thunderstorm principles and radar interpretation
GA Pilots’ Self-Efficacy

- Confidence level on weather topics
- Measured through a survey
- Positive correlation between knowledge scores and self-efficacy
Overall Summary

• General Aviation Pilots are weak in terms of weather knowledge
• Weakest Topics included
 ▫ Thunderstorms
 ▫ Radar interpretation
 ▫ AIRMETs
 ▫and more

• The new automated weather products showed effectiveness through higher scores
Overall Summary

- The sample was 204 pilots – more participants will be needed to further verify the results
- More experience (flight hours) did relate to improved scores
- Weather self-efficacy was correlated positively with aviation weather knowledge.
Why the Knowledge Gap?

• Pilots can fail every weather question on FAA knowledge test and still achieve a passing score
• Lack of experience
 ▫ GA pilots avoid flying on thunderstorm days?
• Convective weather and radar interpretation can be complex
• Lack of understanding of weather from instructor passed on to students?
• More instructional tools and focus needed on weather topics for GA pilots
• Consolidate weather info and ACs into a “Weather Handbook”
Thank you