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ABSTRACT 

This paper investigates an unexplored concept in Cyber Forensics, namely, a Programming Blunder. 

Programming Blunder is identified as a variable or a code segment or a field in a database table, which 

is hardly used or executed in the context of the application or the user’s functionality. Blunder genes 

can be found in many parts of any program. It is the contention of this paper that this phenomenon of 

blunders needs to be studied systematically from its very genetic origins to their surface realizations in 

contrast to bugs and flaws, especially in view of their importance in software copyright infringement 

forensics. Some suggestions as to their applicability and functional importance for cyber forensics are 

also given including the vital need and a way to incorporate programming blunders into Abstraction-

Filtration-Comparison test, the official software copyright infringement investigation procedure of US 

judiciary 

Keywords: Bug, error, blunder, genes, software piracy, software copyright, software copyright 

infringement, software piracy forensics, AFC, idea-expression dichotomy 

1. INTRODUCTION 

A programming flaw occasionally survives in well tested and implemented software. It can surface in 

the form of a variable or a code segment or a field in a database table, which is hardly used or 

executed in the context of the application or the user’s functionality. Such a flaw in design can be 

called a Programming Blunder
2
 (Bhattathiripad and Baboo, 2009, 2011). The term programming 

blunder has already been casually used (in many publications, for instance, in (McConnell, S., 1996)) 

to denote bad practices in programming.  

The phenomenon of blunder needs to be specifically contrasted with a programming error, as unlike an 

error, the blunder is most unlikely to cause problems during the  execution. Ideally, all blunders (like 

all errors) in software should be and are routinely removed at the various quality control stages of the 

software development. Even if it (unfortunately) makes through all quality control stages, there is 

again a slim chance for it be detected and removed at the implementation stage. Even so, occasionally, 

a few programming blunders may survive all these stages of software development and may finally 

appear unattended (or unnoticed) in the implemented software.  Despite their apparent status as 

                                                 
1 This paper is an enhanced form of the paper “Software Piracy Forensics: Programming Blunder as an important 

evidence” that was accepted as a short paper (but not presented) in the Third ICST International Conference on Digital 

Forensics and Cyber Crime, Dublin, Ireland, 26 - 28 October, 2011. Also, this paper contains points extracted from the 

author’s Ph D thesis “Judiciary-friendly software piracy forensics with POSAR”. 
2 This type of programming flaw has been christened as “Programming Blunder” because the very existence of it (in a well-

tested and implemented program) is a mark of blunder-like weaknesses of the respective programmer / quality engineer. The 

naming is done from the forensic perspective of such programming flaws. 
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harmless vestiges of inattentive vetting, these blunders do provide an important service to the cyber 

forensic expert.  They can form an important basis for providing evidence in case of an allegation and 

ensuing investigation of copyright infringement of such software. It is this increased cyber forensic 

importance (despite their being less important in areas such as software engineering and software 

testing) that underscore the need to specifically understand and study them, not just in the cyber 

forensic perspective but right from their definitional aspects.  

2. OBJECTIVES OF THIS PAPER 

Spafford and Weeber (1992) have already anticipated the importance of (blunder-like) execution paths 

as cyber forensic evidence in “providing clues to the author (of the suspect / alleged program)” and 

this anticipation is the point of departure for of this study. The emergent concept of programming 

blunders (in this paper) is a natural outcome of a specific study of all such execution paths in the 

context of software piracy
3
. The objectives of this paper can be set thus: (1) to thoroughly investigate 

the phenomenon of blunders in detail and by doing so attempt to denotationally concretize and define 

the term “programming blunder”; (2) to discretely identify the study of programming blunders as 

different from other software bugs and (3) to discuss the cyber forensic importance of programming 

blunders in the investigation of an allegedly pirated (copyright infringed) software.  

3. DEFINING THE TERM PROGRAMMING BLUNDER 

The term programming blunder has already been introduced and identified (but not properly defined) 

in some previous publications (Bhattathiripad and Baboo, 2009; 2011). Additionally, without using the 

term “Programming Blunder”, Spafford and Weeber (1992) have already mentioned certain execution 

paths (as said above) of a code that “cannot be executed”.  

A common factor found when analyzing student programs and also when 

analyzing some malicious code is the presence of code that cannot be executed. 

The code is present either as a feature that was never fully enabled, or is 

present as code that was present for debugging and not removed. This is 

different from code that is present but not executed because of an error in a 

logic condition—it is code that is fully functional, but never referenced by any 

execution path. The manner in which it is elided leaves the code intact, and 

may provide some clue to the manner in which the program was developed. 

(Spafford and Weeber, 1992) 

 
By taking a cue from Spafford and Weeber, can one define programming blunder as “any execution 

path in the program that need not and so will not be executed during the lifetime of the program on 

any execution platform”? Possibly not, because, such a definition has an inherent limitation in that it 

considers only inoperative statements (non-executed path) in the program. It overlooks and excludes 

those operative statements (executed paths) which are very much still present there but are not 

necessary for the successful functioning of the program. That means, it excludes those statements 

which may have been executed at some stage of the program but are not necessary for producing the 

final result. In other words, it does not consider those operative statements which are incoherently, 

redundantly and/or dysfunctionally appearing in the text of the program and/or which may have been 

executed at some stage but are hardly used in the user’s functionality (or to arrive at the final results). 

So, programming blunders turn out to be a lot more than what Spafford and Weeber had suggested. 

Like Spafford and Weeber (1992), several other researchers also have already mentioned 

programming flaws of this genre (without using the term programming blunder) and studied their 

importance in software testing, author identification and other software forensic areas. For instance, 

                                                 
3 In this article, the term ‘piracy’ refers to the piracy of a copyrighted software. 
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through a recent comprehensive paper
4
 (Hayes and Offutt, 2010), Jane Huffman Hayes and Jeff Offutt 

examine (among other things) whether lint
5
 (a static analyzer that detects poor programming practices 

such as variables that are defined but not used) for a program can be used to identify the author or a 

small set of potential authors of the program. So, the notion of a programming blunder may not 

entirely be new. Nevertheless, none of the previous publications (where the concept of programming 

blunder was used in the research related to software testing, author identification and other software 

forensic areas) have tried to seriously explore the concept in some detail in an effort to denotationally 

concretize / crystallize the term programming blunder, and so differentiate it from other programming 

bugs and finally, study its forensic importance. This is the reason for setting the primary objective of 

this paper, viz. to thoroughly investigate the phenomenon of blunders in detail and by doing so attempt 

to concretize and define the term “programming blunder”. 

Even though the existing definitions of “programming blunders” subsume execution paths of a code 

that “cannot be executed” (Spafford and Weeber, 1992) and variables that are defined but not used 

(Hayes and Offutt, 2010), a more cautious definition employed in this study is:   

A programming blunder found (in well tested, implemented and allegedly 

pirated software) can be defined as a variable in a program or a program code 

segment or a field in a database table which is hardly executed in the context of 

the application and/or is unnecessary for the user’s functionality 

(Bhattathiripad and Baboo, 2009).  

 
This definition subsumes not only the execution paths of a code that “cannot be executed” and 

variables that are defined but not used but also unnecessary non-execution paths (like comment lines 

and blocked execution paths).   

A blunder in a program gains significance during the piracy forensics (or copyright infringement 

forensics) of the program (see below). 

4. GENETIC ORIGIN OF PROGRAMMING BLUNDERS 

A proper investigation of blunder, like that of any organism, should ideally start with a look into its 

genetic origin. Blunder genes
6
 (or genes of programming blunders) are those elements in the program 

that can often form the basis for (the existence or surfacing of) a programming blunder. Blunder genes 

can be traceable to many parts of the program like a variable, class, object, procedure, function, or 

field (in a database table structure). A blunder gene is developmentally (and perhaps philologically) 

different from a blunder just as an embryo can be from the baby. While every blunder gene has 

significance in software engineering research, a blunder has additional forensic significance. What the 

programmer leaves in the program is a blunder gene and this blunder gene can develop into and 

surface as a blunder during the piracy forensic analysis (or copyright infringement forensic analysis). 

What elements in the program can then form the genetic basis of a blunder? The simple answer is that 

any item in (or a segment of) a program which is unnecessary or redundant to customer requirements 

can form the genetic basis for a programming blunder. Such items can, however, surface in a program 

in three different ways. In other words, programming blunders can be categorized in three ways 

according to their genetic differences. 

1. Any defined but-unused item (or a code segment) in a program. 

                                                 
4 A note of gratitude to the reviewers of the Third ICST International Conference on Digital Forensics and Cyber Crime, for 

drawing my attention to this paper. 
5 The UNIX utility lint that is commonly used to bring out flaws like programming blunders as compiler warnings. 
6 My sincere gratitude to Dr. P. B. Nayar, Lincoln University, UK, for his valuable suggestions 
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2. Any defined item (in the program) which is further used for data-entry and calculation 

but never used for the user’s functionality of a program. 

3. Any blocked operative statement in a program. 

 
Primarily, any defined but unused variable, class, object, procedure, function, or field (in a database 

table structure) can appear as a programming blunder. Hence, any such defined, concrete, tangible 

item (or a blunder gene) in the body of a program (or an external routine or data base as part of the 

software) which was subsequently found unnecessary or irrelevant for the operation of the program / 

software can evolve or materialize as a programming blunder during a forensic analysis of the 

program. Thus, a programming blunder may be an item (or a segment of a program) that is well 

defined at the beginning of an execution path in a program but is not part of the remaining stages of 

the execution path (example: Processing stages, Reporting stages etc.) in the program. For instance, 

the integer variable ‘a’ in the C-program given in Table-1 is a programming blunder as this variable 

has not been used anywhere else in the program. This variable has no relevance in the operation (for 

producing the intended output) of the program.  

#include <stdio.h> 

#include <conio.h> 

main() 

{ 

    int a=0, b=2, c=0; 

    C=b*b; 

    printf(“The result is %d”, c); 

    getch() 

} 
Table 1. A defined but unused variable ‘a’ in a C-program 

Secondly, any defined item (or the blunder gene) at the beginning of an execution path in a program) 

which is further used for data-entry but never used in the remaining stages of the execution path in the 

program, can also appear as a programming blunder during a forensic analysis of the program. Thus, 

the integer variable ‘a’ in the C-program given in table 2 surfaces as a programming blunder as this 

variable has been well defined and used for data entry but not used anywhere else in the program. 

#include <stdio.h> 

#include <conio.h> 

main() 

{ 

  int a=0; 

  scanf("%d", &a);   /* reading the value of a*/ 

  printf("Hello, World"); 

  getch(); 

} 

 
Table 2. Unnecessary declaration and input statements in a C-program 

Thirdly, a blocked operative statement (or a remarked operative programming statement), which is 

practically an inoperative element of the program, can appear as a programming blunder. Thus, the 

remark statement (or the blunder gene)  /* int a; */ in the C-program given in table 3 can turn out to be 

a programming blunder during a forensic analysis of the program as this statement need not be there in 

the first place and does not justify its being there at all for long, unattended (unlike the other 

programming remark /* This program prints Hello, World */ which has a purpose in the program).  
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#include <stdio.h> 

#include <conio.h> 

main() 

{  

  /* This program prints “Hello, World” */ 

  /*int a=0;*/ 

  printf("Hello, World"); 

  getch(); 

} 

 

Table 3. A program in C-language 

All the above suggest that, any defined variable, class, object, procedure, function, or field (in a 

database table structure) in a program which has no relevance in the final output (user’s functionality) 

of the (well-tested and implemented) program can manifest itself as a blunder during the copyright 

infringement forensic analysis of the program.  

5. COMMONALITIES AND SIMILARITIES AMONG PROGRAMMING BLUNDERS 

Irrespective of their genetic origin, all programming blunders do share some features, properties, 

attributes and characteristics. A programming blunder 

1) is a concrete, tangible item in (or segment of) a program and not a process.  

2) can be an execution path which got past the quality control stage, undetected.  

3) does not affect the syntax or sometimes even the semantics of a program which makes 

it hard to detect.  

4) is not necessary to execute the program. 

5) is not necessary for user’s functionality. 

6) does not justify its being there at all.  

7) is a matter related to the design pattern and programming pattern of the software.  

 

6. ETIOLOGY OF PROGRAMMING BLUNDERS 

The etiology of programming blunders can be discussed along three different weaknesses of the 

programmer / quality engineer. Firstly, his/her inability to completely remove from the program those 

elements that do not help meet customer requirements can be a cause for a blunder. Secondly, his/her 

inattention to completely remove those statements that have been abandoned as a result of the 

programmer’s afterthought can also be a cause for a blunder. Thirdly, his/her inattention to identify 

and remove items that do not contribute to either strong coupling between modules or strong cohesion 

within any module of the program can also be a cause for a blunder. These three different weaknesses 

of the programmer / quality engineer can thus be reasons for programming blunders.  

7. PROGRAMMING BLUNDERS JUXTAPOSED WITH SOFTWARE BUGS 

The next objective of this paper is to identify the study of programming blunders as different and 

discrete from that of other software bugs. Quite naturally, even experts in the software engineering 

might need some convincing as to why programming blunders need or demand a distinct status as 

against software bugs. There definitely does exist a need to be convincing because, the above 

mentioned genetic origins, manifestations, features, properties, attributes, characteristics and etiology 

of blunders may prima facie be identified with those of software bugs as well. Therefore, what makes 

a programming blunder deserve a special consideration different from other software bugs?  

A software bug is the common term used to describe an error, flaw, mistake, failure, or fault in a 

http://en.wikipedia.org/wiki/Failure
http://en.wikipedia.org/wiki/Fault_(technology)
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computer program or system that produces an incorrect or unexpected result, or causes it to behave in 

unintended ways (IEEE610.12-1990, 1990). An error is “the difference between a computed, 

observed, or measured value or condition and the true, specified, or theoretically correct value or 

condition” (IEEE610.12-1990, 1990, p31). Other related terms in the computer science context are 

fault, failure and mistake. A fault is “an incorrect step, process, or data definition in a computer 

program” (IEEE610.12-1990, 1990, p31). A failure is “the [incorrect] result of a fault” (IEEE610.12-

1990, 1990, p31) and mistake is “a human action that produces an incorrect result” (IEEE610.12-1990, 

1990, p31). Most bugs arise from mistakes, errors, or faults made by people or flaws and failures in 

either a program's source code or its design, and a few are caused by compilers producing incorrect 

code
7
. A programming blunder (as defined at the beginning of the article) does not resemble a bug 

either in raison d’être or function (see above). In other words, a software bug is different from a 

programming blunder and this difference (which is significantly relevant for the forensic expert) may 

look simple, but is by no means simplistic.  

8. PROGRAMMING BLUNDERS AND THE IDEA-EXPRESSION DICHOTOMY 

The idea-expression dichotomy (Newman, 1999) provides an excellent theoretical perspective to look 

at and explain blunders. Any genuine idea which is properly expressed in the definition stage but 

improperly (or not at all) expressed in the remaining stages (in a program) in a manner that does not 

adversely affect the syntax (or sometimes even the semantics) of the program can become a 

programming blunder. So, the integer variable ‘a’ in the C-program given in Table-2, for example, 

when looked at in the idea-expression perspective, is a programming blunder. So, from the perspective 

of the idea-expression dichotomy, programming blunder is a partly-made
8
 functional expression of an 

idea. This clearly opens the door to linking blunders directly to copyright infringements of any 

program because the idea-expression perspective is the basis of formulation of software copyright 

laws in several countries (Hollaar, 2002;  Newman, 1999). 

Copyright laws of several countries (especially the US copyright laws) say that if there  is only one 

(exclusive) way of effectively expressing an idea,  this  idea  and  its  expression  tend  to  “merge” 

(Walker, 1996, p83) and in such instances an idea is not protectable through copyright (Hollaar, 2002).  

However, if the same idea can be realized through more than one expression, all such different 

realizations are protected by copyright laws. Interestingly this means that the copyright of a program is 

directly related to the concept of the merger between idea and expression and that when there is no 

merger, the copyright of a program can extend to the blunders contained therein as well.   

9. FORENSIC IMPORTANCE OF PROGRAMMING BLUNDERS 

Despite their apparent functionally inactive and thus innocuous nature in a program, blunders, when 

copyrighted, can be of great value / assistance to the cyber forensic expert. They provide evidence of 

software copyright infringement and a discussion of this evidence is one of the prime objectives of this 

article. On the forensic importance of programming blunders, Spafford and Weeber (1992) have noted 

that:  

Furthermore, it (a programming blunder) may contain references to variables 

and code that was not included in working parts of the final program — 

possibly providing clues to the author and to other sources of code used in this 

program. 

 

                                                 
7 http://en.wikipedia.org/wiki/Software_bug visited on 6th Feb, 2011 
8By partly-made functional expression, what is meant or intended is an element which is defined, implemented but left 

unused or inoperative in the remaining stages. 

 

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Software_bug
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Since Spafford and Weeber (1992), a variety of experiments (for instance, Krsul (1994)) have been 

performed on authorship analysis of source codes and copyright infringement establishment of 

software. Also, at least half a dozen techniques and procedures (for instance, AFC (Hollaar, 2002), 

SCAP (Frantzeskou, 2007) etc.) have been put forward for establishing authorship and copyright 

infringement of software. However, none of them have taken cue from the above note of Spafford and 

Weeber and considered programming blunders as evidence in the court.  

Not all blunders are “substantial” in the copyright infringement forensic analysis. Blunders which can 

provide direct (substantial) evidence to establish piracy (and thus, to establish copyright infringement) 

or can provide probable, corroborative or supporting evidence are forensically important. The 

repetition of programming blunders (even if these programming blunders are ‘generic’ by nature) in 

both original9 and the pirated10 in identical contexts would be a serious indication of piracy. If, for 

instance, a variable with a universally uncommon name ‘PXRN_CODE_AUCQ CHAR[6]’ is defined 

in identical places of the identical procedures in the original11 as well as the pirated12 software, but 

not used anywhere else (see the three categories of blunders, above), that is an instance of 

programming blunder and such programming blunders attract/deserve forensic importance. The 

forensic importance of blunders arises from the obvious fact that it is highly unlikely that two 

programmers will blunder exactly in the same way, thus elevating the similarity into possible evidence 

of piracy (See also Appendix-1).  

While trying to establish a variable name or a code segment as a programming blunder, the expert 

needs to confirm that it is (i) absent elsewhere in the original, (ii) present in the allegedly pirated 

exactly in the same context as it was found in the original and (iii) absent elsewhere in the allegedly 

pirated (Bhattathiripad & Baboo, 2010).  

In the absence of other direct evidence of piracy, programming blunders can form the only basis for 

the expert to convince the judiciary about the possibility of piracy.  

                                                 
9 Throughout this article, original means the version of the software that the complainant submits to the law enforcement 

agency for software piracy forensics. This article presupposes that the law enforcement agency has satisfactorily verified the 

legal aspects of the documentary evidence of copyright produced by the complainant and is convinced that the complainant is 

the copyright holder of this version of the alleged software. 
10

 Throughout this article, pirated means the allegedly pirated software 
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Fig 1: The software copyright infringement forensic procedure of AFC

13
 

                                                 
13 Abstraction-Filtration-Comparison Analysis Guidelines for Expert Witnesses  

http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-

Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx 

http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx
http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx
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10. PROGRAMMING BLUNDERS AND THE AFC TEST 

As things stand, it appears that forensic procedural protocols of software copyright infringement have 

not fully recognized the importance of programming blunders. Nor have there been many attempts to 

ensure their inclusion in the forensic expert’s repertoire. Programming blunders are very unlikely to be 

detected, for instance, by the AFC test (see Appendix-3 and fig 1) which is the only judiciary-accepted 

procedure for establishing software copyright infringement in the US. They are not detected or even 

considered because during the abstraction of the program, only the functionally active parts (of the 

program) will be considered for abstraction and used for further investigation (Hollaar, 2002, p86).   

The functionally inactive parts (or those items are irrelevant for user’s functionality) like programming 

blunders will not be considered for abstraction
14

. Moreover, abstraction may remove many individual 

lines of code from consideration and so blunder genes as well as blunders may also get automatically 

removed during the abstraction stage of AFC. In such case of unfortunate non-consideration, the 

programming blunders will not be available for final comparison and this unavailability may make the 

final results of AFC, incomplete and thus, unreliable. This is one of the fallibilities of AFC 

(Bhattathiripad and Baboo, 2010) and can probably be a reason for the reluctance to use the AFC test 

in the copyright infringement forensics of modern software (however, US judiciary continues to use 

AFC test for software copyright infringement forensics
15

). Hence, this paper proposes that, along with 

the AFC results, the evidence concerning the programming blunders, if any, should also be identified 

and gathered separately by the expert by comparing the original with the pirated, before applying the 

AFC test and reporting his/her the final findings and inferences to the court
16

. This paper also proposes 

that the AFC test should be re-designed so as to ensure that possible evidence like programming 

blunders are available for final comparison. 

Before concluding, a note on what a judge expects from an AFC expert, would add value to the special 

attention and consideration given to programming blunders. In any software comparison report, what 

the judge would expect from the AFC expert is a set of details that help the court in arriving at a 

decision on the copyrightable aspects of programming blunders. Jon O. Newman (1999), one of the 

judges on the panel (in the 2
nd

 circuit of U. S. judiciary) that received an amicus brief
17

 (concerning a 

software copyright infringement case) indicates what he needs from expert witnesses in a trial (or in 

the amicus brief) on an appeal involving software copyright infringement:  

These professionals would be well advised not to tell me simply that the source code 

is or is not protectable expression. Their opinion are relevant, but, as with all opinions, 

what renders them persuasive is not the vehemence of their assertion and not even the 

credentials of those asserting them; it is the cogency and persuasive force of the 

reasons they give for their respective positions. These reasons had better relate to the 

specifics of the computer field. For example, as Altai (United States Court of Appeals, 

1992) indicates, even with its overly structured mode of analysis, it will be very 

                                                 
14 Because AFC test does allow for 'literal' similarities between two pieces of code, there is a general belief that AFC can 

make available “literal” pieces like programming blunders (for example, variables that are defined but unused and execution 

paths that “cannot be executed”) for final comparison. But in practice, AFC does not either abstract these “literal” pieces of 

evidence or filter them out in the filtration stage and either way, these programming blunders like “literal” pieces are 

unavailable for final comparison. 
15 See United States District Court of Massachusetts (2010), Memorandum and Order, Civil Action number 07-12157 PBS, 

Real View LLC. Vs. 20-20 Technologies, p.2 
16 The ultimate decisions like whether these pieces of evidence (concerning programming blunders)  (1) are useful or not; (2) 

form direct or secondary evidence; and (3) are generic (and hence, non-copyrightable) by nature or not, come under judicial 

matters and are subject to the provisions of the prevailing Evidence Act of the respective country. However, cyber forensic 

report can remain suggestive on these three aspects and also on the (conclusive, corroborative, and supportive) nature of the 

programming blunders found in the original and the pirated. 
17 Amicus Brief of Computer Scientists, Harbor Solutions v. Applied Systems No. 97-7197 (2nd Circuit, 1998) at 8-9 

(citations omitted) 
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important for me to know whether the essential function being performed by the 

copyrighted program is a function that can be accomplished with a variety of source 

codes, which will strengthen the case for protection, or, on the other hand, is a 

function, capable of execution with very few variations in source code, or, variations 

of such triviality as to be disregarded, in which event protection will be unlikely. For 

me, this mode of analysis is essentially what in other contexts we call the merger 

doctrine – the expression is said to have merged with the idea because the idea can be 

expressed in such limited ways that protection of the plaintiff’s expression unduly 

risks protecting the idea itself. (Newman, 1999) 

So, what is expected in the case of programming blunders also is a set of details on the merger aspects 

of the ideas and expressions contained in any programming blunder (This is because, as said earlier,).  

In conclusion, the following facts emerge: it seems reasonable to state that any variable or a code 

segment or a field in a database table, which is hardly used or executed in the context of the 

application or the user’s functionality can form the basis of a programming blunder. The copyright of 

the software can often extend to the blunders contained therein. Also, any programming blunder that 

goes against the merger doctrine is copyrightable and repetition of it in another program can be a 

serious indication of copyright infringement. As a result, programming blunders can greatly influence 

the expert to give supportive evidence to his findings, thus indirectly contributing to the judge’s 

decision. Because of this, identification and reporting of programming blunders need to be a part of 

the copyright infringement investigation. Hence, procedures like the AFC test needs to be re-designed 

so as to ensure that possible evidence like programming blunders are not filtered out.  
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APPENDIX-1: SECONDARY OR INCONCLUSIVE PROGRAMMING BLUNDER GENES 

 

Most genes of programming blunders can be conclusively identified. But, there are certain 

elements in a program that may not have yet surfaced as blunders but are potentially prone to 

surfacing later as programming blunders. Conversely, all ideas which are successfully 

expressed but are superfluous to customer requirements also may not surface as a blunder 

because such expressions (or a code segment) may affect the semantics of the program and 

thus end up as an error at some point of time during the life time of the program (if not during 

its pre-implementation testing stage). Any such code segment is basically a gene of an error 

and not of a blunder. However, any such code segment in a time-tested program may 

eventually form the basis of a blunder because such an item or a code segment does not justify 

its being there at all for long unattended. But, such blunders are very difficult to be 

conclusively identified and used. 

 

APPENDIX-2: BUG REPEATED V. BLUNDER REPEATED 

 

A bug repeated (in a pirated program) may be noticed during the functioning of the pirated. 

Unlike a bug, a programming blunder repeated (in a pirated program, though noticeable) 

would remain unnoticed during the functioning of the pirated. In the absence of a thorough 

quality control round by the pirated (which is very likely), these programming blunders would 

remain intact in the pirated and may turn into evidence of piracy.  
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APPENDIX-3: A NOTE ON ABSTRACTION-FILTRATION-COMPARISON TEST 

 

AFC (Abstraction-Filtration-Comparison) test was primarily developed by Randall Davis 

of the Massachusetts Institute of Technology for evaluating copyright infringement 

claims involving computer software and used in the 1992 Computer Associates vs. Altai 

case, in the court of appeal of the 2nd federal circuit in the United States (Walker, 1996). 

Since 1992, AFC has been recognized as a legal precedent for evaluating copyright 

infringement claims involving computer software in several appeal courts in the United 

States, including the fourth, tenth, eleventh and federal circuit courts of appeals 

(European Software Analysis Laboratory, 2007; Raysman & Brown, 2006; United States 

District Court of Massachusetts, 2010). AFC is basically a manual comparison approach. 

The theoretical framework of AFC not only makes possible the determination of “literal” 

similarities between two pieces of code, but it also takes into account their functionality 

to identify “substantial” similarities (Walker, 1996). In the AFC test, both the pirated as 

well as the original software are put through three stages, namely, abstraction, filtration 

and comparison. While other approaches (and the automated tools based on these 

approaches) generally compare two software packages literally, without considering 

globally common elements in the software, AFC, as the name indicates, first abstracts the 

original as well as the allegedly pirated, then filters out the globally common elements in 

them to zero in on two sets of comparable elements and finally compares these two sets 

to bring out similarities or “nuggets” (Walker, 1996). 

On the copyright aspects of the software, the AFC-test specifies three categories (more 

aptly, levels) of exclusions, called doctrines (Walker, 1996). Firstly, if there  is only one 

way of effectively expressing an idea (a  function),  this  idea  and  its  expression  tend  

to  “merge”.  Since the idea itself would not be protectable, the expression of this idea 

would also escape from the field of the copyright protection. Secondly, there is the 

“scènes a faire” doctrine which excludes from the field of protection, any code that has 

been made necessary by the technical environment or some external rules imposed on the 

programmer. Thirdly, there are those elements that are in the public domain. These three 

categories of elements in the software are filtered out of the original as well as the 

allegedly pirated before arriving at the two set of comparable elements, mentioned above. 
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