THE JOURNAL OF

DIGITAL FORENSICS, Journal of Digital Forensics,
SECURITY AND LAW _
Security and Law

Volume 9 | Number 2 Article 11

2014

Audit: Automated Disk Investigation Toolkit

Umit Karabiyik
Florida State University

Sudhir Aggarwal
Florida State University

Follow this and additional works at: https://commons.erau.edu/jdfsl

b Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer
Engineering Commons, Forensic Science and Technology Commons, and the Information Security
Commons

Recommended Citation

Karabiyik, Umit and Aggarwal, Sudhir (2014) "Audit: Automated Disk Investigation Toolkit," Journal of
Digital Forensics, Security and Law: Vol. 9 : No. 2, Article 11.

DOI: https://doi.org/10.15394/jdfs|.2014.1176

Available at: https://commons.erau.edu/jdfsl/vol9/iss2/11

EMBRY-RIDDLE

DAYTONA BEACH, FLORI

PURDUE

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of (c)ADFSL
Scholarly Commons. For more information, please
contact commons@erau.edu.

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol9
https://commons.erau.edu/jdfsl/vol9/iss2
https://commons.erau.edu/jdfsl/vol9/iss2/11
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2014.1176
https://commons.erau.edu/jdfsl/vol9/iss2/11?utm_source=commons.erau.edu%2Fjdfsl%2Fvol9%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Audit: Automated Disk Investigation Toolkit JDFSL VI9N2

E2 JiThis work is licensed under a Creative Commons Attribution 4.0 International Licensel

AUDIT: AUTOMATED DISK INVESTIGATION
TOOLKIT

Umit Karabiyik, Sudhir Aggarwal
Department of Computer Science, Florida State University
Tallahassee, Florida, USA
{karabiyi, sudhir}@cs.fsu.edu

ABSTRACT

Software tools designed for disk analysis play a critical role today in forensics investigations.
However, these digital forensics tools are often difficult to use, usually task specific, and
generally require professionally trained users with IT backgrounds. The relevant tools are also
often open source requiring additional technical knowledge and proper configuration. This makes
it difficult for investigators without some computer science background to easily conduct the
needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation
toolkit that supports investigations conducted by non-expert (in IT and disk technology) and
expert investigators. Our proof of concept design and implementation of AUDIT intelligently
integrates open source tools and guides non-IT professionals while requiring minimal technical
knowledge about the disk structures and file systems of the target disk image.

Keywords: digital forensics, expert systems, disk forensics, forensic tools, CLIPS

capability to answer the following questions:
“How to do I properly use these tools?” and
“where/when can I effectively use them?” In
practice, forensic examiners might have any
level of I'T background and technical expertise
ranging from a computer security expert to a
criminal investigator having minimal
computer skills. Thus investigators need

1. INTRODUCTION

Forensic investigation in general and
especially of a hard disk is complex for an
investigator. There is generally a fairly steep
learning curve for such disk investigations
because of the required technical background.

Complexity arises partly because of the

wide variety and availability of forensic
investigation tools. There are many tools that
must be considered, both commercial and
open source. Newer tools are regularly
becoming available, particularly open source.
These tools, to varying degrees, provide levels
of abstraction that allow investigators to
identify and safely copy digital evidence, and
perform routine investigations (Case et al.,
2008). Investigators are however always
expected to know how to use and configure
and /or parameterize these tools, especially the
open source tools, depending on the
investigation type. Availability of a large
number of these tools thus requires the

© 2014 ADFSL

usable tools that will help them get results
easily (Hibshi et al., 2011) and with less usage
complexity independent of their computer and
IT expertise.

Learning even for investigators with
computer expertise is necessary because
investigators have to know details of the
target disk image. For instance, investigators
generally should know the details of each new
disk type, file system, etc. in order to perform
correct disk forensics investigation. As
Garfinkel (Garfinkel, 2009) discusses, many
people in the digital forensics area would like
to be able to work with data on the target

Page 129

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

device without having a deep and specific
knowledge about the target disk.

To deal with these issues currently, most
digital forensics tool users typically take
training sessions both on tool usage and also
on digital targets (Beebe, 2009). According to
the user study in (Hibshi et al., 2011), even
68% of their expert responders indicate that
they take intensive training sessions to learn
the current tools while 31% do not take such
training sessions. This latter set still finds the
tools difficult to wuse but found different
workarounds (such as online training). As for
the open source tools, it is a common
situation that one software tool alone cannot
capture enough required data. Therefore, the
examiner needs to use multiple tools to get
relevant evidence from the target. This also
requires more training and adds to the
learning curve because of the technical
knowledge required by the tools. These tools
also do not tend to work with each other.
Users of today's tools need to properly
interpret what results they get from the tools
and what the further steps they need to take
for conducting a deeper investigation.

In this work, we describe AUDIT, a novel
automated disk investigation toolkit that is
designed to support integration of open source
digital forensics tools within an expert system
to simplify and support disk forensics. Our
goal is to provide an “intelligent assistant” to
support forensic examiners. Our proof of
concept design and implementation integrates
some commonly used open source tools via an
expert system and knowledge base that we
have developed to support investigations,
while requiring only minimal technical
knowledge about the tools, the hard disk
structure and the file system on the target
disk. Examiners can use our toolkit to analyze
the disk for illegal images, for document
search and email search, and also for more
specialized searches such as for credit card
and social security numbers.

Expert Systems (ES) are a class of
computer programs that arose in work in
artificial intelligence. In general, one goal of

Page 130

AT technology is to build computer programs
that demonstrate intelligent behavior
(Engelmore et al.,, 1993). Expert systems
emulate human expertise in well-defined
problem domains by using a domain
implemented knowledge base (Riley, 2013).
Concepts and methods of symbolic inference,
or reasoning, are also a focus of such
programs to represent knowledge that can be
used to make appropriate inferences
(Engelmore et al., 1993).

Automating the digital forensics process of
course has its own challenges. James et al.
(2013) and Meyers et al. (2004) caution that
the automation of the digital forensics process
should not let the forensics profession be
“dumbed down” because of expert
investigators relying on automation more than
their own knowledge. Instead, they suggest
that it is more important that the untrained
investigators conduct their investigation at
the level of expert investigators. This is our
goal for AUDIT also.

In the rest of this paper we will use the
term pictures to refer to images on disk, in
order to avoid confusion with the term disk
image which is the target of the investigation.
We assume that users of AUDIT do not
necessarily have expertise on technical aspects
of an investigation, but do have expertise
about the investigation process itself. AUDIT
is not a replacement for a forensic expert in
an investigation. It is an intelligent assistant
for investigators who lack technical knowledge
about either the tools or hard disk structures.

In this paper, AUDIT is designed
currently with a static database that includes
knowledge related to digital forensics tools
and investigative tasks. This knowledge is
derived from an expert who is knowledgeable
in the tools and thus tools configuration is not
currently learned by our system. In future
work, such configurations could also possibly
be learned. As far as we are aware, AUDIT is
unique in its capabilities to use an Al based
environment in order to properly configure
and integrate open source forensic tools and
guide the forensic examination of a hard disk.

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VI9N2

Section II discusses related work and
approaches that automate disk forensics
processing and that apply Al techniques to
the domain of digital forensics. Section III
describes AUDIT, the toolkit that we have
developed for supporting the examination of
hard disks using open source tools. In section
IV, we illustrate the use of AUDIT through
two example investigations. In section V we
conclude and discuss some future research
directions.

2. RELATED WORK

In this section we will discuss some related
work on automating digital forensic processes
during different phase of the investigation as
well as some work related to the application
of AI techniques.

The work of Stallard et al. (2003) is one of
the earliest applications of expert systems in
the area of digital forensics and automated
analysis for digital forensics science. The
authors used an expert system with a decision
tree in order to automatically detect network
anomalies when attackers aim to clear all
traces that could lead system administrators
to them. In this work, an expert system is
used in order to analyze log files. Another
expert system approach applied to network
forensics is described in (Liao et al., 2009). In
this work fuzzy logic and an expert system are
used to again analyze log files related to
attacks such as intrusion detection.

The Open Computer Forensics
Architecture (OCFA) (Vermaas et al., 2010)
is an example of automating the digital
forensics process. OCFA consists of modules
and each module works independently on a
specific file type in order to extract the
content of the file. In this work, automation is
done at the analysis phase of the investigation
process and OCFA is not designed to search
and recover files from the given device.
Instead, it focusses on the collected data after
the examination of the disk to generate
indices for the text and metadata of the files.
The examination is assumed to be done by an
expert with IT knowledge.

© 2014 ADFSL

The Digital Forensics Framework (DFF)
is both an open source digital investigation
tool and a development platform. This tool is

designed for system administrators, law
enforcement examiners, digital forensics
researchers, and security professionals to

quickly and easily collect, preserve and reveal
digital evidences without compromising
systems and data (ArxSys, 2014). This work
is a good example of tool integration and
collaboration in order to reduce the burden on
investigator to use task specific tools.
However, DFF still requires knowledge and
expertise on the integrated tools and the disk
structures. Although its interface is quite user
friendly and does not require knowledge of
what specific tool to use, it still requires users
to have technical knowledge about the
categorization of the tools and when they
need to apply certain tools. The user is asked
to select any applicable module in order to
analyze the disk image for certain tasks. For
example, they do not have to know whether
they need to use scalpel or foremost for data
carving, but they must know how they need
to use it and when to start performing data
carving or file system analysis.

The closest work to ours related to
automating the disk forensics processing was
proposed by Garfinkel (2009).The proposed
program, fiwalk, is used to automate the
processing of forensic data for the purpose of
assisting users who wanted to develop
programs that can automatically process disk
images (Garfinkel, 2009). fiwalk also
integrates command line tools of Carrier's
SleuthKit (TSK) (Carrier, 2014a). The main
difference between this work and ours is that
fiwalk is specifically working on file system
data only and without an integration of Al
techniques. fiwalk makes file system analysis
simpler especially for the expert examiners.
Therefore, it also still requires knowledge of
the file system and understanding of file and
inode structures.

Hoelz et al. (2009) developed a program
called MultiAgent Digital Investigation
toolKit (MADIK), a multiagent system to

Page 131

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

assist the computer forensics expert on its
examinations. They applied AI approach to
the problem of digital forensics by developing
multiagent system where each agent
specializes on a different task such as hashing,
keyword search, windows registry agent and
so on. This work is related to our work as
being an Al application of digital forensics
area. It is however not focused on building
new knowledge about the tools used during
the investigation. It learns from previous
investigations in order to perform better in
the future investigations, but does not use this
knowledge for assisting non-expert users.

To our knowledge none of this work is
directed to assisting examiners during the
analysis phase of the investigation through
the support of an expert system. With respect
to tools integration, the existing systems do
not support a general open source tools
integration process but rather only integrate
some task specific modules in order to
automate certain tasks.

The research does often deal with the
problem of reducing time during the data
analysis phase (such as image clustering) of
the target device(s) but generally does not
address the problem of reducing the technical
knowledge required of the investigator. The
data analysis phase is after the evidence
collection phase when the large amount of
returned data might need to be reduced and
processed. After the evidence gathering phase,
AUDIT does not currently deal with reducing
the data analysis time. Nevertheless, tools for
reducing the technical burden on the
investigator are welcomed by practitioners
(Beebe, 2009). Tools for reducing the data
analysis could certainly be integrated into
AUDIT. In our current implementation, we
simply ask users to do a visual and manual
analysis of the gathered evidence from the
disk (to get feedback). Users would be free to
use any such available data analysis or data
mining tools and we do plan to integrate such
tools into our toolkit in the future.

Page 132

3. AUDIT: AUTOMATED
DISK INVESTIGATION
TOOLKIT

We designed AUDIT with the goal that very
little technical knowledge would be required of
the users. Given some high-level direction as
to what the examiner is searching for, AUDIT
is able to integrate and configure the tools
automatically for the purpose of both general
and specific investigations, searching the disk
for evidence in graphics files, emails,
documents, and “hidden” locations. Detailed
search for items such as credit card and social
security numbers can also be done.

AUDIT consists of three components: a
database of investigative tasks and tools; a
knowledge base with constructs defining rules
and facts; and a core engine (expert system).
The high-level design of AUDIT is shown in
Figure 1.

We designed and implemented the domain
specific knowledge base and the expert system
to assist non-technical users under two
circumstances. First, when configuration
and/or parameterization of the tools is
needed, and especially when technical
knowledge is involved to do this properly.
Second, when tools integration is needed. By
this we mean the order and use of multiple
open source software tools to properly achieve
the investigative task.

Again, we assume the user may have
very little technical knowledge about this.

The database component contains two
tables (Tools and Knowledge) that maintain
information regarding the tools that will be
used by AUDIT and the investigative tasks
that an average investigator generally
performs.

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VI9N2

User
Uszer Input
Knowledge & Database
Base Feedback
N A
Core Engine :
Update Expert System

!

Tool Configuration &

Parameterization
Tool Integration |
St Tool Execution
.----------------------------i----------------------------l -----------------I.
Results
User
Update

Figure 1 High-level Design of AUDIT

In the Tools table, the field IDENT is a
unique identifier for the row entry and is used
in the expert system. Each entry specifies the
specific tool used (TOOLNAME), the TASK,
and the corresponding configuration and/or
parameterization. The entry also specifies
other aspects such as the INPUT
requirements and the OUTPUT of the tool
with that configuration/parameterization. See
Figure 2. For example, in one entry, we have
defined that the forensic tool blkls (Carrier,
2014a) needs the disk image as an input from
the user and needs parameter ‘s’ for
searching the slack space. It is also specified
that the output of blkls is redirected to
another file in order to subsequently use other
tools on the output data. Note that the user is

© 2014 ADFSL

not required to know what parameters to use
in order to do slack space analysis or even
what is slack space analysis search.

The Knowledge table currently simply
contains a set of investigative tasks (graphics
search, document search, credit card number
search, SSN search, and email search). Each
investigative task is linked to the knowledge
base as well as the Tools table through the
expert system.

The knowledge base contains facts and
rules, some of which are predefined and
embedded into the system and others that are
created during the investigation. Facts and
rules can be added, deleted and modified as
needed. For example, at the beginning of an

Page 133

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

investigation by the user, the knowledge base
is updated once the user enters information
such as the input disk location, output
directory, and investigative task. It is also
updated after AUDIT finishes processing some
tasks.

The core engine controls the running
execution of the system using the database
component, the knowledge base, and the user
input. The core engine reads tool
specifications and investigative tasks from the
database and creates new rules and facts as
needed. It also links the investigative tasks
and the tools with respect to the knowledge
base and user input and feedback.

For example, consider the actions of the

configuration and parameterization may be
needed when the user wants to perform
certain tasks. For example scalpel (Scalpel,
2014) wuses different configuration files for
different categories of files that are to be
carved (i.e. graphics files, document files,
compressed files, etc.). The knowledge base
would contain the information of which
configuration file will be used in the desired
search. These configuration files have been
pre-designed for each target task.
Parameterization does not require changing
the configuration file but is important when
running the tool. For example tsk recover
uses the parameter ‘a’ for allocated space
analysis and this might be the setting that
would be used initially when the core engine

core engine in Figure 1 after the expert first invokes this tool.
system acquires all the inputs. Tool
Database Structure Browse Data Execute SQL
Table: | TOOLS = =N New Record Delete Record
IDENT TOOLNAME TASK PARAMETERS INPUT QUTPUT CONFIG
1 tskRecAlloc tsk_recover |allocated space recovery -a ImgFileName|OutDirName
2 tskRecUnalloc |tsk_recover |unallocated space recovery ImgFileName|OutDirName
3 tskRecBoth tsk_recover |alloc & unalloc space recovery|-e ImgFileName|OutDirName
4 scalGraphCarver |scalpel graphic file carving ImgFileName|OutDirName |-c /etc/scalpel/graphic.conf
5 scalDocsCarver |scalpel document File carving ImgFileName|OuthirName |-c /etc/scalpel/document.conf
] findSsnCC FindSSNs credit card number search s inDirName |OutDirName
7 findSsnSSN Find5SNs ssn search -C inDirName OutDirName
8 blklisSlack blkls recovering slack space -5 ImgFileName|> slackArea
9 mmcCarver mmc fragmented file carving
10 mmisLayout mmis disk volume layout ImgFileName|> layoutFile

Figure 2 The Tools Table in the AUDIT Database

After the configuration and /or
parameterization, task specific tools are
integrated in order to provide the requisite
search capabilities. For example, we run
tsk_recover (Carrier, 2014a), blkls and scalpel
to provide complete search of the disk image
to the credit card number search tool
Find SSNs which is not designed to work on
the raw disk image or the file system. Thus
the core engine would have run the tools in
this appropriate order.

In the next three subsections, we explain
in more detail: (1) the design of the
knowledge base; (2) the tools that are
configured and integrated through the expert
system; and (3) the user interface.

Page 134

3.1 Building the Knowledge Base for
AUDIT

The AI part of AUDIT is mainly the
embedded expert system and knowledge base
that is represented in it. In AUDIT, we used
the open source expert system tool CLIPS
which provides a complete platform to create
rule and/or object based expert systems and
is also used to represent an expert's technical
knowledge (Riley, 2014). Knowledge
representation in CLIPS can be done by using
different programming styles. We used rule-
based programming which allows knowledge
to be represented as heuristics, or “rules of
thumb,” which specify a set of actions to be
performed for a given situation (Riley, 2014).

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VIN2

In AUDIT, knowledge is represented via
rules and facts. A rule in CLIPS consists of
two parts: IF and THEN “portions”. In the IF
portion of the rule, facts are listed that
determine whether the rule is to be applied or
not. A collection of facts is called a pattern
and pattern matching is done by CLIPS to
decide if the THEN portion is activated. In
this case the rule is said to be active, else it is
passive. If the facts hold (pattern matches),
then actions in the THEN portion will be
executed by the CLIPS inference engine.
Multiple rules may be active at anytime and
the ordering of execution can depend on the

“salience” value in the IF portion. The IF
portion of the rule has a different
characteristic than an IF statement in
conventional programs. It works as
WHENEVER, because facts can be changed
anytime during the program execution. The
inference engine executes actions of all active
rules (Riley, 2014). In the following program
segment, we show an example of a very simple
rule used in order to illustrate how rules are
used. Most of the actual rules used in AUDIT
are more complex and even require multiple
pages to define.

Simple Example of a CLIPS Rulein AUDIT

. (defrule detemine-investigator-level ""
(declare (salience 10))
(not (investigator is 7))
—r

1

2

3

4

5.

6. then (assert (investigator is expert))
-

8

9

(if (ves-or-no-p "Are you an expert (vesmo)? ")

(if (ves-or-no-p "Do vouneed help (ves/no)?")

then
; (assert (expertneeds help))
10. (assert (determine disk-layout needed))
11. (assert (extracting partitions from disk needed))
12. else
13. (assert (expert needs no-help))
14. (assert (self usage mode on))
15. (assert (provide available tool list to user)))
16. else (assert (investigator is non-expert))
17. (assert (non_expertneeds help))
18. (assert (determine disk-layout needed))
19. (assert (extracting partitions from disk needed))))

In this rule, the user is asked to provide
his/her technical expertise and need of help
for investigation. Based on the answer
received from the user some certain facts will
be added to the facts list by using the assert
command of CLIPS. The IF portion of the
rule consists of the two lines before the ‘=>’
symbol and the THEN portion of the rule is
after that. This rule will be activated when we
have no information about the user's
expertise. The following line is added to the
rule to make sure this rule will be processed
before all other active rules by declaring
salience value to 10 which is the highest value
we used.

© 2014 ADFSL

In this rule, the user is asked to provide
his/her technical expertise and need of help
for investigation. Based on the answer
received from the user some certain facts will
be added to the facts list by using the assert
command of CLIPS. The IF portion of the
rule consists of the two lines before the ‘=>’
symbol and the THEN portion of the rule is
after that. This rule will be activated when we
have mno information about the wuser's
expertise. The following line is added to the
rule to make sure this rule will be processed
before all other active rules by declaring
salience value to 10 which is the highest value
we used.

(declare (salience 10))

Page 135

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

The higher the wvalue of salience, the
earlier the execution of the rule happens.

In AUDIT we have defined two different
levels of knowledge: Investigator Level and
Tools Level. These levels include initially
defined knowledge and new knowledge that is
created based on previous knowledge and new
knowledge created by wuse of tools and
feedback from the user.

3.1.1 Investigator Level Knowledge

Investigator level knowledge relates to the
technical skill level of the user. This is defined
to be either non-expert or expert. When
AUDIT starts, the user is asked about their
level of technical expertise. In the rest of this
section we will mostly focus on explaining
how AUDIT works and technically assists
non-expert practitioners. Depending on the
user's technical skills, some certain facts are
added to the fact list. For example, if we
determine that the user is a non-expert, then
we start adding new facts (inside parentheses
in CLIPS) to the initial knowledge base:

(investigator is non-expert)

(non_expert needs help)

(configuration needed)

Of course this new knowledge may trigger
other rules in the rules list to be activated.
The “(configuration needed)” triggers the
following:

(run tsk_recover for allocated-space)

(run tsk_recover for unallocated-space)

(run blkls for slack-space)

(run scalpel for data-carving)

(configure scalpel for graphic-files)

(configure scalpel for document-files)

(configure mmc for smart-carving)

Addition of new facts may not necessarily
activate a rule since there might be other
facts that are required to match the pattern.
For instance, activation of the “data carving”
rule is based on the user being non-expert, the

Page 136

type of investigation, completion of analysis of
the file system (including allocated,
unallocated and slack space) and negative
feedback. Negative feedback means that
during user interaction AUDIT determined
that the user did not find evidence of interest
from the previous analysis. It is very useful to
keep almost all related knowledge in the
knowledge base even though it might not
activate rules right away. For example, we do
not have to add allocated and unallocated
space analysis in distinct facts, but doing so
we can make sure that our system includes
knowledge of different parameters for use of
tsk_recover to perform analysis on both
allocated and unallocated spaces.

3.1.2 Tools Level Knowledge

Tools level knowledge in AUDIT relates to
usage and integration of the tools. One
example of the use of this knowledge is to
provide some information for one or more
tools which are not originally designed to
gather that information from the given disk.
AUDIT provides this information through
running other useful tools. For example, T'SK
is not designed to carve out files from a disk
image when file system metadata information
is lost or damaged. Therefore, we run scalpel
and mmec (multimedia file carver) (Poisel, et
al. 2011) tools to carve out files which could
be both fragmented and unfragmented. The
following program code shows a high-level rule
which in turn causes other rules to run. These
rules integrate different tools in order to
provide available search places on the disk
image to the credit card number search tool.
Each of the asserted lines between last
printout and assert are the function calls for
each tool to work with the specific parameters
passed (such as %imagePath). Other
information needed for the function is
obtained from the knowledge base.

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VIN2

1. (defrulecredit-card-search ""

2 (image-file-pathis ?imagePath)
3 (output-pathis ?outputPath)

4. (investigative-task is ?task)

5. (investigation-type is ccsearch)
6 =

7

8

13, (assert(ccsearch performed)))

(printoutt "Find_SSNsis running onthe disk!" crlf)
; (mount-disk-image ?imagePath ?outputPath ?task)
9. (run-blkls ?imagePath ?outputPath task)
10. (run-strings ?imagePath ?outputPath ?task)
11. (run-tsk_recover ?imagePath ?outputPath ?task)
2. (run-Find_SSNs ?imagePath ?outputPath ?task)

3.2 Configuration, Parameterization and
Integration of Tools

The open source command line tools that
we used in this initial version of AUDIT are
tsk_recover, blkls, mmls (Carrier, 2014a),
scalpel, and Find_SSNs (Find SSNs, 2014).
In our integration, we also used Linux
commands such as strings. We briefly explain
characteristics of those tools and show how we
perform the integration of the tools within the
expert system. As previously discussed, in
order to use some of the above tools for a
specific task we need to either configure or
parameterize these tools. This is also
discussed in the relevant tools section.

tsk_recover is a command line tool in
TSK (The SleuthKit). Depending on the
parameters given, it extracts allocated and/or
unallocated files from a disk image to a local
directory (Carrier, 2014a). We use
tsk_recover for all of the search techniques
that we used. We use parameter ‘-a’in order
to extract files from allocated space since it
runs on unallocated space in default.

mmls is a command line tool under TSK.
It provides layout of the given disk image and
prints out volume system contents. We use
mmls to find out each partition location for
use of other tools.

blkls is also a command line tool under
TSK. It lists the details about data units

© 2014 ADFSL

(e.g., block, cluster, fragment etc.) and can
extract the unallocated space of the file
system (Carrier, 2014a). The main purpose of
integrating blkls in AUDIT is to extract the
slack space of the disk image by using the
parameter ‘-s’. After retrieving the slack space
AUDIT uses the Linux command strings and
sets the parameter ‘“n’ to 1 to write all
printable characters to a text file. We set “n’
to 1 because it is possible that targeted
numbers may be obscured with whitespace(s)
between each digit. The new text file can then
be used by other tool for content analysis to
gather credit card and social security
numbers.

scalpel is a very successful file carver
designed by Golden G. Richard III (Scalpel,
2014) based on another carver tool foremost
version 0.69. scalpel reads header and footer
information of files in order to recognize files
in the given media based on the pre-
configured configuration file. If any specified
type of file is found, it carves out the file and
write it to the given output directory. Since
scalpel checks header and footer for specific
magic numbers, it is file system independent
and it carves files from FATx, NTFS, ext2/3,
HFS+, or raw partitions. We integrated
scalpel into AUDIT in order to retrieve files
from a disk image when file system metadata
does not exist or is damaged. scalpel is
successful for unfragmented files therefore we
also used mmc when the files are fragmented.

Page 137

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

We use two different pre-defined configuration
files for two categories: document files (i.e.,
doc, pdf, xls, rtf, etc.) and graphics files (i.e.,
jpg, png, gif, psd, etc.).

We give a detailed example of the
configuration and use of scalpel for picture
and document search to more clearly illustrate
how the knowledge and rules are used in
AUDIT. The following facts are assumed to
have been added to the knowledge base:

(evidence found no)

(run scalpel for data-carving)

(tsk recover is unsuccessful)

(image-file-path is 7imagePath)

(output-path is ?outputPath)

(investigation-type is psearch)

The first fact is feedback from the user
whether any evidence or interesting file is
found or not. The second fact is part of the
initial knowledge that shows which tool to use
for data carving. The next fact is true when
tsk _recover was run on both allocated and
unallocated spaces and it failed to find any
useful file for investigator. The forth and the
fifth facts stand for path of the target disk
image and output directory for results to be
saved. The last fact is used to hold the search
type which is picture search for this example.
If all of these facts are true in the fact list,
this means the pattern for performing data
carving matches and the following actions will
be taken:

(if (eq ?configuration graphic)
then

(assert(data carving done))
else

(assert(data carving done))

S0P NO kW

. (deffunction nin_scalpel (?imagePath ?outputPath ?configuration)

(system ?carverTool ?imagePath " -o " ?outputPath "/scalpel/ " ?graphicConfigFileName)
(system "nautilus " ?outputPath "/scalpel/")
(system ?carverTool ?imagePath " -0 " ?outputPath "/scalpel’ " documentConfigFileName)

0. (system "nautilus " ?outputPath "/scalpel/")))

After this rule is activated and run by the
inference engine, the user is again asked to
provide feedback regarding the success of this
particular process. Based on the feedback
given, AUDIT creates new facts and updates
the knowledge base.

The last tool that we use in AUDIT is
Find SSNs which is an open source tool that
searches for U.S. social security and credit
card numbers. It searches a variety of types of
credit cards such as Visa, Mastercard,
Discovery Card, American Express, and many
others (Find SSNs, 2014). Find_SSNs uses
multiple and comprehensive validation steps
to make sure the credit card number is a valid
number. As for the social security numbers, it
uses data from Social Security Administration
to guarantee that valid association between
area number and group number is found for

Page 138

the number (Find SSNs, 2014). The patterns
of the numbers that AUDIT searches using
Find_ SSNs are as follows:

For SSN: ##t##4t#44#,

FHHF, HHH FAE FHHA;
For CCN: # (13,16) with dashes or spaces

anywhere

3.3 Working with AUDIT

AUDIT interacts with users via the
CLIPS expert system shell. The user is asked
to specify his/her technical expertise level,
define the disk image file and specify an
output directory for results to be saved by
AUDIT. Then the user is asked to select what
type of search he/she wants to perform. As
discussed before, AUDIT works on picture
search, financial document search, email
search and sensitive number search. The

HHA-H -

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VI9N2

starting screen of the user interface of our
prototype implementation of AUDIT is shown
in Figure 3.

We are currently categorizing searches
conducted by forensic examiners into general,
intermediate and specific. Picture search is an
example of a general search and we have
implemented it in AUDIT because it is one of
the most important searches that
investigators are interested in. Our goal was
to first have AUDIT do many of the general
searches that investigators would do as
discussed in (Hibshi et al., 2011). Credit card
and social security numbers search on the
other hand is a specific search and is
implemented in AUDIT in order to show how
our tool integration model can be applied to a
very specific search task. Credit card number
search might not be direct evidence for an
investigation but could lead the investigator
to other evidence. Given that a sophisticated

specific open source tool is available, we show
how it can be integrated into our system.
These specific search tools can be
incorporated into AUDIT over time. We also
wanted to address what we term an
intermediate search problem and we labeled
financial document search in this category.
Our goal in part for this classification was to
see if there were different requirements that
were needed when adding the different classes
of tools into AUDIT.

When the user selects one of the search
options from the list of available tasks, the
related expert system knowledge is processed
by AUDIT. The represented knowledge
regarding which tool will be used and how it
will be used are embedded in AUDIT and
pulled from the database. Predefined rules are
added to the inference engine of CLIPS based
on the user's search selection.

o AUDIT - Automated Disk Investigation Toolkit

What would you like to perform?

@® Document Search
Graphics Search
_) Credit Card and SSN

) Email Search

Level of Expertise
@ Non-Expert

Expert

Please select disk image to investigate.

/home/utk/nps-2009-canon2-gen6.raw Browse

Please select an empty output directory For results.

/home/utk/case001

| Browse

START
Exit

Figure 3 Starting Screen of the User Interface of AUDIT

If the user chooses to search sensitive
numbers on the disk image, AUDIT mounts
the disk image to the system and recovers files
from both allocated and unallocated spaces.
Files that potentially have text will also be
carved from the disk image. After the data
retrieval, Find_ SSNs starts running on both
mounted disk and retrieved files. Find SSNs
creates both html and text files for the user's
view and continues working with respect to
user's feedback. The tool integration and an

© 2014 ADFSL

expert system knowledge use for this example
is explored further in the next section.

Until this point of the investigation, the
only questions asked from the wuser are
providing the input image and the output
directory in addition to feedback. Feedback is
basically whether any forensically interesting
data related to the investigation was found or
not and whether the examiner wants to
continue to do a deeper investigation.

Page 139

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

4. TESTING AUDIT

Our current version of AUDIT runs on
Ubuntu 12.04 LTS. In this section we will
present two simulated cases (picture search
and sensitive number search) that we used to
test AUDIT. We used the NPS test disk
images from Digital Corpora (Garfinkel et al.,
2009) and also Brien Carrier's digital forensics
tool testing images (Carrier, 2014b). We also
used some disk images that we created by
adding files from Digital Corpora Govdocsl
(Garfinkel et al., 2009).

4.1 Graphics Files Search

When AUDIT starts, it asks user to
provide the input disk image, the output
directory path for results, and the user level of
expertise. When the user selects graphics files
search, AUDIT first starts mmls tool in order
to figure out the content of the volume
system. It gets all the partitions and their
starting and ending sectors. By doing so,
AUDIT becomes able to work on each
partition by separating them using the dd
command line tool if there are multiple
partitions.

tsk_recover %

Size Mode Date
A <DIR>
=DIR> rwxrwor-x 19:17 08-04-14

[Eo/2 [lo/o =r0.0B/0.0B

/home/utk/case1/tsk_recover §

After getting the image disk and the
partition location (assuming there is one
partition on the disk), AUDIT starts file
system analysis on the partition since the file
system is the area where evidence is mostly
searched for (Carrier, 2005) by investigators.
AUDIT automatically provides the required
parameters (input file, output directory, ‘a’
for allocated space search, and ‘-0’ for sector
offset gathered from mmls) for ¢sk_recover in
order to start analyzing the allocated space of
the partition. For presenting results to the
examiner, A UDIT provides directory structure
of the partition similar to what Carrier's tool
Autopsy (Carrier, 2014a) does. It classifies the
recovered files by file type and lets the user
check whether any forensically interesting
graphics file exists. At this stage of the
process, the user is provided high Ilevel
information regarding where the files are
found. The examiner is also given an option
to do deeper investigation for more
information. If the examiner does not want to
go step by step but would rather do a search
of all possible areas on disk (allocated space,
unallocated space, data carving, and slack
space) this can be done by AUDIT at once in
any stage of the process.
100CANON %

== /home/utk/caset/ftsk_..._51/DCIM/100CANON o)
S Free:1.3MB -Total: 153 CB-0.01% ad 9

Name * | Ext Size Mode Date
A ' | <DiR>| '

B _MG_0025 PG 91.3kB | rw-rw-r— | 19:17 08-04-14
B _MG_0030 JPG 6T.BkB rw-rw-r— | 19:17 08-04-14
B _MG_0035 JPG 20.1kB | rw-rw-r— | 19:17 08-04-14

Eo/o [10/3 5R0.0B/2.5MB

Figure 4 Popup showing files recovered from unallocated space

Assuming the user would like to go to the
next stage, AUDIT starts tsk_recover tool
with the required parameters as mentioned
above except parameter “a’, since
tsk_recover works on unallocated space by

Page 140

default. AUDIT returns directories and files
to the user from unallocated space. See Figure
4. AUDIT then informs the wuser with
information about the type of files (e.g.,
deleted files) that were recovered from the

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VI9N2

disk image instead of only using the term
unallocated space since the user's knowledge
level is non-expert. If the user informs AUDIT
that there is still no interesting data, AUDIT
continues to a deeper analysis and starts
recovering files from the slack space.

AUDIT uses the blkls tool in order to get
the total file slack area of the disk image and
creates another disk image from it. Then, it
runs scalpel on the new image file in order to
carve any hidden graphics file. If found, the
user is informed with the list of hidden images
that are found in this unconventional area of
the disk image.

During all of the above stages, AUDIT
updates the knowledge base and the expert
system uses that knowledge whenever it is
applicable to any rule. In this test we showed
how tools are configured and parameterized
via the expert system and knowledge base. In
the next example we will present how tools
are integrated for a specific search purpose.

4.2 Sensitive Number Search

One of the search options that AUDIT
provides to users is sensitive number search
and specifically credit card and social security
number search. This search type is activated
and the related knowledge base updated in
the expert system after the user selects the
sensitive number search option.

As explained in Section 3.2., we primarily
used Find_SSNs tool in order to find sensitive
numbers on the disk image. This test case is a
good example of how AUDIT integrates
different tools for a specific purpose because
Find_SSNs is not originally designed to work
on various places that AUDIT makes
available for it.

Find_SSNs is not originally designed to
work on disk images or raw data directly,
therefore it needs the disk image being
mounted to the file system in order to make
files and directories available for sensitive
number search. Since this requires technical
knowledge of the wuser, AUDIT performs
mounting via its knowledge base. Mounting
the disk image however does not make
available all space on the disk. AUDIT
however makes sure that all reachable space
of the disk image is made available for the
search including data in the file system,
unallocated space, and slack space. In order to
provide all of this information to Find SSNs
we use tsk recover with parameter ‘e’ to
extract files from both allocated and
unallocated spaces. We also integrate scalpel
and mmec tools to perform data carving on the
given disk image for both fragmented and
unfragmented files. As discussed above blkls is
used to make data in the slack space available
for Find SSNs All of this is done
automatically by AUDIT without any further
input from the non-expert user.

Host127.0.1.1 | Tue Apr 08 2014 18 25 19 PM | Total Suspect Numbers 143 | Search For SSNs + CCNs|

|Su5pect Number Count |Fj.le Exl:ensiun|

File Path

| 2 | .DOC |home/uti/caseSSN/mnt/carvedFiles/DOC-5-0/00000003.DOC
| 5 | .DOC|DOT]| I;‘homelutk!caseSSN;‘mnt!carvedFilestOCIDOTI-11-0100000268.DOCIDOT|
2 .DOC [home/utk/caseSSN/mnt/carvedFiles/DOC-7-0/00000098.DOC
2 XLS /home/utk/caseSSN/mnt/carvedFiles/X1.5-35-0/00000704.X1.S
| 5 | XLS !."home!utk;’caseSSment;’carvedFilestLS-36—0;’00000?58.}15
| 2 | .DOC|DOT| |/homefutk/caseSSN/mnt/carvedFiles/DOC|DOT|-11-0/00000228.DOC|DOT|
| 2 | .DOC|DOT]| I,f’home,f’utk.-’caseSSNf’mntfcarvedFilestOCIDOTI-11-0;’00000229.DDCIDOT|
[.DocC /homefutk/caseSSN/mnt/carvedFiles/DOC-5-0/00000043.DOC
2 .DocC /home/utk/caseSSN/mnt/carvedFiles/DOC-5-0/00000001.DOC

Figure 5 Find SSNs output report for Credit Card and Social Security Numbers

After AUDIT integrates and runs all the

report is created in both html and txt format

tools, Find SSNs runs on all the available
spaces and generate a report for the user. The

(© 2014 ADFSL

for the user's analysis. Example of an html
report can be seen in Figure 5.

Page 141

JDFSL VIN2

Audit: Automated Disk Investigation Toolkit

5. DISCUSSION

The reasoning or inference behind the
configuration of tools and the tasks that were
performed by AUDIT could clearly be
provided as part of a report. This is not
currently done by our system. AUDIT could
provide technical descriptions of what tools
were used and why they were used. It could
also elaborate on where information is
collected from the disk. This inference process
could be useful when investigators are called
for testimony in court. We would not want to
“dumb down” the information that explains
the reasoning process during the assisted
investigation. At the same time we would like
to provide some simpler explanation for the
non-expert user and we are not sure exactly
how this could be done. We believe the
difficulty here is in translating the inference
into knowledge understandable by a non-
expert.

6. CONCLUSION AND
FUTURE WORK

In this paper, we described AUDIT, a novel
automated disk investigation toolkit. This
“intelligent assistant” helps expert and non-1T-
expert investigators during their examination
of a hard disk. We assume that the
investigators understand forensic investigation
but may not have technical skills or detailed
knowledge about the current open source tools
and may not have knowledge about the disk
or file structures. AUDIT contains an expert
system and domain specific knowledge base
that is wused to automatically configure,
parameterize and integrate some of the
commonly used open source command line
digital forensics tools. AUDIT supports the
investigator in conducting both general and
specific investigative tasks.

We believe that using expert systems
technology is a good way to develop tools that
can support forensic examinations. Our goal
was to show proof of concept by developing a
system for a mnon-trivial domain (forensic
examination of a hard disk) that is both
technically challenging and would be of utility

Page 142

to real investigators. We believe our design
and approach could also be used for other
types of examinations such as network and
mobile forensics. The knowledge base and the
expert system help us to represent, use, and
add domain specific technical knowledge
regarding the investigations. This simplifies
both the development and the maintenance
effort when adding or modifying the tools. In
our experience, adding a new tool requires
creating a few new rules and facts into the
knowledge base and adding some entries into
the database. Given technical knowledge
about a tool, we can do this in a day.

Currently AUDIT does not gather new
knowledge from an investigation conducted
using the system. In future work we plan to
augment the toolkit to collect knowledge
about techniques and procedures used in an
investigation (typically from expert
investigators) and add this to AUDIT’s
knowledge base. Additionally, we want to
incorporate the ability to rank the success of
each tool through explicit or implicit
interaction with the investigators as they use
AUDIT. Thus, AUDIT could choose a better
ranked tool on a specific task for future
examinations.

REFERENCES

ArxSys (2014). Digital Forensics Framework.
Retrieved on August 18th from
http: / /www.digital-forensic.org

Beebe, N. (2009). Digital forensic research:
The good, the bad and the unaddressed.
Gilbert Peterson and Sujeet Shenoi,
editors, Advances in Digital Forensics V,
volume 306 of IFIP Advances in
Information and Communication
Technology, 17-36. Springer, Boston.

Carrier, B. (2005). File System Forensic
Analysis. Pearson Education.

Carrier, B. (2014a). The Sleuth Kit. Retrieved
on August 18th from
http://www.sleuthkit.org

© 2014 ADFSL

Audit: Automated Disk Investigation Toolkit

JDFSL VI9N2

Carrier, B.
Testing Images. Retrieved on August 18
from http://dftt.sourceforge.net

Case, A., Cristina, A., Marziale, L., Richard,
G.G., and Roussev, V. (2008). Face:
Automated digital evidence discovery and
correlation. Digital Investigation, 65-75.
The Proceedings of the Eighth Annual
DFRWS Conference, 2008.

Engelmore, R. S., and Feigenbaum, E. (1993).
Knowledge-Based Systems in Japan,
WTEC Hyper-Librarian, 1993.

Find SSNs (2014). Retrieved on August 18th
from
http://security.vt.edu/resources and
information/find _ssns.html

Garfinkel, S. L. (2009). Automating disk
forensic processing with sleuthkit, xml and
python. Approaches to Digital Forensic
Engineering, Fourth International TEEE
Workshop, 73-84.

Garfinkel, S. L., Farrell, P., Roussev, V., and
Dinolt, G. (2009). Bringing Science to
Digital Forensics with Standardized
Forensic Corpora. DFRWS. Montreal.

Garfinkel, S.L., Parker-Wood, A., Huynh, D.,
and Migletz, J. (2010). An automated
solution to the multiuser carved data
ascription problem. Information Forensics
and Security, IEEE Transactions, 868-882.

Hibshi, H., Vidas, T., and Cranor, L. (2011).
Usability of forensics tools: A user study.

IT Security Incident Management and IT
Forensics (IMF), 81-91.

Hoelz, B.W.P., Ralha, C.G., and Geeverghese,
R. (2009). Artificial intelligence applied to
computer forensics. Proceedings of the
2009 ACM symposium on Applied
Computing, SAC 09, 883-888. New York.

James, J., and Gladyshev, P. (2013).
Challenges with Automation in Digital
Forensic Investigations CoRR, 2013.
{abs/1303.4498}

Liao, N., Tian, S., and Wang, T. (2009).
Network forensics based on fuzzy logic and

(2014b). Digital Forensics Tool

th

© 2014 ADFSL

expert system. Computer

Communications, 32, 1881-1892.

Meyers, M., and Rogers, M. (2004). Computer
Forensics: The Need for Standardization
and Certification. International Journal of
Digital Evidence, Purdue University, 2004,
Fall 2004, 3.

Poisel, R., Tjoa, S. (2011). Roadmap to
Approaches for Carving of Fragmented
Multimedia Files. Proceedings of The 4
International =~ Workshop on Digital
Forensics (WSDF11). IEEE Press, Wien.

Riley, G. (2014). A Tool for Building Expert
Systems. Retrieved on August 18th from
http://clipsrules.sourceforge.net

Scalpel (2014). Retrieved on August 18" from
https://github.com/machnlk/Scalpel-2.0

Stallard, T., Levitt, K. (2003). Automated
Analysis for Digital Forensic Science:
Semantic Integrity Checking. Proceedings
of the 19th Annual Computer Security
Applications Conference, IEEE Computer
Society, 2003, 160.

Vermaas, O., Simons, J., Meijer, R., Huebner,
E., Zanero, S. (Eds.) (2010). Open
Computer Forensic Architecture a Way to
Process Terabytes of Forensic Disk
Images. Open Source Software for Digital
Forensics. Springer US, 2010, 45-67.

Page 143

JDFSL VIN2 Audit: Automated Disk Investigation Toolkit

Page 144 (©) 2014 ADFSL

	Audit: Automated Disk Investigation Toolkit
	Recommended Citation

	Audit: Automated Disk Investigation Toolkit

