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Aircraft in the United States military continue to age and remain in service 

far exceeding their original design life. In addition to the accumulated age of the 

aircraft (and their associated systems and components), budget cuts have placed 

additional strain on the associated aircraft supply chains and maintainers. 

Cannibalization, where a donor aircraft is utilized to provide spare parts for 

another, is commonly utilized to maintain readiness when spares are not available. 

The failed aircraft is immediately fixed, and a spare is backordered for the donor 

aircraft. The strategy has become prevalent and considered a “routine aircraft 

maintenance strategy” by the Government Accountability Office (GAO). The GAO 

has estimated that the Navy and Air Force executed 154-176,000 cannibalizations 

per year (FY 1996 – 2000) costing over 5 million maintenance man-hours 

(Government Accountability Office, 2001). Cannibalization of parts does allow 

repair of an aircraft however; it also demonstrates an underlying failure of the 

supply system. Additionally, it introduces additional maintenance requirements and 

may impact morale (Albright, Gerber, & Juras, 2014). Although cannibalization 

has several drawbacks, the strategy can be seen as viable if supported by analysis 

of results (Enslen, 2004). 

According to recent reports the practice of cannibalization is occurring 

frequently and has not diminished since the 2001 GAO study. For example, the 

submarine force cannibalizes at the rate of 1.5 components per day. Additionally, 

delays have resulted in submarines remaining for far longer in dry-dock (Seck, 

2016). The Air Force is experiencing similar problems, with increasing number of 

parts having to be sourced from retired aircraft (Griffin & Tomlinson, 2016).  

Spare shortages resulting in the need for cannibalization can be managed 

utilizing several strategies. First, if the shortages are limited to certain geographic 

locations then the supply chain agility should be improved. Perhaps if an overseas 

location typically utilizes a higher proportion of hydraulic actuators than other 

locations, spare parts can be prepositioned at or near this location. In many cases 

the shortage of spare parts is systemic and not limited to one or two geographic 

locations. In these situations, several other strategies may be used. These solutions 

range from modification of operational loads or associated repair programs, 

improvement of part reliability, or re-opening of manufacturing lines. In many 

cases, reverse engineering is utilized in order to qualify new vendors or locally 

manufacture spares.  

The trend of reverse engineering is likely to continue due to improvements 

in manufacturing capability, specifically the advent of additive manufacturing (or 

3D printing). In order to reverse engineer a product, several steps must be followed. 

First, the geometry of the component must be established and a Computer Aided 

Drawing (CAD) model is developed. For complex parts that include electrical, 

1

Banghart: Identification of Reverse Engineering Candidates utilizing Machine Learning

Published by Scholarly Commons, 2017



 
 

pneumatic, or hydraulic design features, the various signals and theory of operation 

must be fully described. Once the CAD model has been developed to an acceptable 

level of fidelity, the production phase is entered. The design and reverse 

engineering life cycles are provided in Figure 1 for reference. 
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Figure 1. Interaction of the Reverse Engineering Process and Part Design Life 

Cycle adapted from (Durupt, Sebastien, Ducellier, & Bricogne, 2010) 

The efficient and proactive identification of parts and components to enter 

the reverse engineering process is critical to maintain readiness. Additionally, 

reverse engineering of parts that can reduce the number of cannibalization actions 

will reduce overall life cycle cost. Furthermore, the reverse engineering process can 

take a significant amount of time to accomplish; thus analytical methods that can 

support proactive identification of candidates are important. 

Methods that proactively identify parts that may require cannibalization to 

ensure readiness would provide significant benefits to decision makers in several 

ways. Proactively understanding the likelihood of cannibalization actions can 

inform several engineering processes. The associated supply chain can be 

improved, reverse engineering activities can be undertaken, or additional 

manufacturing sources can be identified. The advancement of technologies such as 
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additive manufacturing, coupled with machine learning may further yield positive 

results. Of course, several additional challenges must be overcome to implement 

additive manufacturing. These include, but are not limited to, understanding the 

material properties of printed parts, integration of parts in larger complex systems, 

and flight certification of the printed component. 

This contribution applies a machine learning algorithm to a real-world 

military maintenance data set in order to develop a predictive methodology focused 

on improving decision making considering cannibalization actions. The chosen 

data set is representative of any typical military or civilian aircraft, and the 

developed methodology can be applied to any aircraft by selecting the appropriate 

training data set. The contribution fills an important gap within current literature, 

provides a methodology, and identifies a causal network that can inform decision 

making to enable quantification of cannibalization risk. 

Literature Review 

Literature that identifies an optimum cannibalization policy or top 

degraders at risk of impending cannibalization is sparse (Zhang & Ghanmi, 2014). 

Several early papers were published (Rolfe, 1970; Fisher, 1986; Fisher 1989) 

during the 1970-1980s, formulating the underlying mathematical theory of 

cannibalization. These papers, along with subsequent contributions, focus on the 

determination of optimal policies with varying constraints or simplifying 

assumptions. The theory was expanded by Cheung and Hausman (1995)  as well as 

Sung and Kim (2001). A simulation based method has also been developed by 

Salman, Cassady, Pohl, and Ormon (2007). Salman et al. proposed a decision 

making tool implemented using discrete-event simulation in order to assess the 

impact of cannibalization in terms of cost and readiness. They considered damage 

induced during maintenance as well as limited spares. Salman et al. acknowledged 

that further research was needed to ascertain the appropriate reliability, 

maintainability, and cost parameters utilized in their model and that causal linkages 

between cannibalization and other maintenance related parameters must be 

explored.  

More recently, Zhang and Ghanmi (2014)  expanded upon previous 

research and developed a stochastic model implemented at the operational level. In 

their formulation, they considered several operational decisions, to include 

cannibalization, installation, repair, and replacement. Their method assumed that 

the underlying system is closed in nature (thus no spares enter/exit system) and that 

the total number of end items remain constant. The underlying assumption will not 

remain valid in most military applications where aircraft may be lost due to conflict, 

and additional spares may enter the system due to new purchase orders or reverse 

engineering activities.  
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Okyere-Boateng (2015) performed a detailed statistical analysis of U.S. 

Navy cannibalization data and identified reasons driving cannibalization, which 

included supply shortages, high operational tempo, high readiness demands, and 

the supply response time. The research included the identification of the top 

cannibalized components over several years, and indicated that the associated list 

of components varied significantly, further complicating traditional forecasting 

strategies. Although the study provided several recommendations for improvement 

of the cannibalization process, no quantitative thresholds were derived in order to 

provide decision makers feedback as to the likelihood of a cannibalization action 

occurring. Additionally, the literature currently does not cover the application of 

advanced predictive analytics algorithms in order to forecast the probability of a 

cannibalization action. 

Predictive maintenance has been studied in the literature. The goal of 

predictive maintenance is to determine an optimal maintenance schedule based on 

cost and equipment status. Thus, the goal is to perform maintenance at the optimum 

cycle. Application of machine learning algorithms to these types of problems has 

been discussed in the literature. Liu and Shen (2015) developed a neural network-

based model incorporating the concept of real-time updates assuming connection 

to a Big Data platform. Li, Chen, and Zhu (2016) also considered utilizing a 

Bayesian Network coupled with real-time updates to assess the risk of failure in the 

oil and gas industry and mitigation strategies. However, the research has not 

examined cannibalization coupled with machine learning. 

Method 

Bayesian prediction allows the calculation of the probability of an event that 

a target feature assumes a specified level, given the state of a set of descriptive 

features. Thus, the generalized Bayes’ Theorem can be stated as (Kellerher, Mac 

Namee, & D'Arcy, 2015) 

𝑃(𝑡 = 𝑙)|𝑞[1], … 𝑞[𝑚]) =
𝑃(𝑞[1], … 𝑞[𝑚]|𝑡 = 𝑙)𝑃(𝑡 = 𝑙)

𝑃(𝑞[1], … , 𝑞[𝑚])
 

where 

𝑡 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 
𝑙 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑙𝑒𝑣𝑒𝑙, 𝑎𝑛𝑑 
𝑞 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

Bayesian networks allow encoding of causality between various descriptive 

features given a data set. The network can both be utilized for forward and 

backward prediction, as well as diagnostic functions (Li, Chen, & Zhu, 2016). The 

network consists of nodes and edges, where each node represents a single feature. 
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Edges represent the probabilistic (or causal) relationships between features. Each 

node also includes a conditional probability table which represents the probability 

distribution of the node feature conditioned on the connected descriptive features 

(Kellerher, Mac Namee, & D'Arcy, 2015). Bayesian networks can be updated in 

real-time as additional evidence or information becomes available, allowing for 

statistical inference and reasoning under uncertainty. The update capability of 

Bayesian networks has resulted in application of the method in several domains to 

include dynamic risk assessment in the oil and gas industry (Li, Chen, & Zhu, 

2016). Bayesian networks have also been applied in the medical community to 

investigate causality within cancer processes (Kaiser, Bland, & Klinke II, 2016).  

The causal structure of the Bayesian network can be estimated utilizing 

domain expertise or machine learning algorithms. One algorithm that has been 

shown to work well in this domain is tabu search. The reader is referred to 

Zargoush, Alemi, Vinzi, Vang, & Kheirbek (2014) for a comparison of various 

different structure learning algorithms. Several local search scoring functions can 

be utilized in optimization-based local search methods to include the Bayesian 

information criterion (BIC). The tabu search algorithm extends the hill climber 

algorithm by the introduction of a tabu list. Specifically, the tabu list are the 𝑛 most 

recent moves. Once a local optimum is found, the algorithm steps to the least worst 

candidate in the immediate neighbor as long as the candidate is not within the tabu 

list (Margaritis, 2003).  

As illustrated in Figure 2, an initial network structure is initialized. 

Frequently, the initial network structure takes the form of a Naïve Bayes network 

where conditional independence is assumed between the descriptive features. 

During each iteration a local score is calculated for the network. In iteration 2, an 

arc is deleted between A and C, followed by recalculation of the local score metric. 

As illustrated in the example, the algorithm reverts back to the network structure 

developed in iteration 1. An arc is added from C to E, resulting in an improved 

score. The process continues until the stopping criteria is reached. Additionally, 

moves such as reversing an arc are also allowed. 

Several different score metrics can be utilized, including the Bayesian 

Dirichlet (with several variations), minimum description length or Bayesian 

Information Criterion, and the Akaike Information Criterion. Yang, Chang, and K. 

(2002) compared several different metrics in order to ascertain which performed 

optimally. The reader is referred to their work for a more detailed discussion of the 

various metrics, their assumptions, and performance.  
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Figure 2. Illustration of Bayesian Network Construction using Machine Learning 

The Bayesian local score metric was used along with a 10 fold cross-

validations scheme.   First, we defined the number of records in our dataset, 𝐷 as 

𝑁 with an associated network structure 𝐵𝑠. We further defined the cardinality of a 

feature, 𝑥𝑖 as 𝑟𝑖 where 1 ≤ 𝑖 ≤ 𝑛. Next, we defined the cardinality of a parent set 

of 𝑥𝑖 within our network structure as 𝑞𝑖 = ∏ 𝑟𝑗𝑥𝑗 𝜖 𝑝(𝑥𝑖) . The number of records in 

our dataset for which the probability of 𝑥𝑖 assumed it is the 𝑗th value is denoted by 

𝑁𝑖𝑗(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑞𝑖 , 1 ≤ 𝑘 ≤ 𝑟𝑖). We denote 𝑁𝑖𝑗 = ∑ 𝑁𝑖𝑗𝑘
𝑟𝑖
𝑘=1  and let 𝑃(𝐵𝑠) 

represent a prior on the network structure. Finally, we defined the Bayesian metric 

as (Bouckaert, 1995): 

𝑄(𝐵𝑠, 𝐷) = 𝑃(𝐵𝑠) ∏ ∏
Γ(N𝑖𝑗

′ )

Γ(N𝑖𝑗
′ + 𝑁𝑖𝑗)

𝑞𝑖

𝑗=1

∏
Γ(N𝑖𝑗𝑘

′ + 𝑁𝑖𝑗𝑘)

Γ(N𝑖𝑗𝑘
′ )

𝑟𝑖

𝑘=1

𝑛

𝑖=0
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Case Analysis 

Introduction 

Military organizations collect large amounts of maintenance data from 

organizational units. The military maintenance system is further subdivided into 

different work centers (or organizations) performing maintenance or repairs 

ranging from very specialized (for example, circuit card repair) to less specialized 

(general inspections or repairs). The organizational units are responsible to ensure 

a minimum number of aircraft are mission capable at all times – and thus utilize 

cannibalization practices when needed. Components may be removed from an 

aircraft and sent to a second level of maintenance for repair. The organizations are 

also supported by engineering and logistics functions in order to maintain readiness. 

Maintenance data is typically analyzed by developing trend plots or 

regression analysis, which provide information for decision making. The data is 

challenging to analyze since the captured variables are both quantitative and 

qualitative. Additionally, variables may not exhibit correlation, and techniques such 

as regression may not work well. Finally, the data may contain complex underlying 

patterns which are not immediately obvious.    

Results and Discussion 

The case analysis included 51 unique aircraft with 690 documented 

discrepancies covering five unique system codes of radio, navigation, and 

electronic warfare systems. The remaining aircraft within the data set did not have 

any cannibalization actions associated with the aforementioned system codes. The 

data set incorporated 14 variables that included categorical and numerical features. 

The data set was selected from a larger database that contained the maintenance 

work orders for the EA-6B aircraft over several years. The maintenance data set 

included reported discrepancies (both reported by pilots and ground crew) 

organized by system (or work unit code). The data set included records associated 

with the cannibalization action on the donor aircraft and the aircraft that received 

the repair. Thus, each cannibalization action incurred two records (one for the donor 

and one for the receiver aircraft). The donor discrepancy was identified by a unique 

coding scheme already within the data set. As illustrated in Figure 3, whenever a 

repair is satisfied using a cannibalized part the corrective action contains 

“Cannibalized (BUNO: XXXXXX MCN: XXXXXXX).”   
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Figure 3. Coding of Cannibalization Actions 

The numeric variables, particularly the partially mission capable hours, 

indicated large amounts of variation, and several potential outliers. Descriptive 

statistics are provided in Table 1 along with boxplots in Figure 4. Descriptive 

statistics indicated the quantitative variable distributions were unimodal, although 

highly positively skewed.  

In order to determine if the outliers (based on the Interquartile Range) were 

valid or invalid, and to ensure sufficient data quality, all suspect records were 

manually assessed. Specifically, the review included assessing if any 

inconsistencies were found (for example, maintenance performed but no 

maintenance time logged) by subject matter experts familiar with Navy data 

collection procedures. Four records were flagged as invalid and removed from the 

data set. All zero delay times were reviewed for accuracy. Next, the data set was 

prepared for ingestion into a machine-learning algorithm by converting numerical 

variables to nominal scales of ZERO, LOW, MEDIUM, and HIGH based on their 

interquartile range.  

Table 1. 

Descriptive Statistics for Training Dataset (Zero Values Removed) 

Variable Mean Standard Deviation IQR 

Elapsed Maintenance Time 2.2 3.8 2.2 

Awaiting Maintenance Time 73.7 323.9 23.5 

Awaiting Parts Time 155.6 875.9 110.7 

Non Mission Capable Time 8280.0 13868.0 20216.0 

Partially Mission Capable Time 424.0 2273.0 132.0 
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Figure 4. Boxplots for Case Analysis Dataset 

Several categorical variables, such as the aircraft owner organizational code 

and organizational code of the repair personnel, were included in the data set. As 

illustrated in Figure 5, the frequency distribution of these categorical variables was 

diverse. Reduction of variable cardinality may have improved results; however, it 

was not further investigated in this study. 

The potential linear correlation between variables were investigated using 

the Pearson correlation coefficient. The coefficients ranged from -0.001 to 0.120, 

indicating that there was not a strong linear correlation between variables. A matrix 

plot was constructed to evaluate if a regression model could be established (linear 

or non-linear) for the data set. The regression analysis specifically considered 

predicting awaiting parts time, based on the assumption that awaiting parts may be 

indicative of requiring a cannibalization action (Okyere-Boateng, 2015; Peter 

Bogdanowicz, 2013). A regression model could not be established.  

Tabu search was utilized in order to derive both the underlying Bayesian 

network structure and quantification of the associated conditional probability 

tables. The analysis considered the target feature (what we aim to predict) of 

receiving a cannibalized part, the owner organizational code, and action 

organization code. These variables were important from a practical implementation 

standpoint. The tabu algorithm utilized the Bayes local score metric and was limited 

to a maximum of two parents, 15 iterations, and a tabu list size of 10 due to 

computational burden. The obtained results are provided in Table 2. 
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Figure 5. Owner and Action Organization Distribution 

 

Table 2. 

Machine Learning Algorithm Results 

Target Variable 

Average True 

Positive Rate (All 

Classes) 

Average False 

Positive Rate (All 

Classes) 

F-

measure 

Received 

Cannibalized Part 
86.9 54.7 86.7 

Owner 

Organization 
87.5 3.3 87.0 

Act Organization 96.3 0.4 95.4 

Awaiting Parts 

Hours 
73.6 8.0 74.2 
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The high false alarm rate for the received cannibalized part was further 

investigated. Such a high false alarm rate was concerning and may erode the 

practical significance of the developed model. The variable could take on a value 

of either “yes” (part required cannibalization) or “no” (part satisfied through regular 

supply chain). The false alarm rate was only 7 percent when the class label was 

“yes.”  Thus, if the algorithm predicted that a cannibalization part is required, the 

false alarm rate was sufficiently low for practical significance. Prediction of the 

owner organization and action organization was deemed an important finding. The 

high significance when predicting these target variables will allow decision makers 

to quantify cannibalization risk to include potential maintenance requirements. The 

high F-measure scores (scale 0 to 100) indicated the algorithm achieved both high 

recall and precision in all cases. The derived Bayesian network is provided in 

Figure 6. The CPTs for variables with high cardinality are excluded in the graphic 

due to spacing limitations.  
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Figure 6. Derived Bayesian Network to predict cannibalization actions 

 

Conclusion, Future Research and Study Limitations 

The research indicated that it is feasible to apply Bayesian networks to 

predict aircraft cannibalization risk, given a real-world maintenance data set. The 

contribution fills an important gap within current literature, provides a 
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methodology, and identifies a causal network that can inform decision making and 

several engineering processes to include reverse engineering.  

There are several areas where the study can be expanded. First, the high 

false alarm rate should be investigated further. Variable reduction techniques, or 

reducing the cardinality and variation within the training set may reduce the rate. 

Additionally, a larger sample size may also improve the results. 

Rhe derived causal network should be explored further. Variables such as 

the number of available spares, obsolescence, and the repair rate, may impact the 

number of cannibalizations. Additionally, variables describing the attributes of the 

maintenance personnel and organizations may also impact the results. The causal 

network should be evaluated by subject matter experts, possibly combined with a 

larger surveying of maintenance personnel to refine the model and incorporate 

variables not captured within the maintenance management system. The analysis 

should include a comparison of network structure changes if additional data is 

obtained. Research is also required in order to develop a user interface and decision 

support system utilizing the developed model. The framework must consider how 

knowledge is conveyed to the decision maker, re-validate the causal network as 

new data is integrated, and track algorithm performance versus readiness metrics. 
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