
Publications 

2-2008 

Over-Ocean Validation of the Global Convective Diagnostic Over-Ocean Validation of the Global Convective Diagnostic 

David W. Martin 
University of Wisconsin - Madison 

Richard A. Kohrs 
University of Wisconsin - Madison 

Frederick R. Mosher 
Embry-Riddle Aeronautical University, moshe774@erau.edu 

Carlo Maria Medaglia 
Italian National Research Council - Institute of Atmospheric Sciences and Climate 

Claudia Adamo 
Italian National Research Council - Institute of Atmospheric Sciences and Climate 

Follow this and additional works at: https://commons.erau.edu/publication 

 Part of the Atmospheric Sciences Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Martin, D. W., Kohrs, R. A., Mosher, F. R., Medaglia, C. M., & Adamo, C. (2008). Over-Ocean Validation of the 
Global Convective Diagnostic. Journal of Applied Meteorology and Climatology, 47(2). https://doi.org/ 
10.1175/2007JAMC1525.1 

© Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts 
from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any 
use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act 
September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC 
§108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, 
posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except 
as exempted by the above statement, requires written permission or a license from the AMS. Additional details are 
provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from 
the AMS at 617-227-2425 or copyrights@ametsoc.org. 
This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in 
Publications by an authorized administrator of Scholarly Commons. For more information, please contact 
commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/187?utm_source=commons.erau.edu%2Fpublication%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.ametsoc.org/
mailto:commons@erau.edu


Over-Ocean Validation of the Global Convective Diagnostic

DAVID W. MARTIN AND RICHARD A. KOHRS

Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

FREDERICK R. MOSHER

Applied Aviation Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida

CARLO MARIA MEDAGLIA AND CLAUDIA ADAMO

Institute of Atmospheric Sciences and Climate, Italian National Research Council, Rome, Italy

(Manuscript received 28 June 2006, in final form 17 May 2007)

ABSTRACT

The global convective diagnostic (GCD) is a bispectral (infrared and water vapor), day–night scheme for
operationally mapping deep convection by means of geostationary satellite images. This article describes a
test of GCD performance over tropical and subtropical waters near North America. The test consists of six
cases, each involving a convective cloud complex. A seventh case treats convection over land. For each case,
a map of deep convection was constructed from image pairs from Geostationary Operational Environmental
Satellite-12 (GOES-12). Case by case and for all maritime cases together, the GCD map was compared with
a convective parameter derived from the radar on the Tropical Rainfall Measuring Mission (TRMM), a
polar-orbiting satellite. In general, each GCD map showed a bloblike feature. In each case, the radar
convective pixels typically fell within the GCD blob. However, (except for the land case) the GCD pre-
dicted far too many convective pixels. In the maritime cases overprediction was reduced (without corre-
spondingly impairing other measures of performance) by lowering the nominal GCD threshold. With this
adjustment in place, for the six maritime cases taken individually, the GCD tended to yield more consistent
results than did a monospectral (infrared) convective scheme. With the cases combined, at the lower
threshold the GCD performed somewhat better than one of the more stable versions of the infrared scheme.
Comparison with lightning events (also observed by TRMM) suggests the possibility of future improvement
to the GCD through the incorporation of geostationary satellite observations of lightning.

1. Introduction

Cumulonimbus clouds (cbs) interest several commu-
nities. Numerical modelers must represent the trans-
port of mass (including water in its various forms) in
cumulonimbus updrafts. Physical meteorologists seek
information on the role of cbs in maintaining the global
electric circuit. The heights of cbs within a convective
region may yield information on the height of the
tropopause and on exchange of air between the tropo-
sphere and stratosphere (Schmetz et al. 1997; Tjemkes
et al. 1997). Validation of the U.S. National Weather

Service Aviation Weather Center’s “high-level signifi-
cant weather forecasts” requires information on cb lo-
cation. Turbulence (e.g., Lane et al. 2003) and icing
make the cb a special concern of aviation (Brennan
1983).

Radars operating in the millimeter-to-centimeter-
wavelength band constitute the preferred tool for moni-
toring cbs (i.e., observing them day and night). How-
ever, earth curvature limits the ranges of individual ra-
dars and cost constrains the deployment of networked
radars. As a practical matter, ground-based radars can
monitor convective activity only over and near land
areas.

Weather satellites offer a method of monitoring cbs
over the oceans. Each of the geostationary weather sat-
ellites has a window-infrared (11 �m) channel. Operat-
ing in a transparent region of the infrared spectrum, the
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window-infrared (IR) channel is designed to sense the
surface or cloud-top temperature. In the usual case, a
group of cbs in any particular IR image can be isolated
through some cold threshold temperature. However, a
threshold picked to isolate every cb at times also will
unfortunately flag thick (but convectively inert) cirrus
clouds (Ebert et al. 1996; Mapes and Houze 1993). Fur-
thermore, a threshold optimized for one region or sea-
son may not work well in other regions or seasons (e.g.,
Adler et al. 1985; Lau et al. 1991; Zhang 1993).

Each of the geostationary weather satellites also has
a water-vapor (WV; 6.7 �m) channel. Operating in a
region of the infrared spectrum dominated by WV ab-
sorption, the WV channel is designed to sense moisture
in the middle and upper troposphere. Because the low-
latitude troposphere and midlatitude troposphere cool
with height, ordinarily an IR brightness temperature
will be warmer than a collocated WV brightness tem-
perature (Fritz and Laszlo 1993; Tjemkes et al. 1997).
However, as noted by Fritz and Laszlo (1993), Acker-
man (1996), Schmetz et al. (1997), and Tjemkes et al.
(1997), sometimes a WV brightness temperature ex-
ceeds the matching IR brightness temperature. In all
midlatitude and tropical cases documented so far (Fritz
and Laszlo 1993; Ackerman 1996; Kurino 1997), the
warm WV pixel occurred at a low IR brightness tem-
perature (never more than 245 K). Tjemkes et al.
(1997) termed the phenomenon “warm water vapor
pixel.”

A warm WV pixel could originate in a noisy sensor or
in coarse digitization of a signal (Ottenbacher and
Schmetz 1994), as well as through bias in a calibration
(Ackerman 1996; Tjemkes et al. 1997; Schmetz et al.
1997). It might occur through an offset in the registra-
tion of the WV and IR pixels (Ottenbacher and
Schmetz 1994), through viewing geometry (the limb
darkening effect; Ackerman 1996; Tjemkes et al. 1997),
or through the effect of the (nonlinear) Planck function
on broken cold cloud (Ackerman 1996; Schmetz et al.
1997). Although each of these several factors may con-
tribute to the occurrence of a particular warm WV
pixel, it seems none can account for the body of warm
WV pixels found in satellite images. A warm WV pixel
could also result from differential cloud emissivity (WV
less than IR; Ottenbacher and Schmetz 1994). Acker-
man (1996) does not rule out such a cause; however,
Szejwach (1982) and Liou et al. (1990) both found ef-
fectively constant cirrus emissivities in WV and IR
bands.

Through simulations, Tjemkes et al. (1997) explained
the phenomenon of the warm WV pixel in terms of a
spectrally black cloud in an atmosphere characterized
by temperature lapse (cooling with height) below the

tropopause and temperature inversion above [i.e., in
the stratosphere; also see Fritz and Laszlo (1993)]. A
satellite radiometer operating in the IR band receives
radiation in proportion to the temperature of the (spec-
trally black) cloud top. In the WV band, moisture in the
atmosphere above the cloud top modulates radiation
from the cloud top. As the top of this cloud rises toward
the tropopause, radiation at the satellite declines more
rapidly in the IR band than in the WV band. With the
cloud top at some distance below the tropopause,
brightness temperatures equalize. If the cloud top con-
tinues to rise, the WV brightness temperature might
exceed the IR brightness temperature.

Together with their geographic distribution, the as-
sociation of warm WV pixels with cold IR pixels led
Fritz and Laszlo (1993), Ackerman (1996), and
Tjemkes et al. (1997) to suggest an origin in deep con-
vective cloud.1 This association prompted Schmetz et
al. (1997) to propose the use of warm WV pixels to
monitor deep convection. In 2001, Mosher suggested
that the IR � WV temperature difference could be
used as a real-time indicator of convective weather haz-
ards around the globe for aircraft operations (Mosher
2001). A year later, on a trial basis, he implemented this
idea as the global convective diagnostic (GCD; Mosher
2002).

Operating at a pixel in a bispectral image received
from an operational geostationary satellite, the GCD
algorithm calculates the difference between brightness
temperatures in IR and WV bands. Let Tb be bright-
ness temperature. Superscripts ir and wv refer to, re-
spectively, the window-infrared and WV bands. Then,
the brightness temperature difference is given by

�Tb � Tb
ir � Tb

wv. �1�

The GCD is defined in terms of �Tb:

If �Tb � 1 K then GCD � 1, else GCD � 0.

�2�

The value 1 represents deep convective cloud. By re-
peating this calculation for all pixels in the image pair,
the algorithm constructs a map of deep convection.

Focusing on tropical and subtropical waters, we de-
scribe a small, blind test of the GCD. The test treats

1 In separate schemes Ba and Gruber (2001) and Kuligowski
(2002) each used the IR � WV brightness temperature difference
to distinguish raining and nonraining categories of cold pixel in
image data of the U.S. geostationary satellites. Kurino (1997) used
the same variable as one of three factors in a rainfall scheme
tailored to the Japanese geostationary satellites.
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images from two satellites: Geostationary Operational
Environmental Satellite-12 (GOES-12)2 and the Tropi-
cal Rainfall Measuring Mission (TRMM). GCD is
mapped from GOES-12. Through its precipitation ra-
dar (PR) and Lightning Imaging Sensor (LIS), TRMM
provides independent mappings of deep convection.
The test addresses three questions. First, how well does
the GCD discriminate between maritime cbs and other
maritime clouds? Second, does the GCD perform bet-
ter than a “benchmark” index? Third, can performance
be improved by reducing the temperature-difference
threshold?

2. Data

a. GCD (GOES-12)

In the case of the GOES-12 imaging instrument, su-
perscripts wv and ir refer, respectively, to bands 3 and
4. Band 3 peaks near 6.7 �m; band 4 peaks near 11 �m.
Real-time and archived multispectral GOES-12 image
data were made available through the ingest process of
the “Space Science and Engineering Center desktop
ingestor” (SDI). Calibrated and navigated GOES-12
data were serviced and processed using applications
within the Man–Computer Interactive Data Access
System (McIDAS; Lazzara et al. 1999). For band 3, a
one-count change in the (10 bit) calibrated data corre-
sponds to a 0.35-K change in brightness temperature;
for band 4, it correspondes to a 0.11-K change in bright-
ness temperature (Weinreb et al. 2006). Both changes
refer to a scene at 300 K.3

b. Validation

Validation data for any test of the GCD must map
deep convection. For our particular test, the mapping
must cover tropical parts of the western Atlantic Ocean
and the eastern Pacific Ocean. It must also at least
occasionally coincide with scans from the GOES-12 im-
ager.

At the time of the study, TRMM orbited Earth every
90 min at an inclination of 35°. The PR, one of five

instruments on the TRMM, scanned a swath that was
247 km wide. At the subpoint of the satellite, a scan
spanned 5.0 km. Along a beam, at range increments of
250 m, the radar measured reflectivity from the surface
to an altitude of at least 15 km (Kozu et al. 2001).

Of the TRMM Science Data and Information System
(TSDIS) products, algorithm 2A23 (TRMM PR rain
characteristics, version 5) suited the requirements of
this study best. The 2A23 algorithm (developed by the
TRMM Science Team) reduces PR column reflectivi-
ties to one of two states: rain or no rain. When rain is
present (with a high degree of confidence), the algo-
rithm calculates its height. This parameter, height of
storm (HS), is given in meters above mean sea level. It
does not necessarily imply rain reaching the surface (J.
Kwaitkowski 2004, personal communication). Inter
alia, Algorithm 2A23 provides (to the nearest second)
scan time and (whether raining or not) latitude and
longitude of the center of each integrated field of view
along a scan.

The LIS, another instrument aboard the TRMM
platform, achieves a flash detection efficiency of 90%
(Christian et al. 2000). Operating in a narrow band
within the optical spectrum, the LIS simultaneously
measures radiances at 16 384 points below the satellite.
Spaced 3–6 km apart, these points compose an array
600 km on a side. The LIS repeats this measurement, or
frame, every 2 ms. At a particular location beneath the
satellite, the array dimension and sampling frequency
together ordinarily yield a set of sequential measure-
ments, or an observation, spanning 90 s. Thus, an ob-
servation lasts long enough to capture storms having
flash rates as small as one per minute.

Christian et al. (2000) define the variable called event
as “the occurrence of a single pixel exceeding the back-
ground threshold during a single frame.”4 Without dis-
tinction, cloud-to-cloud lightning, in-cloud lightning,
and cloud-to-ground lightning are recorded. In the con-
text of the LIS, event is a number ranging from 0 to
(potentially) 45 000.

3. Method

McIDAS was used to identify cases and to acquire,
display, and manipulate image data. This section de-
scribes the selection of cases and the processing of im-
age data for each case.

2 At the time of the test, GOES-12 occupied the “east” position
(75°W).

3 For display purposes, the 10-bit brightness temperatures were
converted to 8-bit brightness counts. The value 242 K represents
a break point in this conversion. For brightness temperatures
greater than 242 K, a change of 0.5 K corresponds to a change of
one brightness count. For temperatures less than 242 K, a change
of 1.0 K corresponds to a change of one brightness count. All
figures that present GCD data draw on the 8-bit brightness tem-
peratures.

4 If, at a pixel, the brightness during the integration window of
2 ms exceeds a reference value then the algorithm records an
event. Thus, as Christian et al. (2000) note, an event may consist
of more than one lightning pulse.
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a. Selection of cases

Orbital geometries and scan modes assured the oc-
casional intersection of a bundle of PR scans with a
bundle of GOES-12 scans. However, GOES-12 scan
time and scan coverage varied from hour to hour and
from day to day. In the absence of a consistent relation
between the TRMM orbit (hence, PR scan) and the
GOES-12 scan, each day’s intersections (if any) had to
be discovered individually.

Premised on geolocation errors of less than 4 km and
scan-time errors of less than 0.5 min, a script was
written to check a given day’s SDI images for space–
time coincidences between GOES-12 and TRMM.
[McIDAS uses National Oceanic and Atmospheric Ad-
ministration (NOAA) two-line orbital element data to
predict the location of the TRMM at any given time.] If
a GOES image fell within the geographical confines of
this study (5°–30°N, 45°–105°W), the script calculated
the times of the first and last scans. If a TRMM orbit
coincided in space and time with such an image, the
investigators were alerted.

The script was run on McIDAS each day through the
period 1 June–4 July 2003. McIDAS checked 4710
GOES-12 images and sent 54 alerts. Alerts were pro-
cessed in three stages. First, the set was screened. Sec-
ond, the remaining alerts were ranked. Last, a domain
was defined for each of the top-ranking alerts. At no
point before or during this process were the TRMM
data consulted.

Screening identified each “space–time coincidence.”
To qualify as a space–time coincidence, an alert had to
meet three conditions: overlapping data of dimension
�100 km (or more), scan-time difference of not more
than 7 min, and (within the space–time window) at least
one active cb. The size condition was intended to assure
the possibility of a statistically meaningful sample of
pixels. [Expressed as an area (104 km2), it falls within
the range of peak (maximum) sizes in Sherwood and
Wahrlich’s (1999) study of mesoscale convective sys-
tems of the southwestern Pacific Ocean.] The differ-

ence condition was aimed at reducing the likelihood of
a mismatch between the stage of any deep convective
cell in the GOES view and the stage of that cell in the
PR view. Cumulonimbus presence was determined by
inspecting the relevant IR image. The application of
these conditions to the set of alerts yielded 10 space–
time coincidences.

Ranking ordered the space–time coincidences. It
took place in two steps. First, coincidences were scored
according to a set of five parameters, each referenced to
the convective cell (or group of cells) captured by a
particular coincidence. In order of importance, the pa-
rameters were distance (seaward) from a coastline, scan
lag, intensity, size, and isolation. Here, “scan lag”
means the absolute difference in scan times at the cen-
ter of the convective cell. Intensity was estimated
through inspection of the GOES imagery. Size refers to
the dimensions of the convective storm, and isolation
refers to its separation from neighboring cloud systems.
Points were awarded in direct proportion to distance,
intensity, size, and isolation and in inverse proportion
to scan lag.

The second step involved classification of the space–
time coincidences into one of four “synoptic” types:
cloud cluster, vortical cloud (Frank and Johnson 1969),
tropical storm, and squall line. From the top of the list
downward, these types were allowed to appear in any
order. However, none was allowed to repeat until all
types had appeared.

From the ranked list, we chose the top six space–time
coincidences for further processing. For each of them,
using information in the corresponding alert, we estab-
lished a domain. A domain is the latitude–longitude
box that best balances overlap (in scans) and lag. It also
aims to center the cb (or cbs). As “cases,” these space–
time coincidences are listed in Table 1. Subsequent to
their selection, a seventh coincidence—here, case
1—was added to the original six coincidences. Case 1
originated in a test of the McIDAS script. It was added
in part to include a Pacific Ocean convective system.
Domains are mapped in Fig. 1. One of the seven cases

TABLE 1. The cases discussed in this paper. All dates refer to 2003. The six maritime cases are listed first.

Case No. Date

GOES scan time (UTC)

Lag (min) CommentStart Coincidence

1 15 May 2045 2056 0 Eastern Pacific; cloud cluster
2 1 Jun 0645 0654 1 Gulf Stream/Cape Hatteras; squall line
3 5 Jun 0932 0936 1 Coastal Campeche Bay; cloud cluster
4 12 Jun 1940 1945 2 Caribbean Sea; vortical cloud
5 25 Jun 2215 2223 0 Caribbean Sea; vortical cloud
6 30 Jun 1415 1424 4 Gulf Coast; Tropical Storm Bill
7 12 Jun 0115 0127 7 Texas–Oklahoma; squall line
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(number 7) falls entirely over land. It is included only as
a foil to the maritime cases.

b. Processing

Whatever its domain, each case was treated similarly.
First, “product” images were constructed from the na-
tive images.

1) TRMM

The TSDIS orbit viewer [a visualization tool created
by the Goddard Distributed Active Archive Center
(DAAC)] was used to strip a text-formatted array of
HS data from a (PR) 2A23 file. McIDAS applications
converted the text data into McIDAS area format. Us-

ing a nearest-neighbor scheme, the HS data were
remapped into a rectilinear projection of resolution
4 km 	 4 km. From the remapped HS data, we created
a “tower” map showing echoes that were at least 10 km

TABLE 2. Validation statistics. All range and target values are
expressed in percent. Formulas for these statistics are given in
appendix B.

Statistic Variable

Range

TargetLow High

“Yes” bias (i.e., forecast bias) Bias 0 
 100
Probability of detecting

“yes” observations
PODy 0 100 100

Probability of detecting
“no” observations

PODn 0 100 100

False-alarm rate FAR 0 100 0
Critical success index CSI 0 100 100
Heidke skill score HSS 0 100 100

TABLE 3. Case-by-case values (%) of selected statistics for each
of the seven band-4 thresholds. Statistics are defined in Table 2.
Here, ND stands for “not defined” (i.e., division by 0).

Statistic
Threshold

(K)

Case

1 2 3 4 5 6 Composite

PODy 230 100 95 97 88 91 92 97
225 100 94 96 66 85 92 96
220 99 92 96 66 71 92 94
215 98 88 95 66 65 92 93
210 90 64 94 67 60 85 86
205 60 0 89 33 37 73 64
200 17 0 77 0 0 0 40

FAR 230 97 98 90 99 99 99 98
225 97 98 89 99 99 99 98
220 97 98 89 99 98 99 97
215 96 97 89 99 94 99 96
210 93 83 87 97 93 99 93
205 86 ND 87 86 89 95 89
200 73 ND 87 ND ND ND 86

HSS 230 1 1 10 0 0 0 1
225 1 1 11 0 1 0 2
220 2 2 12 1 2 1 4
215 3 3 12 2 9 1 6
210 9 26 15 5 13 2 12
205 19 0 14 19 16 8 18
200 20 0 15 0 0 0 19

FIG. 1. Domains for the seven cases, identified by number. The states of Louisiana,
Oklahoma, and Texas are marked by LA, OK, and TX, respectively.
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tall. Except for the tower map, event data from the LIS
were processed similarly.

2) GOES

Each GOES-12 image pair (bands 3 and 4) was cor-
rected for parallax (Wylie et al. 1998). The parallax
correction assumed a 10-km cloud located at the center
of the domain. Pixel by pixel, for each corrected image
pair, the band-4 brightness temperature was subtracted

from the band-3 brightness temperature. For display
purposes, a new variable, 34DF, was defined. As �Tb

ranges from �10 to 10 K, 34DF ranges from 200 to
�200. Appendix A explains this transformation and re-
lates 34DF to McIDAS brightness (hereinafter: bright-
ness).

As with HS, brightness was remapped into a rectilin-
ear projection of resolution 4 km 	 4 km. The rectilin-
ear brightness image then served as input to a set of

FIG. 2. GOES images for (a) visible (band 1), (b) infrared (band 4), and (c) water vapor (band
3) for case 1, 2045 UTC 15 May 2003. The box centered at 9°N, 89°W marks the domain.
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seven GCD images. A GCD image in one of these sets
differed from the others only in the threshold used to
define a convective pixel. In units of �Tb, these thresh-
olds were 1.0, 0.5, 0.25, 0.0, �0.25, �0.5, and �1.0 K.
The threshold 1.0 K defines the “nominal” GCD
(Mosher 2002). Each of the other thresholds defines an
“experimental” GCD.

Except for lightning events, from each of the recti-
linear images (PR as well as GOES), arrays matching
the domain were extracted. These “subsected” images
served as inputs for most graphical and all statistical
analysis. To diagnose the performances of the GCD, we
use 2 	 2 contingency tables (appendix B) and the
statistics listed in Table 2. The statistics were drawn
from standard (forecast) verification metrics (e.g., Ma-
honey et al. 2000). Each is calculated from some subset
of the values contained within a contingency table, ac-
cording to the formulas given in appendix B.

3) BENCHMARK INDEX (BMI)

To assess the performance of the nominal GCD, we
applied a cold-temperature threshold to the band-4 im-
age. Any image pixel that was at least as cold the
threshold was assigned to the class “cb.” All others
were assigned to the class “not-cb.”

Over the years, several temperature thresholds have
been used to isolate deep convection (e.g., Fu et al.
1990; also see Mapes and Houze 1993 or Laing and
Fritsch 1993). To find a threshold appropriate to the set
of maritime cases (1–6), we ran the following test. Case

by case, contingency tables were constructed for each
of seven temperature thresholds (230, 225, 220, . . . ,
200 K). This group of (6 	 7) contingency tables be-
came the inputs for generating an equal number of sets
of statistics. If they are assumed to be independent, the
six cases can be combined. In the calculation of the
contingency table for this “composite” case, a pixel of
one case was assumed to carry the same weight as a
pixel of any other case. Combining the cases led to a set
of seven composite cases, one for each band-4 thresh-
old.

Composite skill scores for the band-4 index rose
monotonically with decreasing threshold temperature.
They tended to peak at the colder thresholds (Table 3,
right-hand column). However, at the two coldest
thresholds (205 and 200 K), for one or more cases
the band-4 index predicted a total absence of towers
(Table 3, middle columns), even though in each case
towers were present (Table 6, described below). Fur-
ther, as is shown in Table 3, for two statistics (PODy

and Heidke skill score), the range (within the set of
cases) increased markedly as the band-4 threshold
dropped from 215 to 210 K. After considering the
case-to-case stability of any particular threshold, as
well as its composite skill score, we chose 215 K as a
suitable threshold for a band-4 index. In Jordan’s
(1958) mean West Indies sounding, 215 K corresponds
to a pressure of 190 hPa and a height of 12.8 km. Here-
inafter, this is referred to as the benchmark index, or
BMI.

FIG. 2. (Continued)
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4. Results

Results are presented first for two cases and then (in
summary) for all cases. The first and second of the two
cases ranked high and low in performance statistics,
respectively.

a. Case 1

At 2056 UTC 15 May 2003, GOES-12 scanned a
large cloud cluster along the intertropical convergence
zone in the eastern Pacific Ocean. The band-1 (visible)
image (Fig. 2a) suggests overshooting tops within the
canopy of cirrus. (A line of overshooting tops can be
discerned extending eastward from the 90th meridian at
8.5°N.) Some interior structure appears in the band-4
(IR) image (Fig. 2b). GOES-12 observed temperatures
as low as 192 K. The colder (bright) spots in Fig. 2b
tend to coincide with overshooting tops (shadowed
bright spots in Fig. 2a). Except in lacking its contrast,

the band-3 (WV) image (Fig. 2c) closely resembles the
IR image.

In the brightness image (Fig. 3a), the cluster emerges
from its background. Zonally oriented lines appear.
The fine lines reflect noise in the band-3 and band-4
sensors (cf. Ellrod et al. 1998). The coarse lines suggest
linear arrangements of convective cells. One of these
lines tends to coincide with the overshooting tops noted
in the band-1 image (Fig. 2a).

In the nominal GCD (Fig. 3b), we find a lobed object
marked with linear (east–west) perforations. With each
successive step toward the negative end of the �Tb

range (Figs. 3c–h), the object shrinks and the perfora-
tions multiply. At a �Tb of �1 K (Fig. 3h), three clusters
of stars remain. The stars in each cluster tend to group
into lines. The strongest of these lines coincides with
the cell line in the brightness image (Fig. 3a) and,
hence, with the visible image’s line of overshooting tops
(Fig. 2a). BMI (Fig. 3i) suggests an ink blot. In position

FIG. 3. Case-1 GOES image products, each in rectilinear projection, for the domain shown in Fig. 2: (a) McIDAS brightness, (b)
nominal GCD, (c)–(h) experimental GCD, and (i) BMI.
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and shape (if not size), the blot resembles the nominal
GCD object (Fig. 3b).

Following the method of Ackerman (1996), we com-
pare �Tb with T ir

b through box-and-whisker plots (Fig.
4). The set of plots forms a finger poking into the �Tb–
T ir

b space from the large-difference–warm-brightness-
temperature corner of the graph. The axis of the finger
(as defined by a smoothed string of median values)
crosses into GCD space (�Tb � 1) near a T ir

b value of
215 K. Albeit small, the slope of this axis remains posi-
tive at all temperatures below 215 K. On the other
hand, a significant fraction of pixels colder than the
BMI threshold (215 K) falls outside the GCD space.

The distribution of median values in Fig. 4 may be
compared with those plotted by Ackerman (1996, his
Fig. 8). Ackerman’s pair of box-and-whisker plots
draws on radiances of the High-Resolution Infrared
Sounder/2 (HIRS/2) on the NOAA-12 satellite. Sepa-
rately for 2 months, they show �Tb in relation to T ir

b for
all pixels between the latitudes 50°S and 50°N. For both
months, Ackerman’s distributions extend into colder
temperatures than does that of Fig. 4. Where direct
comparisons are possible, his medians also tend to be
colder than those of Fig. 4. Otherwise, across the inter-
val 200–230 K, median values in Ackerman’s Fig. 8 ap-
pear to fall within 1 K of those of our Fig. 4.

The HS (Fig. 5a) bears a fractal character (see Gif-
ford 1989). The largest of the echoes contains a num-
ber of local maxima, or peaks, including four or five
aligned zonally near the center of the domain. This
echo lies almost entirely within the boundary of the
brightness cluster (Fig. 3a). Its line of peaks nearly co-
incides with the cluster’s line of cells. Each of the stron-

ger peaks holds one or more tower pixels. The larger
clumps of tower pixels tend to coincide with both the
overshooting tops inferred from the band-1 GOES im-
age (Fig. 2a) and the cell line in the brightness image
(Fig. 3a).

To gain insight into the relationship between HS tow-
ers and �Tb, two brightness frequency distributions
were constructed. (These are not shown.) One con-
sisted of all brightness pixels; the other, called “tower
brightness,” consisted of just those brightness pixels as-
sociated with tower pixels. Tower brightness repre-
sented a small sample of the brightness population.
This sample included most pixels brighter than 162
counts (�Tb of �2.7 K) but included no pixel darker
than 98 counts (�Tb of 2.3 K).

Events (Fig. 5b) appear in two small, well-separated
clusters. Within each cluster, maxima tend to lie near
the center. Each of the clusters coincides with a peak in
the map of HS (Fig. 5a).

Scatterplots of HS and LIS versus �Tb are shown in
Figs. 6a and 6b, respectively. In the ideal case, all tall-
echo points (HS � 9000–10 000 m) in the HS plot (Fig.
6a) would lie above the line �Tb � 1.0 K and all other
points would lie below. The cloud of points suggests a
mushroom. Except for values above roughly 11 000 m,
the large-HS cap of the mushroom tilts upward with
HS. Tilt in the cap indicates power in �Tb to discrimi-
nate more than one depth of deep convection. The po-
sition of the cap relative to the intersection of the 1.0-K
line in �Tb and the 10 000-m line in HS suggests better
performance for some members of the experimental
GCD set (e.g., 0.5 K) than for the nominal GCD.

In the scatterplot of events and �Tb (Fig. 6b), the
cloud of points would ideally form a wedge pointing
from the high-�Tb–low-events corner to the low-�Tb–
high-events corner. Figure 6b shows few events and
only slight “wedging” of these events. However, most
events fall within the nominal GCD space.

Table 4 gives statistics for case 1. In this table (and
subsequent statistics tables), the first four rows give
counts in the 2 	 2 contingency table: predicted (x)
versus observed (y) (appendix B). Whether nominal or
experimental, the GCD overforecasts [bias � 100 and/
or false-alarm ratio (FAR) ≅ 90]. PODy drops drasti-
cally as the �Tb threshold decreases while PODn rises
somewhat. Skill indices indicate discrimination power,
especially at lower thresholds.

With respect to PODy, BMI beats GCD across the
experimental set (�Tb � 1.0 K). Otherwise, GCD per-
forms better than BMI, although the difference in per-
formance would have been smaller had 210 K been
used as a threshold for the BMI.

FIG. 4. Box-and-whisker plots for case 1. Each plot represents
values in a “T (band 4)” (T ir

b) bin of 1 K. Within a bin, the bottom
and top of a box represent, respectively, the 25th and 75th quartile
values of �Tb, the bar shows the median value, and the top and
bottom ends of the whisker indicate, respectively, the maximum
and minimum values of “delta T (band 4 � band 3)” (�Tb). The
line at �Tb � 1 delineates the space occupied by the nominal GCD
(below) from that outside the nominal GCD (above).
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b. Case 2

Early on the morning of 1 June 2003, GOES-12 ob-
served a convective system east of Cape Hatteras,
North Carolina. The band-4 image (Fig. 7) shows the
tail of a large comma cloud. A scalloped (undulated)
rear edge indicates embedded cbs. The shape and ori-
entation of the comma tail suggest a cold-frontal squall

line (e.g., see Fig. 5.2.40 in Bader et al. 1995). As with
case 1, the band-3 image (not shown) closely resembles
the band-4 image, except in contrast. The domain se-
lected for this case straddles the squall line and encloses
the most prominent of the “backside” cbs, that is, the cb
at 36°N, 72°W. Nowhere in the domain did band-4 tem-
perature fall below 205 K.

A band trending southwest to northeast dominates

FIG. 5. Case-1 validation images from TRMM, where blue identifies (a) tower pixels (HS �

10 000 m) or (b) nonzero event pixels (i.e., indicates lightning). The box marks the domain for
this case. Within the domain, white indicates no rain and shades of gray represent HS.
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the brightness image (Fig. 8a). From east to west, the
band spans nearly two-thirds of the domain. Brightness
tends to decrease from the main backside cb eastward
and southward. The �Tb sequence (Figs. 8b–h) begins
with a small comma embedded within the brightness
band. As �Tb decreases through the sequence, the small
comma shrinks and corrodes. By the end of the �Tb

sequence (Fig. 8h), it consists of scattered pixels and a
few clumps of pixels. BMI (Fig. 8i) also shows a small
comma. In size, position, and coherence, this comma

most closely resembles the nominal-GCD comma (Fig.
8b).

Box-and-whisker plots comparing case-2 �Tb with
case-2 T ir

b (Fig. 9) show a finger much like that of
case 1 (Fig. 4). The case-2 finger differs in two main
respects. First, the axis of the finger drops into GCD
space (�Tb � 1) at a slightly warmer value of T ir

b . Sec-
ond, reflecting differences in minimum band-4 tem-
peratures, by about 10 K the case-2 finger is shorter
than the case-1 finger.

Like GOES, the PR observed a band trending south-
west to northeast (Fig. 10a). However, the HS band
spans less than one-half of the width of the domain and
lies mainly to the west of the center of the domain. A
line of cells lies just within the western edge of the
band. The most prominent of these cells coincides with
the main backside cb in the brightness image (Fig. 8a).

Towers in HS (Fig. 10a) suggest two lines of cells,
both aligned along the axis of the HS band. The line to
the east consists of small (pixel and double pixel) cells.
The line to the west includes the cell associated with the
main backside cb. Tower cells nearly all fall within the
nominal GCD (Fig. 8b). As with case 1, tower bright-
ness pixels constituted a small sample of brightness
pixels. For case 2, tower brightness includes most tem-
perature-difference pixels brighter than 158 counts (�Tb

of �2.4 K) and no pixels darker than 90 counts (�Tb of
2.9 K).

In clustering and in associations with HS peaks,
events for case 2 (Fig. 10b) resembled those for case 1.
However, event clusters in case 2 numbered four rather
than two, and each contained scores rather than tens of
pixels. These differences may reflect differences be-
tween the structure of a cell in a squall line (case 2) and
in a cloud cluster (case 1) (e.g., Rys and Waldvogel
1986).

FIG. 6. Scatterplots for case 1, with �Tb as dependent variable
and (a) HS or (b) event (LIS) as independent variable. The line at
�Tb � 1 K delineates the space occupied by the nominal GCD
(above) from that outside the nominal GCD (below). In (a), the
line at HS � 10 000 m marks the cutoff for towers.

TABLE 4. Statistics for case 1. The variables under the column
headed “Statistic” are defined in appendix B. Here, �Tb is ex-
pressed in kelvins. The column headed “1” gives statistics for the
nominal GCD. Case 1 has 8604 pixels.

Statistic

�Tb

BMI1 0.5 0.25 0 �0.25 �0.5 �1

YY 144 126 108 85 65 47 25 157
YN 3435 2325 1681 1008 700 452 136 4311
NN 5009 6119 6763 7436 7744 7992 8308 4133
NY 16 34 52 75 95 113 135 3
Bias 2236 1531 1118 683 478 311 100 2792
PODy 90 78 67 53 40 29 15 98
PODn 59 72 80 88 91 94 98 48
FAR 95 94 93 92 91 90 84 96
CSI 4 5 5 7 7 7 8 3
HSS 4 6 8 11 11 12 14 3
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Figure 11a shows the scatterplot of HS and �Tb for
case 2. Again, the point cloud forms a mushroom. How-
ever, the cap of the case-2 mushroom (especially for
large HS) tilts less than does the cap of the case-1 mush-
room. Less tilt in this quadrant of the graph implies a
weaker relationship (no correlation) between tall ech-
oes and �Tb.

In contrast with case 1, the scatterplot of LIS events
and �Tb for case 2 (Fig. 11b) shows values up to 80, a
number of events outside the nominal GCD space, and
marked wedging. On the whole, the case-2 distribution
of points much more closely conforms to the ideal pat-
tern.

As in case 1, the nominal GCD overforecasts (Table
5). In a similar way, PODy drops and PODn rises as �Tb

decreases. At all thresholds, case 2 exhibits higher bias
and higher FAR than does case 1. Except at a �Tb of
�1, case-2 GCD detects a smaller fraction of tower
pixels. However, at all thresholds below a �Tb of 0.5,
case-1 GCD detects a larger fraction of PODn pixels.
The skill indices reflect these differences. Case-2 CSI
scores run from one-third to one-half of those of case 1;

case-2 Heidke skill scores run from one-third to three-
quarters of those of case 1. Performance tends to im-
prove as �Tb decreases.

At all levels, the benchmark index beats the experi-
mental GCD in detecting tower pixels. False-alarm
rates are about equal whatever the value of �Tb is. In
terms of skill scores, BMI matches the performance of
the nominal GCD and first two experimental GCDs.
For �Tb � 0.5 K, the experimental GCD tends to per-
form better than the BMI.

c. Composite results

Maps of GCD at the nominal threshold tended to
show blobs, typically one per case. At progressively
smaller values of �Tb, each blob tended to shrink and
fray. In all cases, the nominal GCD blob for a case
encompassed most of the corresponding tower pixels.

For the nominal threshold of �Tb (1) and for two
experimental thresholds (0 and �1), Table 6 presents
statistics for each of the six maritime cases (1–6). At the
nominal threshold one case (4) yielded less than 15 YY
pixels, at the zero threshold two additional cases (5 and

FIG. 7. Window infrared (band 4) GOES images for case 2, 0645 UTC 1 Jun 2003. The box centered at 35°N, 70°W marks the
domain.
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6) yielded less than 15 YY pixels, and at the �1 thresh-
old yet another case (2) yielded less than 15 YY pixels.
Small samples in the yes–yes quadrant decrease confi-
dence in the performance statistics.

This caution notwithstanding, at the nominal thresh-
old performance fell below our expectation. In all cases,
the false-alarm rate exceeds 85%. Except for case 3,
good detection of one category of pixel means poor
detection of the other. No skill score exceeds 13%. In
terms of CSI and HSS, case 2 ranks fifth from the top
and case 1 ranks third or fourth from the top.

By most measures, two of the six maritime cases
stand out. Case 6 demonstrates no skill, and case 3
demonstrates skill at the 11%–13% level. Case 6 was a
tropical storm (Bill) crossing the Louisiana coast. Shad-
ows (in the visible image—not shown) and coincident
cold spots indicate (at best) narrow, shallow overshoot-
ing tops. Band-4 temperatures are as low as 198 K.
Within the domain, the PR measured towers to 16.6
km. However, towers occupy fewer than 30 pixels.
Along the Gulf Coast, Storm Data (NCDC 2003) notes
only flooding (no severe convective weather) in the
hours near and after the case-6 scan-time coincidence.

Case 3 occurred on the opposite side of the Gulf of
Mexico. Case 3 is a compact nocturnal cloud cluster and

has band-4 temperatures as low as 189 K. Echo heights
peak at 17 km; the count of towers exceeds 260.

At the zero-threshold level, the false-alarm rate re-
mains high. For all cases, good detection of one cat-
egory of pixel means poor detection of the other. Cases
3 and 6 still stand out as, respectively, best and worst.
However, bias improves markedly, and for most cases
skill scores at the zero-threshold level are higher than
skill scores at the nominal-threshold level.

Marginally (in an absolute sense), performance im-
proves for case 2 from a threshold of 1 to a threshold of

FIG. 9. Box-and-whisker plots for case 2.

FIG. 8. Case-2 GOES image products for the domain, each in rectilinear projection: (a) McIDAS brightness, (b) nominal GCD,
(c)–(h) experimental GCD, and (i) BMI.

FEBRUARY 2008 M A R T I N E T A L . 537



0. However, performance improves substantially for
case 1. At the zero-threshold level, case 2 ranks sixth
from the top and case 1 ranks third or fourth from the
top.

Ignoring cases 4 and 5, we find that from the 0 thresh-
old to the �1 threshold the bias score continues to
improve. Except for case 3, this change drives skill
scores upward. The improvement is most notable for
case 1, which (at the �1 threshold) has the highest skill
scores.

Table 6 also presents statistics for case 7. With re-
spect to skill scores at the nominal threshold, case 7
stands out from each of the maritime cases. In this case
alone, dropping the threshold consistently diminishes
performance. Case 7 was a Great Plains squall line.
Overshooting tops in the GOES-12 visible image and
enhanced-Vs in the GOES-12 infrared image indicate
strong updrafts within the cells. Cloud-top tempera-
tures are as cold as 200 K. The PR measured echo

heights to 17.5 km. Towers occupy 1200 pixels. For
western, central, and southeastern Oklahoma and
northern Texas, Storm Data (NCDC 2003) lists several
reports of hail and damaging winds in the 1-h window
centered on the case-7 scan-time coincidence. Viewed
at infrared wavelengths by GOES-12, case 7 differs
from case 2 in three main respects: smaller anvils,
colder temperatures, and enhanced-Vs imprinted on
the tops of a few of the anvils.

As with the band-4 statistics [section 3b(3)], thresh-
old by threshold, GCD composite cases were con-
structed from the GCD maritime contingency tables.
Table 7 and Fig. 12 present the results. For the nominal
GCD we find skill scores of �5% and somewhat high
bias and FAR (Table 7). Except for PODy (the prob-
ability of detecting a tower pixel), performance tends to
improve as the �Tb threshold drops from 1 to �0.5.
Although modest in absolute terms, the change
amounts to a 50%–100% improvement in skill scores.

FIG. 10. Case-2 validation images from TRMM, where blue identifies (a) tower pixels or
(b) event pixels.
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Marginally, BMI (Table 7, right-hand column) beats
GCD at the nominal threshold. It detects more than
90% of the tower pixels but issues false alarms at a rate
of more than 95%.

Figure 12 contrasts the distributions of echo heights
for the two classes of GCD pixels (cb and not-cb). Each
pair of distributions (cb and not-cb) includes all “echo”
pixels in the composite case. Consider the pair of curves
representing the nominal GCD (solid lines). In relation
to one another, the cb distribution is flat and the not-cb
distribution is peaked. Also, despite considerable over-
lap, the cb distribution lies toward the high-HS end of
the scale and the not-cb distribution lies toward the

low-HS end of the scale. This pattern conforms to the
behavior indicated in Figs. 6a and 11a.

Dropping the GCD threshold from 1 to 0 changes the
shapes of the distributions more than the positions. For
cb pixels, the distribution flattens; for not-cb pixels, it
sharpens. The effect of the changes is to sharply reduce
the number of false positives and to modestly reduce
the number of true positives (also see Table 7). Drop-
ping the GCD threshold from 0 to �0.5 (not shown)
continues this trend, but at a lesser rate.

At the 1 threshold, the mean HS is �5.3 and �1.5
km for cb and not-cb pixels, respectively. Whether for
cb or not-cb categories, at each successive threshold
step, mean HS increases. Increases occur in lockstep.
Thus, the category difference in mean HS remains es-
sentially the same (3.7–3.8 km) for each threshold.

We might propose three conditions for the selection
of an optimum �Tb threshold: first, skill scores that are
significantly better than those of BMI; second, a high
probability (�50%) of detecting a tower pixel; and,
third, nonzero skill across a range of convective sys-
tems. For the six maritime cases considered here, these
conditions lead to an optimum �Tb of approximately 0.

5. Concluding remarks

We describe a test of GCD performance over the
tropical and subtropical northwestern Atlantic and
northeastern Pacific Oceans. Drawing on GOES-12 im-
age data, the test targeted individual convective sys-
tems but operated on pixels rather than on convective
entities. Height-of-storm measurements from the
TRMM precipitation radar and flash counts from the
TRMM Lightning Imaging Sensor served as validation
data.

For a 6-week period beginning in mid-May 2003,
passes of the PR were matched in time and space to

FIG. 11. Scatterplots for case 2, where the independent variable
is (a) HS or (b) event (LIS).

TABLE 5. Statistics for case 2. Conventions are as in Table 4.
Case 2 has 10 666 pixels.

Statistic

�Tb

BMI1 0.5 0.25 0 �0.25 �0.5 �1

YY 80 72 65 49 38 32 13 74
YN 3634 2957 2316 1544 1338 889 339 3130
NN 6948 7625 8266 9038 9244 9693 10 243 7452
NY 4 12 19 35 46 52 71 10
Bias 4421 3605 2834 1896 1638 1096 419 3814
PODy 95 85 77 58 45 38 15 88
PODn 65 72 78 85 87 91 96 70
FAR 97 97 97 96 97 96 96 98
CSI 2 2 2 3 2 3 3 2
HSS 3 3 4 4 4 5 5 3
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images from GOES-12. In 11 of the 55 matches, the
time–space window of coincidence framed all or part of
a convective system. Six of these systems were selected
for analysis. These six cases included two cloud clusters,
two vortical clouds, one squall line, and a landfalling
tropical storm.

Two of the six cases were examined in detail. In nei-
ther case did the statistical character of the distribution
of brightness temperature difference (window � water
vapor) as a function of infrared brightness temperature
differ significantly from that reported for the global
tropics and midlatitudes. Maps of GCD at the nominal

TABLE 7. Statistics for the composite case. Conventions are as in Table 4. Pixel count is 53 288.

Statistic

�Tb

BMI1 0.5 0.25 0 �0.25 �0.5 �1

YY 484 419 375 305 248 198 100 538
YN 12 335 9162 7164 4799 3759 2601 1115 13 231
NN 40 375 43 548 45 546 47 911 48 951 50 109 51 595 39 479
NY 94 159 203 273 330 380 478 40
Bias 2218 1658 1304 883 693 484 210 2382
PODy 84 72 65 53 43 34 17 93
PODn 77 83 86 91 93 95 98 75
FAR 96 96 95 94 94 93 92 96
CSI 4 4 5 6 6 6 6 4
HSS 5 6 7 9 9 10 10 6

TABLE 6. Case statistics for three values of �Tb. Numbers in parentheses give sample sizes. Otherwise, conventions follow those in
Table 4.

�Tb Statistic

Case

1 (8604) 2 (10 666) 3 (5745) 4 (10 039) 5 (10 188) 6 (8046) 7 (8034)

1 YY 144 80 211 6 19 24 776
YN 3435 3634 1635 573 480 2578 675
NN 5009 6948 3846 9457 9673 5442 6166
NY 16 4 53 3 16 2 417
Bias 2236 4421 699 6433 1425 10 007 121
PODy 90 95 79 66 54 92 65
PODn 59 65 70 94 95 67 90
FAR 95 97 88 98 96 99 46
CSI 4 2 11 1 3 0 41
HSS 4 3 13 2 7 1 51

0 YY 85 49 142 6 9 14 172
YN 1008 1544 1044 136 86 981 55
NN 7436 9038 4437 9894 10 067 7039 6786
NY 75 35 122 3 26 12 1021
Bias 683 1896 449 1577 271 3826 19
PODy 53 58 53 66 25 53 14
PODn 88 85 80 98 99 87 99
FAR 92 96 88 95 90 98 24
CSI 7 3 10 4 7 1 13
HSS 11 4 13 8 13 2 20

�1 YY 25 13 54 1 0 7 18
YN 136 339 446 13 12 169 3
NN 8308 10 243 5035 10 017 10 141 7851 6838
NY 135 71 210 8 35 19 1175
Bias 100 419 189 155 34 676 1
PODy 15 15 20 11 0 26 1
PODn 98 96 91 99 99 97 99
FAR 84 96 89 92 100 96 14
CSI 8 3 7 4 0 3 1
HSS 14 5 9 9 0 6 2
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threshold of difference in brightness temperature
tended to show blobs. At progressively smaller values
of the �Tb threshold, each blob tended to shrink and
fray.

The nominal GCD (threshold of 1) consistently
predicted too many deep-convective pixels. For most
convective systems, skill scores improved as the �Tb

threshold was dropped from 1 to 0. At this threshold
the false alarm ratio ranged from 88% to 98% and the
Heidke skill score ranged from 2% to 13%. At this
threshold, too, the algorithm consistently outperformed
a single-threshold (215 K), infrared-only index. We ten-
tatively conclude that the GCD—especially at thresh-
olds lower than the nominal value—offers the commu-
nity a new tool for detecting and mapping deep cumu-
lus convection over the oceans.

Among unresolved issues, four stand out. First, GCD
performance varied considerably from case to case.
Second, the present results may apply only to convec-
tive systems occurring over the ocean. Third, the results
might be different for some other geostationary satel-
lite. Last, results with the LIS suggest value in incorpo-
rating information from lightning sensors. In anticipa-
tion of instruments on future generations of geostation-

ary satellites, in a subsequent study we plan to adapt the
GCD to accept lightning data.
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APPENDIX A

Definition of the Variables 34DF and McIDAS
Brightness

The difference variable, �Tb, ranges across the value
0. To achieve a useful McIDAS display, a new variable,
34DF, was defined:

FIG. 12. The cb and not-cb frequency distributions of echo height (HS) for the nominal
GCD (1 K; solid lines) and one of the experimental GCDs (0 K; dashed lines). Both pairs of
distributions (1 and 0) refer to the composite case. Values were binned at a resolution of 250
m across the interval from 100 to 18 350 m. Each distribution is smoothed by a five-point
running mean. The bar near the midpoint of the x axis marks the bin containing the threshold
(10 000 m) for tower echoes.
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If |�Tb| � 10 K, then 34DF � �20�Tb,

else 34DF � 0. �A1�

Then, 8-bit McIDAS brightness was related to 34DF:

If |34DF| � 200, then

McIDAS brightness � �255�400��34DF  200�, else

McIDAS brightness � 0. �A2�

APPENDIX B

Formulas Used to Calculate the Validation
Statistics Listed in Table 2

Given some case, we express the performance of the
diagnostic scheme (GCD or BMI) in terms of a 2 	 2
contingency table (cf. Mahoney et al. 2000). In this
table, the y axis is the HS tower (the “observed” value)
and the x axis is either GCD or BMI (the “predicted”
value). Then, YY is predicted cb and observed cb, YN
is predicted cb and observed not-cb, NN is predicted
not-cb and observed not-cb, and NY is predicted not-cb
and observed cb. Various combinations of these vari-
ables yield the following statistics:

bias � 100�YY  YN���YY  NY�,

PODy � 100 	 YY��YY  NY�,

PODn � 100 	 NN��YN  NN�,

FAR � 100 	 YN��YY  YN�,

CSI � 100 	 YY��YY  NY  YN�, and

HSS � 100��YY  NN� � c����YY  YN  NY

 NN� � c�,

where

c � ��YY  YN��YY  NY�  �NY  NN��YN

 NN����YY  YN  NY  NN�.
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