
Annual ADFSL Conference on Digital Forensics, Security and Law 2012
Proceedings

May 30th, 8:50 AM

A Proposal for Incorporating Programming Blunder as Important A Proposal for Incorporating Programming Blunder as Important

Evidence in Abstraction-Filtration-Comparison Test Evidence in Abstraction-Filtration-Comparison Test

P. Vinod Bhattathiripad
Cyber Forensic Consultant, Polpaya Mana, Thiruthiyad, vinodpolpaya@gmail.com

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Scholarly Commons Citation Scholarly Commons Citation
Bhattathiripad, P. Vinod, "A Proposal for Incorporating Programming Blunder as Important Evidence in
Abstraction-Filtration-Comparison Test" (2012). Annual ADFSL Conference on Digital Forensics, Security
and Law. 5.
https://commons.erau.edu/adfsl/2012/wednesday/5

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2012
https://commons.erau.edu/adfsl/2012
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2012/wednesday/5?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

ADFSL Conference on Digital Forensics, Security and Law, 2012

19

A PROPOSAL FOR INCORPORATING PROGRAMMING

BLUNDER AS IMPORTANT EVIDENCE IN ABSTRACTION-

FILTRATION-COMPARISON TEST1

P. Vinod Bhattathiripad

Cyber Forensic Consultant

Polpaya Mana, Thiruthiyad

Calicut-673004

Kerala, India

Telephone: +91-495-2720522, +91-94470-60066 (m)

E-mail: vinodpolpaya@gmail.com; vinodpolpaya@yahoo.co.in

ABSTRACT

This paper investigates an unexplored concept in Cyber Forensics, namely, a Programming Blunder.

Programming Blunder is identified as a variable or a code segment or a field in a database table, which

is hardly used or executed in the context of the application or the user’s functionality. Blunder genes

can be found in many parts of any program. It is the contention of this paper that this phenomenon of

blunders needs to be studied systematically from its very genetic origins to their surface realizations in

contrast to bugs and flaws, especially in view of their importance in software copyright infringement

forensics. Some suggestions as to their applicability and functional importance for cyber forensics are

also given including the vital need and a way to incorporate programming blunders into Abstraction-

Filtration-Comparison test, the official software copyright infringement investigation procedure of US

judiciary

Keywords: Bug, error, blunder, genes, software piracy, software copyright, software copyright

infringement, software piracy forensics, AFC, idea-expression dichotomy

1. INTRODUCTION

A programming flaw occasionally survives in well tested and implemented software. It can surface in

the form of a variable or a code segment or a field in a database table, which is hardly used or

executed in the context of the application or the user’s functionality. Such a flaw in design can be

called a Programming Blunder
2
 (Bhattathiripad and Baboo, 2009, 2011). The term programming

blunder has already been casually used (in many publications, for instance, in (McConnell, S., 1996))

to denote bad practices in programming.

The phenomenon of blunder needs to be specifically contrasted with a programming error, as unlike an

error, the blunder is most unlikely to cause problems during the execution. Ideally, all blunders (like

all errors) in software should be and are routinely removed at the various quality control stages of the

software development. Even if it (unfortunately) makes through all quality control stages, there is

again a slim chance for it be detected and removed at the implementation stage. Even so, occasionally,

a few programming blunders may survive all these stages of software development and may finally

appear unattended (or unnoticed) in the implemented software. Despite their apparent status as

1 This paper is an enhanced form of the paper “Software Piracy Forensics: Programming Blunder as an important

evidence” that was accepted as a short paper (but not presented) in the Third ICST International Conference on Digital

Forensics and Cyber Crime, Dublin, Ireland, 26 - 28 October, 2011. Also, this paper contains points extracted from the

author’s Ph D thesis “Judiciary-friendly software piracy forensics with POSAR”.
2 This type of programming flaw has been christened as “Programming Blunder” because the very existence of it (in a well-

tested and implemented program) is a mark of blunder-like weaknesses of the respective programmer / quality engineer. The

naming is done from the forensic perspective of such programming flaws.

ADFSL Conference on Digital Forensics, Security and Law, 2012

20

harmless vestiges of inattentive vetting, these blunders do provide an important service to the cyber

forensic expert. They can form an important basis for providing evidence in case of an allegation and

ensuing investigation of copyright infringement of such software. It is this increased cyber forensic

importance (despite their being less important in areas such as software engineering and software

testing) that underscore the need to specifically understand and study them, not just in the cyber

forensic perspective but right from their definitional aspects.

2. OBJECTIVES OF THIS PAPER

Spafford and Weeber (1992) have already anticipated the importance of (blunder-like) execution paths

as cyber forensic evidence in “providing clues to the author (of the suspect / alleged program)” and

this anticipation is the point of departure for of this study. The emergent concept of programming

blunders (in this paper) is a natural outcome of a specific study of all such execution paths in the

context of software piracy
3
. The objectives of this paper can be set thus: (1) to thoroughly investigate

the phenomenon of blunders in detail and by doing so attempt to denotationally concretize and define

the term “programming blunder”; (2) to discretely identify the study of programming blunders as

different from other software bugs and (3) to discuss the cyber forensic importance of programming

blunders in the investigation of an allegedly pirated (copyright infringed) software.

3. DEFINING THE TERM PROGRAMMING BLUNDER

The term programming blunder has already been introduced and identified (but not properly defined)

in some previous publications (Bhattathiripad and Baboo, 2009; 2011). Additionally, without using the

term “Programming Blunder”, Spafford and Weeber (1992) have already mentioned certain execution

paths (as said above) of a code that “cannot be executed”.

A common factor found when analyzing student programs and also when

analyzing some malicious code is the presence of code that cannot be executed.

The code is present either as a feature that was never fully enabled, or is

present as code that was present for debugging and not removed. This is

different from code that is present but not executed because of an error in a

logic condition—it is code that is fully functional, but never referenced by any

execution path. The manner in which it is elided leaves the code intact, and

may provide some clue to the manner in which the program was developed.

(Spafford and Weeber, 1992)

By taking a cue from Spafford and Weeber, can one define programming blunder as “any execution

path in the program that need not and so will not be executed during the lifetime of the program on

any execution platform”? Possibly not, because, such a definition has an inherent limitation in that it

considers only inoperative statements (non-executed path) in the program. It overlooks and excludes

those operative statements (executed paths) which are very much still present there but are not

necessary for the successful functioning of the program. That means, it excludes those statements

which may have been executed at some stage of the program but are not necessary for producing the

final result. In other words, it does not consider those operative statements which are incoherently,

redundantly and/or dysfunctionally appearing in the text of the program and/or which may have been

executed at some stage but are hardly used in the user’s functionality (or to arrive at the final results).

So, programming blunders turn out to be a lot more than what Spafford and Weeber had suggested.

Like Spafford and Weeber (1992), several other researchers also have already mentioned

programming flaws of this genre (without using the term programming blunder) and studied their

importance in software testing, author identification and other software forensic areas. For instance,

3 In this article, the term ‘piracy’ refers to the piracy of a copyrighted software.

ADFSL Conference on Digital Forensics, Security and Law, 2012

21

through a recent comprehensive paper
4
 (Hayes and Offutt, 2010), Jane Huffman Hayes and Jeff Offutt

examine (among other things) whether lint
5
 (a static analyzer that detects poor programming practices

such as variables that are defined but not used) for a program can be used to identify the author or a

small set of potential authors of the program. So, the notion of a programming blunder may not

entirely be new. Nevertheless, none of the previous publications (where the concept of programming

blunder was used in the research related to software testing, author identification and other software

forensic areas) have tried to seriously explore the concept in some detail in an effort to denotationally

concretize / crystallize the term programming blunder, and so differentiate it from other programming

bugs and finally, study its forensic importance. This is the reason for setting the primary objective of

this paper, viz. to thoroughly investigate the phenomenon of blunders in detail and by doing so attempt

to concretize and define the term “programming blunder”.

Even though the existing definitions of “programming blunders” subsume execution paths of a code

that “cannot be executed” (Spafford and Weeber, 1992) and variables that are defined but not used

(Hayes and Offutt, 2010), a more cautious definition employed in this study is:

A programming blunder found (in well tested, implemented and allegedly

pirated software) can be defined as a variable in a program or a program code

segment or a field in a database table which is hardly executed in the context of

the application and/or is unnecessary for the user’s functionality

(Bhattathiripad and Baboo, 2009).

This definition subsumes not only the execution paths of a code that “cannot be executed” and

variables that are defined but not used but also unnecessary non-execution paths (like comment lines

and blocked execution paths).

A blunder in a program gains significance during the piracy forensics (or copyright infringement

forensics) of the program (see below).

4. GENETIC ORIGIN OF PROGRAMMING BLUNDERS

A proper investigation of blunder, like that of any organism, should ideally start with a look into its

genetic origin. Blunder genes
6
 (or genes of programming blunders) are those elements in the program

that can often form the basis for (the existence or surfacing of) a programming blunder. Blunder genes

can be traceable to many parts of the program like a variable, class, object, procedure, function, or

field (in a database table structure). A blunder gene is developmentally (and perhaps philologically)

different from a blunder just as an embryo can be from the baby. While every blunder gene has

significance in software engineering research, a blunder has additional forensic significance. What the

programmer leaves in the program is a blunder gene and this blunder gene can develop into and

surface as a blunder during the piracy forensic analysis (or copyright infringement forensic analysis).

What elements in the program can then form the genetic basis of a blunder? The simple answer is that

any item in (or a segment of) a program which is unnecessary or redundant to customer requirements

can form the genetic basis for a programming blunder. Such items can, however, surface in a program

in three different ways. In other words, programming blunders can be categorized in three ways

according to their genetic differences.

1. Any defined but-unused item (or a code segment) in a program.

4 A note of gratitude to the reviewers of the Third ICST International Conference on Digital Forensics and Cyber Crime, for

drawing my attention to this paper.
5 The UNIX utility lint that is commonly used to bring out flaws like programming blunders as compiler warnings.
6 My sincere gratitude to Dr. P. B. Nayar, Lincoln University, UK, for his valuable suggestions

ADFSL Conference on Digital Forensics, Security and Law, 2012

22

2. Any defined item (in the program) which is further used for data-entry and calculation

but never used for the user’s functionality of a program.

3. Any blocked operative statement in a program.

Primarily, any defined but unused variable, class, object, procedure, function, or field (in a database

table structure) can appear as a programming blunder. Hence, any such defined, concrete, tangible

item (or a blunder gene) in the body of a program (or an external routine or data base as part of the

software) which was subsequently found unnecessary or irrelevant for the operation of the program /

software can evolve or materialize as a programming blunder during a forensic analysis of the

program. Thus, a programming blunder may be an item (or a segment of a program) that is well

defined at the beginning of an execution path in a program but is not part of the remaining stages of

the execution path (example: Processing stages, Reporting stages etc.) in the program. For instance,

the integer variable ‘a’ in the C-program given in Table-1 is a programming blunder as this variable

has not been used anywhere else in the program. This variable has no relevance in the operation (for

producing the intended output) of the program.

#include <stdio.h>

#include <conio.h>

main()

{

 int a=0, b=2, c=0;

 C=b*b;

 printf(“The result is %d”, c);

 getch()

}
Table 1. A defined but unused variable ‘a’ in a C-program

Secondly, any defined item (or the blunder gene) at the beginning of an execution path in a program)

which is further used for data-entry but never used in the remaining stages of the execution path in the

program, can also appear as a programming blunder during a forensic analysis of the program. Thus,

the integer variable ‘a’ in the C-program given in table 2 surfaces as a programming blunder as this

variable has been well defined and used for data entry but not used anywhere else in the program.

#include <stdio.h>

#include <conio.h>

main()

{

 int a=0;

 scanf("%d", &a); /* reading the value of a*/

 printf("Hello, World");

 getch();

}

Table 2. Unnecessary declaration and input statements in a C-program

Thirdly, a blocked operative statement (or a remarked operative programming statement), which is

practically an inoperative element of the program, can appear as a programming blunder. Thus, the

remark statement (or the blunder gene) /* int a; */ in the C-program given in table 3 can turn out to be

a programming blunder during a forensic analysis of the program as this statement need not be there in

the first place and does not justify its being there at all for long, unattended (unlike the other

programming remark /* This program prints Hello, World */ which has a purpose in the program).

ADFSL Conference on Digital Forensics, Security and Law, 2012

23

#include <stdio.h>

#include <conio.h>

main()

{

 /* This program prints “Hello, World” */

 /*int a=0;*/

 printf("Hello, World");

 getch();

}

Table 3. A program in C-language

All the above suggest that, any defined variable, class, object, procedure, function, or field (in a

database table structure) in a program which has no relevance in the final output (user’s functionality)

of the (well-tested and implemented) program can manifest itself as a blunder during the copyright

infringement forensic analysis of the program.

5. COMMONALITIES AND SIMILARITIES AMONG PROGRAMMING BLUNDERS

Irrespective of their genetic origin, all programming blunders do share some features, properties,

attributes and characteristics. A programming blunder

1) is a concrete, tangible item in (or segment of) a program and not a process.

2) can be an execution path which got past the quality control stage, undetected.

3) does not affect the syntax or sometimes even the semantics of a program which makes

it hard to detect.

4) is not necessary to execute the program.

5) is not necessary for user’s functionality.

6) does not justify its being there at all.

7) is a matter related to the design pattern and programming pattern of the software.

6. ETIOLOGY OF PROGRAMMING BLUNDERS

The etiology of programming blunders can be discussed along three different weaknesses of the

programmer / quality engineer. Firstly, his/her inability to completely remove from the program those

elements that do not help meet customer requirements can be a cause for a blunder. Secondly, his/her

inattention to completely remove those statements that have been abandoned as a result of the

programmer’s afterthought can also be a cause for a blunder. Thirdly, his/her inattention to identify

and remove items that do not contribute to either strong coupling between modules or strong cohesion

within any module of the program can also be a cause for a blunder. These three different weaknesses

of the programmer / quality engineer can thus be reasons for programming blunders.

7. PROGRAMMING BLUNDERS JUXTAPOSED WITH SOFTWARE BUGS

The next objective of this paper is to identify the study of programming blunders as different and

discrete from that of other software bugs. Quite naturally, even experts in the software engineering

might need some convincing as to why programming blunders need or demand a distinct status as

against software bugs. There definitely does exist a need to be convincing because, the above

mentioned genetic origins, manifestations, features, properties, attributes, characteristics and etiology

of blunders may prima facie be identified with those of software bugs as well. Therefore, what makes

a programming blunder deserve a special consideration different from other software bugs?

A software bug is the common term used to describe an error, flaw, mistake, failure, or fault in a

http://en.wikipedia.org/wiki/Failure
http://en.wikipedia.org/wiki/Fault_(technology)

ADFSL Conference on Digital Forensics, Security and Law, 2012

24

computer program or system that produces an incorrect or unexpected result, or causes it to behave in

unintended ways (IEEE610.12-1990, 1990). An error is “the difference between a computed,

observed, or measured value or condition and the true, specified, or theoretically correct value or

condition” (IEEE610.12-1990, 1990, p31). Other related terms in the computer science context are

fault, failure and mistake. A fault is “an incorrect step, process, or data definition in a computer

program” (IEEE610.12-1990, 1990, p31). A failure is “the [incorrect] result of a fault” (IEEE610.12-

1990, 1990, p31) and mistake is “a human action that produces an incorrect result” (IEEE610.12-1990,

1990, p31). Most bugs arise from mistakes, errors, or faults made by people or flaws and failures in

either a program's source code or its design, and a few are caused by compilers producing incorrect

code
7
. A programming blunder (as defined at the beginning of the article) does not resemble a bug

either in raison d’être or function (see above). In other words, a software bug is different from a

programming blunder and this difference (which is significantly relevant for the forensic expert) may

look simple, but is by no means simplistic.

8. PROGRAMMING BLUNDERS AND THE IDEA-EXPRESSION DICHOTOMY

The idea-expression dichotomy (Newman, 1999) provides an excellent theoretical perspective to look

at and explain blunders. Any genuine idea which is properly expressed in the definition stage but

improperly (or not at all) expressed in the remaining stages (in a program) in a manner that does not

adversely affect the syntax (or sometimes even the semantics) of the program can become a

programming blunder. So, the integer variable ‘a’ in the C-program given in Table-2, for example,

when looked at in the idea-expression perspective, is a programming blunder. So, from the perspective

of the idea-expression dichotomy, programming blunder is a partly-made
8
 functional expression of an

idea. This clearly opens the door to linking blunders directly to copyright infringements of any

program because the idea-expression perspective is the basis of formulation of software copyright

laws in several countries (Hollaar, 2002; Newman, 1999).

Copyright laws of several countries (especially the US copyright laws) say that if there is only one

(exclusive) way of effectively expressing an idea, this idea and its expression tend to “merge”

(Walker, 1996, p83) and in such instances an idea is not protectable through copyright (Hollaar, 2002).

However, if the same idea can be realized through more than one expression, all such different

realizations are protected by copyright laws. Interestingly this means that the copyright of a program is

directly related to the concept of the merger between idea and expression and that when there is no

merger, the copyright of a program can extend to the blunders contained therein as well.

9. FORENSIC IMPORTANCE OF PROGRAMMING BLUNDERS

Despite their apparent functionally inactive and thus innocuous nature in a program, blunders, when

copyrighted, can be of great value / assistance to the cyber forensic expert. They provide evidence of

software copyright infringement and a discussion of this evidence is one of the prime objectives of this

article. On the forensic importance of programming blunders, Spafford and Weeber (1992) have noted

that:

Furthermore, it (a programming blunder) may contain references to variables

and code that was not included in working parts of the final program —

possibly providing clues to the author and to other sources of code used in this

program.

7 http://en.wikipedia.org/wiki/Software_bug visited on 6th Feb, 2011
8By partly-made functional expression, what is meant or intended is an element which is defined, implemented but left

unused or inoperative in the remaining stages.

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Software_bug

ADFSL Conference on Digital Forensics, Security and Law, 2012

25

Since Spafford and Weeber (1992), a variety of experiments (for instance, Krsul (1994)) have been

performed on authorship analysis of source codes and copyright infringement establishment of

software. Also, at least half a dozen techniques and procedures (for instance, AFC (Hollaar, 2002),

SCAP (Frantzeskou, 2007) etc.) have been put forward for establishing authorship and copyright

infringement of software. However, none of them have taken cue from the above note of Spafford and

Weeber and considered programming blunders as evidence in the court.

Not all blunders are “substantial” in the copyright infringement forensic analysis. Blunders which can

provide direct (substantial) evidence to establish piracy (and thus, to establish copyright infringement)

or can provide probable, corroborative or supporting evidence are forensically important. The

repetition of programming blunders (even if these programming blunders are ‘generic’ by nature) in

both original9 and the pirated10 in identical contexts would be a serious indication of piracy. If, for

instance, a variable with a universally uncommon name ‘PXRN_CODE_AUCQ CHAR[6]’ is defined

in identical places of the identical procedures in the original11 as well as the pirated12 software, but

not used anywhere else (see the three categories of blunders, above), that is an instance of

programming blunder and such programming blunders attract/deserve forensic importance. The

forensic importance of blunders arises from the obvious fact that it is highly unlikely that two

programmers will blunder exactly in the same way, thus elevating the similarity into possible evidence

of piracy (See also Appendix-1).

While trying to establish a variable name or a code segment as a programming blunder, the expert

needs to confirm that it is (i) absent elsewhere in the original, (ii) present in the allegedly pirated

exactly in the same context as it was found in the original and (iii) absent elsewhere in the allegedly

pirated (Bhattathiripad & Baboo, 2010).

In the absence of other direct evidence of piracy, programming blunders can form the only basis for

the expert to convince the judiciary about the possibility of piracy.

9 Throughout this article, original means the version of the software that the complainant submits to the law enforcement

agency for software piracy forensics. This article presupposes that the law enforcement agency has satisfactorily verified the

legal aspects of the documentary evidence of copyright produced by the complainant and is convinced that the complainant is

the copyright holder of this version of the alleged software.
10

 Throughout this article, pirated means the allegedly pirated software

ADFSL Conference on Digital Forensics, Security and Law, 2012

26

Fig 1: The software copyright infringement forensic procedure of AFC

13

13 Abstraction-Filtration-Comparison Analysis Guidelines for Expert Witnesses

http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-

Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx

http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx
http://web20.nixonpeabody.com/np20/np20wiki/Wiki%20Pages/Abstraction-Filtration-Comparison%20Analysis%20Guidelines%20for%20Expert%20Witnesses.aspx

ADFSL Conference on Digital Forensics, Security and Law, 2012

27

10. PROGRAMMING BLUNDERS AND THE AFC TEST

As things stand, it appears that forensic procedural protocols of software copyright infringement have

not fully recognized the importance of programming blunders. Nor have there been many attempts to

ensure their inclusion in the forensic expert’s repertoire. Programming blunders are very unlikely to be

detected, for instance, by the AFC test (see Appendix-3 and fig 1) which is the only judiciary-accepted

procedure for establishing software copyright infringement in the US. They are not detected or even

considered because during the abstraction of the program, only the functionally active parts (of the

program) will be considered for abstraction and used for further investigation (Hollaar, 2002, p86).

The functionally inactive parts (or those items are irrelevant for user’s functionality) like programming

blunders will not be considered for abstraction
14

. Moreover, abstraction may remove many individual

lines of code from consideration and so blunder genes as well as blunders may also get automatically

removed during the abstraction stage of AFC. In such case of unfortunate non-consideration, the

programming blunders will not be available for final comparison and this unavailability may make the

final results of AFC, incomplete and thus, unreliable. This is one of the fallibilities of AFC

(Bhattathiripad and Baboo, 2010) and can probably be a reason for the reluctance to use the AFC test

in the copyright infringement forensics of modern software (however, US judiciary continues to use

AFC test for software copyright infringement forensics
15

). Hence, this paper proposes that, along with

the AFC results, the evidence concerning the programming blunders, if any, should also be identified

and gathered separately by the expert by comparing the original with the pirated, before applying the

AFC test and reporting his/her the final findings and inferences to the court
16

. This paper also proposes

that the AFC test should be re-designed so as to ensure that possible evidence like programming

blunders are available for final comparison.

Before concluding, a note on what a judge expects from an AFC expert, would add value to the special

attention and consideration given to programming blunders. In any software comparison report, what

the judge would expect from the AFC expert is a set of details that help the court in arriving at a

decision on the copyrightable aspects of programming blunders. Jon O. Newman (1999), one of the

judges on the panel (in the 2
nd

 circuit of U. S. judiciary) that received an amicus brief
17

 (concerning a

software copyright infringement case) indicates what he needs from expert witnesses in a trial (or in

the amicus brief) on an appeal involving software copyright infringement:

These professionals would be well advised not to tell me simply that the source code

is or is not protectable expression. Their opinion are relevant, but, as with all opinions,

what renders them persuasive is not the vehemence of their assertion and not even the

credentials of those asserting them; it is the cogency and persuasive force of the

reasons they give for their respective positions. These reasons had better relate to the

specifics of the computer field. For example, as Altai (United States Court of Appeals,

1992) indicates, even with its overly structured mode of analysis, it will be very

14 Because AFC test does allow for 'literal' similarities between two pieces of code, there is a general belief that AFC can

make available “literal” pieces like programming blunders (for example, variables that are defined but unused and execution

paths that “cannot be executed”) for final comparison. But in practice, AFC does not either abstract these “literal” pieces of

evidence or filter them out in the filtration stage and either way, these programming blunders like “literal” pieces are

unavailable for final comparison.
15 See United States District Court of Massachusetts (2010), Memorandum and Order, Civil Action number 07-12157 PBS,

Real View LLC. Vs. 20-20 Technologies, p.2
16 The ultimate decisions like whether these pieces of evidence (concerning programming blunders) (1) are useful or not; (2)

form direct or secondary evidence; and (3) are generic (and hence, non-copyrightable) by nature or not, come under judicial

matters and are subject to the provisions of the prevailing Evidence Act of the respective country. However, cyber forensic

report can remain suggestive on these three aspects and also on the (conclusive, corroborative, and supportive) nature of the

programming blunders found in the original and the pirated.
17 Amicus Brief of Computer Scientists, Harbor Solutions v. Applied Systems No. 97-7197 (2nd Circuit, 1998) at 8-9

(citations omitted)

ADFSL Conference on Digital Forensics, Security and Law, 2012

28

important for me to know whether the essential function being performed by the

copyrighted program is a function that can be accomplished with a variety of source

codes, which will strengthen the case for protection, or, on the other hand, is a

function, capable of execution with very few variations in source code, or, variations

of such triviality as to be disregarded, in which event protection will be unlikely. For

me, this mode of analysis is essentially what in other contexts we call the merger

doctrine – the expression is said to have merged with the idea because the idea can be

expressed in such limited ways that protection of the plaintiff’s expression unduly

risks protecting the idea itself. (Newman, 1999)

So, what is expected in the case of programming blunders also is a set of details on the merger aspects

of the ideas and expressions contained in any programming blunder (This is because, as said earlier,).

In conclusion, the following facts emerge: it seems reasonable to state that any variable or a code

segment or a field in a database table, which is hardly used or executed in the context of the

application or the user’s functionality can form the basis of a programming blunder. The copyright of

the software can often extend to the blunders contained therein. Also, any programming blunder that

goes against the merger doctrine is copyrightable and repetition of it in another program can be a

serious indication of copyright infringement. As a result, programming blunders can greatly influence

the expert to give supportive evidence to his findings, thus indirectly contributing to the judge’s

decision. Because of this, identification and reporting of programming blunders need to be a part of

the copyright infringement investigation. Hence, procedures like the AFC test needs to be re-designed

so as to ensure that possible evidence like programming blunders are not filtered out.

11. REFERENCES

Bhattathiripad., P. V., and Baboo (2009), S. S., Software Piracy Forensics: Exploiting Nonautomated

and Judiciary-Friendly Technique', Journal of Digital Forensic Practice, 2:4, pages 175 — 182

Bhattathiripad., P. V., and Baboo (2011), S. S., Software Piracy Forensics: Impact and Implications of

post-piracy modifications, Conference on Digital Forensics, Security & Law, Richmond, USA

Bhattathiripad., P. V., and Baboo, S. S. (2010), Software Piracy Forensics: The need for further

developing AFC, 2nd International ICST Conference on Digital Forensics & Cyber Crime, 4-6

October 2010, Abu Dhabi, UAE

European Software Analysis Laboratory (2007), The “SIMILE Workshop”: Automating the detection

of counterfeit software, available at www.esalab.com

Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C. E., and Howald, B. S. (2007), Identifying

Authorship by Byte-Level N-Grams: The Source Code Author Profile (SCAP) Method, International

Journal of Digital Evidence, 6, 1

Hayes, J. H., and Offutt, J. (2010), Recognizing authors: an examination of the consistent programmer

hypothesis, Software Testing, Verification & Reliability - STVR , vol. 20, no. 4, pp. 329-356

Hollaar L. A. (2002), Legal Protection Of Digital Information, BNA Books

IEEE610.12-1990 definition (1990), IEEE Standard Glossary of Software Engineering

Krsul, I., (1994), Identifying the author of a program, Technical Report, CSD-TR-94-030, Purdue

University, available at http://isis.poly.edu/kulesh/forensics/docs/krsul96authorship.pdf , visited

on 14th April, 2011

McConnell, S. (1996), Who cares about software construction?, Software, IEEE, Volume 13, Issue 1,

Jan 1996, p.127-128

Newman J. O. (1999), New Lyrics For An Old Melody, The Idea/Expression Dichotomy In The

Computer Age, 17, Cardozo Arts & Ent. Law Journal, p.691

http://www.esalab.com/
http://isis.poly.edu/kulesh/forensics/docs/krsul96authorship.pdf

ADFSL Conference on Digital Forensics, Security and Law, 2012

29

Raysman R. and Brown P. (2006), Copyright Infringement of computer software and the Altai test,

New York Law Journal, Volume 235, No. 89

Spafford, E. H., and Weeber, S. A. (1992), Software forensics: Can we track the code back to its

authors?, Purdue Technical Report CSD–TR 92–010, SERC Technical Report SERC–TR 110–P,

Department of Computer Sciences, Purdue University

United States Court of Appeals (1992), Second Circuit, Computer Associates International, Inc. v.

Altai, Inc., 982 F.2d 693; 1992 U.S. App. LEXIS 33369; 119 A.L.R. Fed. 741; 92 Cal. Daily, Op.

Service 10213, January 9, 1992, Argued, December 17, 1992, Filed

United States District Court of Massachusetts (2010), Memorandum and Order, Civil Action number

07-12157 PBS, Real View LLC. Vs. 20-20 Technologies, p.2

Walker, J. (1996), "Protectable 'Nuggets': Drawing the Line Between Idea and Expression in computer

Program Copyright Protection", 44, Journal of the Copyright Society of USA, Vol 44, Issue 79

ADFSL Conference on Digital Forensics, Security and Law, 2012

30

APPENDIX-1: SECONDARY OR INCONCLUSIVE PROGRAMMING BLUNDER GENES

Most genes of programming blunders can be conclusively identified. But, there are certain

elements in a program that may not have yet surfaced as blunders but are potentially prone to

surfacing later as programming blunders. Conversely, all ideas which are successfully

expressed but are superfluous to customer requirements also may not surface as a blunder

because such expressions (or a code segment) may affect the semantics of the program and

thus end up as an error at some point of time during the life time of the program (if not during

its pre-implementation testing stage). Any such code segment is basically a gene of an error

and not of a blunder. However, any such code segment in a time-tested program may

eventually form the basis of a blunder because such an item or a code segment does not justify

its being there at all for long unattended. But, such blunders are very difficult to be

conclusively identified and used.

APPENDIX-2: BUG REPEATED V. BLUNDER REPEATED

A bug repeated (in a pirated program) may be noticed during the functioning of the pirated.

Unlike a bug, a programming blunder repeated (in a pirated program, though noticeable)

would remain unnoticed during the functioning of the pirated. In the absence of a thorough

quality control round by the pirated (which is very likely), these programming blunders would

remain intact in the pirated and may turn into evidence of piracy.

ADFSL Conference on Digital Forensics, Security and Law, 2012

31

APPENDIX-3: A NOTE ON ABSTRACTION-FILTRATION-COMPARISON TEST

AFC (Abstraction-Filtration-Comparison) test was primarily developed by Randall Davis

of the Massachusetts Institute of Technology for evaluating copyright infringement

claims involving computer software and used in the 1992 Computer Associates vs. Altai

case, in the court of appeal of the 2nd federal circuit in the United States (Walker, 1996).

Since 1992, AFC has been recognized as a legal precedent for evaluating copyright

infringement claims involving computer software in several appeal courts in the United

States, including the fourth, tenth, eleventh and federal circuit courts of appeals

(European Software Analysis Laboratory, 2007; Raysman & Brown, 2006; United States

District Court of Massachusetts, 2010). AFC is basically a manual comparison approach.

The theoretical framework of AFC not only makes possible the determination of “literal”

similarities between two pieces of code, but it also takes into account their functionality

to identify “substantial” similarities (Walker, 1996). In the AFC test, both the pirated as

well as the original software are put through three stages, namely, abstraction, filtration

and comparison. While other approaches (and the automated tools based on these

approaches) generally compare two software packages literally, without considering

globally common elements in the software, AFC, as the name indicates, first abstracts the

original as well as the allegedly pirated, then filters out the globally common elements in

them to zero in on two sets of comparable elements and finally compares these two sets

to bring out similarities or “nuggets” (Walker, 1996).

On the copyright aspects of the software, the AFC-test specifies three categories (more

aptly, levels) of exclusions, called doctrines (Walker, 1996). Firstly, if there is only one

way of effectively expressing an idea (a function), this idea and its expression tend

to “merge”. Since the idea itself would not be protectable, the expression of this idea

would also escape from the field of the copyright protection. Secondly, there is the

“scènes a faire” doctrine which excludes from the field of protection, any code that has

been made necessary by the technical environment or some external rules imposed on the

programmer. Thirdly, there are those elements that are in the public domain. These three

categories of elements in the software are filtered out of the original as well as the

allegedly pirated before arriving at the two set of comparable elements, mentioned above.

ADFSL Conference on Digital Forensics, Security and Law, 2012

32

	A Proposal for Incorporating Programming Blunder as Important Evidence in Abstraction-Filtration-Comparison Test
	Scholarly Commons Citation

	A Proposal for Incorporating Programming Blunder as Important Evidence in Abstraction-Filtration-Comparison Test

