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As the world has moved into a more energy-demanding environment, there has 

been the push for higher energy density in a smaller package. One of the potential 

solutions is through the application of a gas turbine engine; yet the challenge is 

extracting the energy efficiently through the small components. The focus of the 

research is on the turbine components and how the secondary flow losses from the 

generated airfoil shapes can be reduced to improve component performance. One of 

the secondary flow loss items to be addressed is the generation of the Horseshoe 

Vortex. The Horseshoe Vortex is an aerodynamic phenomenon that occurs in axial 

turbine cascades that degrades the aerodynamic performance. This research will 

show that through airfoil design optimization, the Horseshoe Vortex on small 

turbine nozzles can be reduced. The initial turbine design was generated using 

simple incompressible flow calculations and then run through a Navier-Stokes SST 

solver. This solver allows for the interaction of the boundary layer with the airfoil 

geometry, therefore generating a new set of inlet velocity triangles. The geometry 

was then optimized to match the new inlet velocity triangle. The new optimized 
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airfoil was run through the same boundary layer build up, and the same boundary 

conditions as the original incompressible design. The presented results will show 

that the Horseshoe Vortex has been mitigated and that the total pressure 

distribution at the exit of the turbine inlet nozzle cascade has improved by 7.6 %. 
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1. Problem Statement 

As the turbomachinery components get small enough to fall into the man-portable 

category, it becomes difficult to maintain high component efficiencies. The 

inefficiency is due mainly to losses that are sometimes negligible for large gas 

turbine engines. These losses, such as tip clearance losses, mixing losses, and other 

secondary flow losses, start to become major players and, in some size ranges, can 

become the dominant factor for component losses. It is the objective of this research 

to reduce these losses as much as possible focusing on the secondary flow regime. 

One main area of improvement is what is known as the cross-passage vortex or 

Horseshoe vortex. This objective will be approached by recreating a cycle model 

found in literature, generating a potential turbine stage in an in-house meanline 

code, and then running the design through Computational Fluid Dynamics (CFD). 

Through analyzing the effects of the boundary layer, from the CFD, on the original 

blade profile and inlet velocity triangles it will be shown that the secondary flow 

losses and Horseshoe Vortex can be reduced through geometry optimization.   
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2. Background and Theory 

2.1 History of Portable Power Generation 

As the world becomes more technology dependent there is the need to supply more 

power for the gadgets used. Sticking to the current method of power generation for 

these technology systems, batteries, the weight would soon overweigh the benefits 

of the system. The systems would no longer be easily contained or would require 

large heavy power packs for extended use. As technology has progressed there is a 

viable solution in the realm of lithium-polymer batteries as well as fuel cells, but 

when looking at the energy content of these systems as it stands today they are still 

dwarfed by systems employing hydrocarbon fuels, Figure 1. This leads to the 

problem statement at hand: how can power generation be both light weight and run 

for extended periods of time?  

 

Figure 1: Ragone Plot of some available fuels [1] 

Area of Interest 
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The Ragone plot shows Energy Density (Mj/L), the amount of energy available for a 

given volume, versus Specific energy (Mj/kg), the amount of energy per unit mass. 

To sum this up, the farther up the y-axis one travels, the less fuel volume is required 

to do the same amount of work, and the farther to the right one moves on the x-axis 

the lighter the fuel weight will be.  

There are many solutions of portable efficient power generation available on the 

market today. This can be seen in batteries (Energizer, Duracell, etc.), portable 

generators (Honda, John Deere, etc.), and advances into the small turbomachinery 

market (Capstone Turbine Corporation). Each of the aforementioned technologies 

has its respective place, but for a trade-off in either power or weight. When 

compared on a size scale a nine volt battery weighs in around 1.6oz and can produce 

approximately five watts per hour (2), whereas the standard home generator 

weights 262lb and at the rated load burns 5.27lb of gasoline per hour producing 

around 7kW of power (3) for as long as there is fuel supplied. Where a 30kW system 

running at 25% electrical efficiency that is currently available and ready to connect 

for power weighs in around 891lb for the system, this includes electronics weight 

(4). This turbomachinery system is a ground system and is built for durability, not 

portability, which is why it weighs in more than three times the weight of a 

commercial off the shelf portable generator. 

2.2 Thermodynamic Cycles 

2.2.1 Brayton Cycle 

There are many types of thermodynamic cycles, such as power, refrigeration, and 

heat pump. A thermodynamic cycle is defined as, “A sequence of processes that 
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begins and ends at the same state.”(5) The main focus will be on the power cycle for 

the gas turbine engine, the Brayton cycle, Figure 2.  

 

Figure 2: Ideal Brayton Cycle T-s diagram [6] 

The Mollier Diagram is an enthalpy (or sometimes, temperature) versus entropy 

plot, Figure 2. The air is compressed moving from station 2 to station 3 via 

isentropic compression, then the air is heated from station 3 to station 4, where the 

available work is extracted from station 4 to station 5 via isentropic expansion. The 

methodology behind the Brayton cycle is to combust the air in an isobaric process. 

Then, as the volume is allowed to expand and moves down stream to the turbine, 

excess work can be extracted to power the compressor, with any remaining energy 

left over for the nozzle to create thrust. Due to the cycle being a power generation 

cycle all available work will be extracted through the turbine and having almost 

zero net thrust from the system. 

2.2.2 Brayton cycle efficiency 

The efficiency of a Brayton cycle is calculated as work output over heat input.  
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Equation 1: Cycle Thermal Efficiency 

Where; 

               
   

   
             

   

 
  

Equation 2: Heat Input equation 

To obtain a perfect cycle it would require extracting just as much energy out of the 

system as put into the system. Since this is not possible, due to the 2nd Law of 

Thermodynamics, the thermal efficiency of most non-recuperated gas turbine 

engines, in the low Overall Pressure Ratio (OPR), less than four OPR for our area of 

interest, will fall into the range of 15-25% for a non-recuperated cycle, Figure 3. 

 

Figure 3: Simple Brayton Cycle, 1800F Turbine Inlet Temperature, showing a variety of 
compressor/turbine efficiencies [7] 

If the cycle is recuperated, the thermal efficiency can get on the order of 27-37%, 

with some occasional outliers due to technology advancements, Figure 4. This 

efficiency improvement comes by making the denominator “Heat Input” smaller by 

using less fuel to add the same amount of heat to the air. 
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Figure 4: Recuperated Cycle, 80% Compressor and Turbine Efficiencies, 1800F Turbine Rotor Inlet 
Temperature, Varying Recuperator Effectiveness [7] 

2.2.3 Recuperated Brayton Cycle 

The Brayton cycle with a recuperator can be seen in Figure 5, where the difference 

is pre-heating the air, with waste exhaust heat, after it leaves the compressor and 

before it goes into the combustor.  

 

Figure 5: Brayton cycle with Regenerator (left), Ideal Regenerated Brayton cycle T-s diagram (right) [5] 

This preheat allows the temperature of the air to rise without burning additional 

fuel. This process is similar to the original Brayton cycle. The air is compressed 

moving from station 1 to station 2, then the air is heated from station 2 to station x 
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from the turbine exhaust gas, fuel is added and combusted from station x to station 

3, the available work is extracted from station 3 to station 4, then heat is removed 

from station 4 to station y which heats the air from station 2 to station x. This means 

the air is only being heated from station x to station 3 where as in the traditional 

Brayton cycle the air must be heated from station 2 to station 3, thus requiring less 

fuel in a recuperated cycle to heat the same amount of air. In turn this allows the 

cycle efficiency to increase by a significant percentage as a consequence of reduced 

fuel consumption, but as is taught, “There is no free lunch.” Recuperators also 

known as regenerators are heat exchangers. The effectiveness of a heat exchanger is 

based on material properties, and heat transfer coefficients, but the driving factor is 

surface area, and increased surface area is usually associated with more volume of 

material, which is weight. Some of the smallest recuperators run between 80% to 

90% effectiveness and still weight a significant amount compared to the engine 

weight (8). For an example one can look at the AGT 1500 turboshaft developed by 

Lycoming for the Abrams Tank family. The Recuperator was as big as the 

turbomachinery and was made of steel, and weighed an estimated 25% of the 

2500lb system weight (9).   

2.3 Turbine Aerodynamic Characteristics 
 
The engine cycle being considered is strictly for power generation, compared to the 

typical thrust engine, the desired turbine characteristics are going to be more 

relaxed. The main area that can be relaxed can be seen in the turbine exhaust; where 

in a typical thrust engine it is ideal for the flow leaving the last turbine stage to have 

no swirl, in power generation removing all of the residual swirl may not be 
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necessary.  This excess swirl is typically a byproduct of high work turbines; it also 

may help create extra turbulence inside the recuperator for additional heat transfer, 

which is desirable. A typical turbine stage is designed to remove only enough energy 

from the flow to power the compression system and any necessary power 

generation through an alternator/generator. No system can perfectly add or remove 

energy to or from a system without losses. While minimizing the losses is the name 

of the game, there are some losses that are always going to be present, such as tip 

clearance, profile losses, and mixing losses to name a few. As the turbine stage has 

flow passed through it, it is subject to different losses adding up to a total loss 

coefficient. The smaller the total loss coefficient, the more efficient the component 

can become. Some of the losses that affect turbine cascades can be seen in Figure 6.  

 

Figure 6: Breakdown of principle turbine losses [10] 

Notice that the secondary flow losses can make up almost 75% of the total losses of 

a turbine cascade for near zero incidence angles. The profile loss is due to skin 

friction on the blade surface, and annulus loss due to friction on the endwall 
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surfaces (10). This large percentage in the secondary flow regime is where many 

engineers spend their careers trying to make gains in performance. Some of the 

types of cascade flow losses can be seen in Figure 7.   

 

Figure 7: Types of Cascade Flow Losses [10] 

By reducing any one of the aforementioned types of losses the performance of the 

cascade can be increased. One of the areas in the secondary flow region, where gains 

can be made, is in the reduction of the cross-passage flow vortex, which is initiated 

by what is known as the horseshoe vortex. 

2.4 Horseshoe Vortex 
 
The horseshoe vortex (HSV) is a type of secondary flow phenomenon in turbine 

cascade leading to a cross-passage vortex. The HSV is formed from the interaction of 

a three dimensional boundary layer with the cascade end wall.  As shown in Figure 

8, as the flow approaches the cascade, the velocity profiles due to the boundary 

layer start to become skewed and the flow forms a surface of separation. This 

separation starts to occur at some distance, S, from the cascade in the stagnation 
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region. “In the neighborhood of this separation region, the flow develops a 

separated vortex sheet which curls up around the cylinder at its base like a 

horseshoe” Schlicting (11). 

 

Figure 8: Horseshoe Vortex Formation with Stagnation Region [11] 

As the HSV begins to generate the pressure surface vortex is dragged across the 

passage due to its pressure gradient, where it then mixes with the suction surface 

vortex, Figure 9. This latter vortex is known as the cross-passage vortex and is 

equally, if not more, guilty of decreasing cascade performance. 
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Figure 9: Full Horseshoe Vortex formation in a Turbine Cascade [12] 

The suction surface vortex, when originally generated, starts slightly differently due 

to a laminar separation bubble. This was first described by Klein (1966) and later by 

Langston et al. (1977) in a similar model, Figure 10. Notice Klein’s description of the 

laminar separation bubble. This usually occurs near the throat of the cascade; in this 

context due to residual acceleration, the flow reattaches shortly after separation 

(10).  
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Figure 10: Suction Side (Passage) Vortex sheet [10] 

There have been previous studies with the goal of directly minimizing the horseshoe 

vortex and the secondary flow losses associated with the vortex generation. This 

included work by Zess et al. (13) on the introduction of a leading edge fillet. Zess et 

al. used variations from prior research to find an effective way to mitigate the HSV, 

Figure 11. The fillet that worked the best was that of one boundary layer high and 

two boundary layers in length, and it was symmetric about the stagnation line. The 

results from their study can be seen in Figure 12. 
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Figure 11: Unsuccessful profile fillet (a), Final Fillet design (b). (13) 

 

 

Figure 12: Zess et al. CFD results of filleted vane (13) 

Additional work was done by Lethander et al. (14) on end wall junction 

optimization where parameters were set, Figure 13, and varied to obtain a set 

reduction in wall temperature. 
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Figure 13: Schematic of filled geometric design parameters. (14) 

From these variables there were 64 design simulations performed, and the final 

design was selected. The design shows roughly the same results as Zess et al. (13), 

that the length of the filet (Dmax) must be greater than the height of the fillet 

(Hmax). When this optimization was performed, the streamline patterns can be seen 

to have a more uniform flow around the cascade, Figure 14. There was also the 

realization that the amount of surface area needing to be cooled was less due to the 

temperature reduction at the end wall, owing to the reduction of the HSV, Figure 15. 
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Figure 14: Original Fillet Design (top), Optimized Fillet Design for reduced wall temperatures (bottom) 
(14) 

 

Figure 15: Comparison of Original Fillet Design (top) wall temperatures to the Optimized Fillet (top) 
(15) 



16 
 

3. Design Methodology 

There are many methods to approach the design of a turbine stage. The main item to 

have is the design requirements. Once the requirements are established, this sets 

the stage for how to proceed on the turbine selection and design. This leads to the 

following questions, does a turbine exist that will meet the requirements, does an 

existing industry turbine need to be refined to meet the efficiency goals, or does a 

turbine need to be a clean sheet turbine. Once this is decided, the first stop in the 

design process is a 1-D meanline level analysis. It is at this point that the imperial 

loss models are implemented, adding a level of real world design and test 

experience. The loss models take into account items including tip losses, mixing 

losses, pumping losses for cooling passages, blade incidence and deviation losses to 

name a few. All of this is done based on some basic input parameters and usually at 

the meanline. Meanline analysis is slowly growing to incorporate the hub, mean and 

shroud of the component to become more of a reduced through flow code. Once the 

designer is satisfied with the 1-D code and it meets the desired requirements, it is 

now time to add a little more fidelity to the model. The streamline code or better 

known as a 2-D code does the meanline calculation at a specified number of 

streamlines that would span the component from hub to shroud. What is accounted 

for at this point along the design method is the radial equilibrium, the fact that as air 

rotates it has the ability to compress. So this means that the air at the shroud region 

of the blade acts differently than the air at the mean region and at the hub region. 

The viscosity of the air is usually still ignored through the streamline code. It is not 

until a full computational fluid dynamics (CFD) model is created, that the viscosity is 
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taken into account, but before this can be completed, a blade profile is required. Up 

to this point in time, a NACA primary or secondary airfoil would suffice for a turbine 

cascade, and many companies still rely on this methodology, but with the growing 

capability of Computer Aided Drafting (CAD) which has led to more experimentation 

with arbitrary airfoil shapes to better suit the requirements. The CAD modeling and 

manipulation can be some of the most strenuous work and will vary from user to 

user. For reference, many designers can generate the same blade profiles via 

meanline, and streamline, but it is the CAD which separates users apart. Once the 

CAD model is complete, it can be setup for meshing and then run in a Navier-Stokes 

(CFD) solver. The type of solver used can vary depending on the application, for 

most turbomachinery a solver along the lines of SST (Shear Stress Transport) for 

ANSYS CFX will do the job. The fidelity of the model comes down to the quality of the 

mesh, and the CFD setup.  Once the model has been run successfully and deemed by 

the designer that the CFD solver has “converged”, an analysis of the model can be 

done and the model geometry can be changed as deemed necessary to further refine 

the design to meet the requirements. 
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4. Problem Setup 

4.1 Portable Power Generation Design Parameters for 10kW system 

The Design parameters for the turbine came from building the cycle found in the 

Cycle published in the Reference 7, in the Numerical Propulsions System Simulation 

(NPSS) software, Table 1.  

Table 1: Thermodynamic Cycle Requirements from Table 1 in WASIC paper [7] 

Inlet Airflow 650 lb/hr 
Compressor Air Outlet 
Temperature 

330°F 

Fuel Input 
5.06 lb/hr, 
No. 2 fuel 

Recuperator Air outlet 
Temperature 

1253°F 

Compressor Inlet Pressure 14.7 psia Turbine Outlet Temperature 1356°F 
Compressor Discharge 
Pressure 

44.1psia Exhaust Gas Temperature 449°F 

Pressure Loss across 
Combustor 

1.5 psi Operating Speed 110,000 

Pressure Loss across 
Recuperator 

1.0 psia 
Compressor Impeller 
Diameter 

3.1 
inches 

Compressor Air Inlet 
Temperature 

70°F Turbine Rotor Diameter 
3.5 

inches 
Turbine Inlet Temperature 1800°F Compressor Efficiency 75% 
Regenerator Effectiveness 0.9 Turbine Efficiency 80% 
Overall Mechanical / 
Electrical Efficiency 

85% 
Overall System Thermal 
Efficiency 

37% 

 

When the cycle was created, it in fact was providing a series of difficulties, due to 

how the heat exchanger element works in NPSS. An initial estimation of the 

pressures, temperatures and flow was required in order for the cycle to know where 

to start as it began the solver process. This in turn meant that a non-recuperated 

cycle model had to be generated. Then once the solver ran and provided the output 

of temperature, pressure, and flow it provided a reasonable estimate for the 

recuperated cycle model. The values used as the input can be seen in Table 2.  
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Table 2: NPSS Heat Exchanger initial inputs 

Actual Flow 0.18462 lbm/s 
Total Pressure 16.10802 psi 
Total Temperature 1856.26870 R 
Water to Air Ratio (WAR) 0.0  
Fuel to Air Ratio (FAR) 0.0  
 

After multiple attempts it was realized that the NPSS cycle model would not actually 

converge on the same turbine efficiency, cycle fuel flow, or cycle thermal efficiency 

as stated in the table, yet all of the temperatures and pressures would match to 

within 0.5% of the numerical value listed in Table 1. It should also be noted that the 

NPSS cycle model of Table 1, will need to have some assumptions made about it, 

Table 3.  

Table 3: Assumptions for NPSS model of 10kW System from Table 1 

Inlet Recovery Losses 1.0 
Burner Efficiency 1.0 
Duct losses 0.0 
Nozzle Thrust Coefficient 1.0 
Nozzle Discharge Coefficient 1.0 
 

 These assumptions are necessary since the fact that the engine is in an uninstalled 

environment. While these assumptions are not ideal, they were made so the cycle 

would converge. The Output from this NPSS model is provided in Appendix A, but 

the main parameters of notice are listed in Table 4. 
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Table 4: NPSS Model Cycle and Turbine Output 

Total Fuel Burn 5.319 lbm/hr 
Power Output 13.41 hp 
BSFC (Brake Specific Fuel 
Consumption) 

0.396 lbm/hr/hp 

Cycle Thermal Efficiency 34.8 % 
Turbine Inlet Corrected 
Flow 

0.318 lbm/s 

Turbine Efficiency 87 % 
Turbine Corrected Work 
(DHRC) 

27.55 Btu/lbm 

 

The cycle efficiency is calculated via Equation 1 from section 2.2.2. Based on this it is 

possible to get the 10kW system, but some higher efficiency components are 

required.   

4.2 Meanline Analysis 

The cycle shows that an 80% adiabatic efficient turbine is required to achieve the 

desired 36.6% cycle thermal efficiency, Table 1. After running a one dimensional 

meanline turbine aero design code, which implements the Ainley and Mathison loss 

models, it shows that an efficiency of 84% is currently feasible. The main losses that 

are attributed to a turbine vanes and blades can be seen in Figure 7. This shows that 

for the standard turbine less than 10% of the losses come from annulus losses, and 

the majority of losses come from the secondary flow losses, which include mixing 

plane losses, Figure 6. (10). While the loss breakdown shown by Mustapha may hold 

true for conventionally sized turbine stages, it has been shown that, when the tip 

clearance becomes approximately 10% of the blade height it would be deemed to 

have a larger impact on the overall losses Figure 16.  
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Figure 16: Clearance losses increase as engine size decreases [16] 

One other item of concern is the increase of the drag coefficient through the 

reduction in the Reynold’s number (16). The low Reynold’s number can be directly 

related to the small size of the airfoil, increase in boundary layer thickness and 

friction coefficient across the airfoil. It should be noted however that the meanline 

code assumes the flow is inviscid. This therefore does not allow for the effects of the 

boundary layer build up.  

When looking at a stationary component such as a turbine nozzle, the conditions at 

the hub and shroud are assumed to be identical. It is in the streamline analysis 

where radial equilibrium is taken into account.  

Table 5: Turbine Stage Meanline Nozzle Exit Pressure and Temperature Conditions 

Total Temperature 2222.5 R 
Static Temperature 1979.1 R 
Total Pressure 37.686 psi 
Static Pressure 23.319 psi 
 

4.3 Airfoil Generation and Blade Stack-up 

Once the meanline is completed there is the need to take this data and generate 

proper airfoil shapes. Using some help from both Abbott & von Doenhoff (17), as 
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well as NACA airfoil series data, it was decided that a NACA primary airfoil was to be 

used. The cascade coordinates were then used in an airfoil profile generation code, 

which realigned the leading and trailing edge of the blade with the desired flow 

angles from the meanline code. Then using a simple radial equilibrium calculation, 

the sets of barrel section airfoils are generated. 

After the airfoils are generated, they are placed in an arbitrary location and still 

require further refinement. There are multiple options available for how a turbine 

cascade can be stacked: leading edge, trailing edge, or center of gravity. This can 

vary from design to design, based on the structural limitations imposed on the 

design. Since the cascade being designed is a turbine nozzle, stacking about the 

center of gravity was chosen as optimal. The area and centroid of each barrel section 

is calculated and then each barrel section is moved as necessary to build the stack 

about the centroid. This in term provides a turbine cascade which is stacked about 

the Center of Gravity.  

 

Figure 17: Barrel Sections of Cascade Stacked about the centroid 
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The most critical portion of the design comes in creating the turbine cascade. Noting 

that if everything performed to this point on paper is done correctly it does not 

mean a blade will meet its design intent. The generation of the sheets and bodies can 

make or break the meshing and even the CFD. There are many ways to solve a 

problem in Unigraphics and more than one fix can lead to a good solution.  

4.4 Meshing Geometry and Computational Fluid Dynamics (CFD) 

Once the model is built and the geometry is found to be satisfactory by the design 

engineer, the geometry can be prepped for meshing. This requires the model in the 

CAD software to be finalized by adding the planes for the inlet, outlet, shroud (if 

need be) as well as the periodic surfaces, then the model is ready to be moved for 

meshing and prepped for CFD. For this particular turbine cascade, the ANSYS 

Workbench was used, Figure 18, which resulted in using the Workbench mesher, 

also known as ANSYS mesher. The geometry model was imported and the user 

needs to define the faces, and name them accordingly. The mesh was setup to define 

a swept type mesh from the shroud to the hub, which left the blade as a bounding 

wall, this can be shown in Figure 19. 

 

Figure 18: ANSYS Workbench Fluid Flow Project Schematic 
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Figure 19: Mesh setup Details Original Turbine Cascade 

The mesh was defined as a Hex dominant mesh and the length parameter was 

limited to a min size of 0.003” and a max size and max face size of 0.02”, while not 

allowing the angles to be larger than 6°. The mesh was set to follow the advanced 

meshing criterion around all curvature. The number of inflation layers was set 

between 20 and 30 depending on the generation of blade. These aforementioned 

parameters were varied based on the number of nodes and elements present when 

the mesh was complete. The goal number was to be in the 100,000-300,000 node 

range for model fidelity. This number of nodes was determined to be adequate for a 

first pass. When a final model is defined, the number of elements would be 

increased. This can be seen in the screenshot showing the hub and blade geometry 

mesh in Figure 20. 
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Figure 20: Swept Mesh of Original Turbine Cascade 

With the mesh found to be of adequate fidelity, the next step is setting up the CFX 

solver. The conditions for the turbine cascade were pulled from the NPSS model, 

Table 4 and the inlet condition was set to a total pressure and temperature inlet. 

The outlet was set to static pressure, which came from the meanline output, Table 5. 

The blade, shroud and hub were all set as boundary walls for the flow. The surfaces 

further up and down in the plane of rotation on the Pressure and Suction surface 

were used as periodic surfaces. The periodic surface allows the creation of a small 

section and then assumes, based on user input, that there are more surfaces spread 

over the 360 degree circumference. For this particular case there was the design 

intent of 9 turbine cascades spread across the 360 degree circumference. Therefore, 

based upon user inputs, the solver will know that there are 9 cascades equally 

spaced every 40 degrees. Not only does this periodic input help speed up the time of 

the solution it also simplifies the input to the model. The next item reviewed was the 

default domain, where the reference pressures and temperatures were set to 0 and 
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the fluid type is selected, the heat transfer is set to total energy, and note this is 

where the solver type is selected. The fluid type used was not that of a standard 

found in ANSYS. The fluid properties were input via CEF (CFX Expressional 

Language) and were set to match that used in the solver of NPSS. This enables the 

designer to maintain the same level of fidelity from start to finish. Now that the 

parameters are defined for the solver the criterion and time step need to be setup. 

The criterion was set such that the solver would not stop running until the desired 

number of iterations is reached, at 1E-8. The time step was varied but was found to 

be most accurate around 1E-5, in the physical time scale setting. For the initial run, 

the number of iterations were set to 1500.  

After all of these parameters were set it was then determined as part of the problem 

statement to add end wall effects, as if they were coming out of the combustion 

chamber. These effects do not in any way represent any existing combustor 

anywhere but were more of an estimate based on the effects of what takes place in 

the boundary layer. Shown in Figure 21, and Figure 22, is the temperature and 

pressure gradient, respectively, as a function of span and reflects a decrease of 

temperature and total pressure at the boundary. These were set as an initial starting 

point, knowing that during the calculations run inside the solver they would change.  
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Figure 21: Total Temperature Inlet Gradient 

 

Figure 22: Total Pressure Inlet Gradient 

The equation setup in CEL was to allow an end wall effect at the hub (0.0 – 0.1 span) 

and the shroud (0.9 – 1.0 span), Table 6. Without this end wall effect, the flow would 

be represented as uniform from hub to shroud and would not accurately reflect the 

problem statement. 
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Table 6: CFD Inlet Boundary Gradient Setup 

Boundary Setup radius < 0.1 0.1 < radius < 0.9 Radius > 0.9  

Inlet Total Pressure 38.5 41.595 38.5 psi 

Inlet Total Temperature 1527.3 1762.8 1527.3 F 

 

The solver type was set to a RANS SST (Reynolds-Averaged Navier Stokes Shear 

Stress Transport) model which is specialized in separation modeling, and this is 

important for accurate prediction of turbomachinery component performance. An 

evaluation of available turbulence models was conducted and per a few resources 

reviewed it was deemed that the SST approach was the most reasonable for airfoil 

boundary layer applications (18). The CFD model is now formally setup and ready 

to be run in the CFX solver.  

5. Results 
 

5.1 Comparison of Meanline to CFD 

When reviewing the results from the CFD run it is important to have an idea of what 

is important. For a turbine nozzle it is noted that seeing the normal shockwave at 

the throat of the cascade is important, because it says the passage is choked which is 

ideal for a high work turbine stage, Figure 23. 
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Figure 23: Meridional View of Static Pressure distribution at 0.5 span 

Reviewing the model in CFX-post, it was deemed to move toward the region of 

interest to review how the leading edge pressure and temperature stood out against 

the span, and if indeed the HSV was forming due to the original assumption of 

inviscid flow. When reviewing the streamlines, Figure 24, it can clearly be seen that 

there is a region of interest just off of the leading edge of the turbine nozzle Pressure 

surface. 

Normal Shockwave 
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Areas of 
Recirculation 

 

Figure 24: Velocity streamlines indicating the Saddle Point 

Moving a vector plot in on the constant theta plane and allowing the full blade span 

to be viewed it can be seen that there is a significant amount of rotation at the lower 

and upper 20% of the blade span, Figure 25. 

 

Figure 25: Velocity Vector plot at the region of interest, full cascade span 
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Figure 26: Velocity vector plot at the region of interest, hub region 

It is evident that the geometry is clearly being affected by the boundary layer, and as 

the flow stagnates at the saddle point of the cascade it is pushed downward 

generating a leading edge vortex.  

 

 

Figure 27: Comparison of Original CFD Total Pressure distribution to meanline 
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Figure 28: Comparison of the Original CFD Total Temperature distribution to meanline 

Now that the Horseshoe Vortex has been generated by the variation in flow at the 

boundary layer the next step is to optimize the airfoil to mitigate the vortex. The 

method of choice was the approach established by Lethander et al. (14). When 

discussions took place it was recommended to review some of the methodologies 

that had been used previously. One approach evaluated was using a fillet where the 

height to length ratio was 3:1 boundary layers.  The results proved to be 

unfavorable. It was then determined that the key objective is to change the absolute 

inlet flow angle to help smooth out the inlet axial velocity. By doing this the blade is 

better optimized for the new, and more realistic, boundary conditions. 

5.2 Geometry modification for optimization, Original Geometry 

In order to find how the geometry was to be manipulated for further optimization 

the inlet velocity triangles needed to be calculated from the hub to span. This was 
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done using the axial and circumferential velocities. By doing some basic 

trigonometry, the absolute flow angle can be calculated, Equation 3. 

       
      

                
  

Equation 3: Absolute Flow Angle 

This angle which is optimized using the CFD model will determine how far the hub 

and shroud geometry need to shift. It is understood that due to the rotation of the 

flow from the HSV the angle will not be exact at some radial locations between the 

0.0 span and the 0.2 span. That leads to the reason of using only the angle at the hub 

even though it may not be the largest deviation. 

 

 

Figure 29: Absolute Flow angle vs. Normalized Span for Original CFD 

The hub section, is the area of interest, where the cascade geometry needs to be 

shifted 10 degrees. The reason behind this shift is to change the inlet velocity 
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shroud. The thought process is that by doing this manipulation the geometry is 

optimized for the boundary condition. 

5.2.1 Geometry Optimization 

The geometry was manipulated in the CAD model to make the change. Starting with 

the same CAD model, by turning the hub section then re-sweeping the surface with a 

variable blend, it would get halfway to the shape needed. After refining the variable 

blend by adding and removing points the final geometry stack-up was achieved, 

Figure 30. 

 

Figure 30: Optimized Cascade Geometry Stack Up 

It should be noted that the final geometry was not achieved upon on the first trial of 

optimization, and this was due to the manipulation of the CAD. The appendix shows 

all other geometry configurations to achieve the desired final optimized design. The 

mesh methodology was the same as the original blade, yet due to this new “fillet” on 

the leading edge there would need to be some changes. The Leading edge of the 

blade was too close to the inlet boundary. The inlet boundary should not be directly 



35 
 

on top of the leading edge of the cascade. If it is, the CFD results can be misleading 

due to the fact that the flow is not fully developed upon contact with the cascade. 

This can be fixed by either changing the inlet face generated in the CAD model or by 

adding a volume ahead of the cascade as it stands. The choice was made to move the 

face in CAD. The parameters for the CFD mesh did also have to change from their 

original intent, again this was due to the complex geometry formed. The mesh was 

still defined as a Hex dominant mesh and the length parameter was limited to a min 

size of 0.001” and a max size and max face size of 0.03”, while not allowing the 

angles to be larger than 6°. The mesh was set to follow the advanced meshing 

criterion around all curvature. The number of inflation layers was set between 10 

and 20. These measures were taken so that the model would mesh around the 

complex geometry, but in turn the number of inflation layers had to be reduced in 

order to not exceed the desired 100,000 – 300,000 nodes.  

 

Figure 31: Final Optimized Geometry showing mesh of Leading edge fillet 
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Figure 32: Top view of mesh for Final Optimized Geometry 

As is shown in Figure 31 and Figure 32 the fineness of the mesh grows drastically 

around the new leading edge fillet. The CFD solver setup was not changed between 

any of the CFD runs. The only thing that needed to be done was re-setup the 

boundary association, but this was mainly taken care of during the mesh process. 

Upon completion of the CFD run, the leading edge was evaluated. This time the focus 

was strictly on the formation of the HSV.  
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Figure 33: Optimized Geometry showing HSV with Streamline and Vector plots. 

From the streamline with vector plots in CFX-post it appeared at first that the HSV 

was still showing, not as strong as before but still here, Figure 33. It was not until 

diving in a little further that it was noticed that the HSV was indeed not as strong as 

previously seen, Figure 34. 

 

Figure 34: Optimized Geometry showing weak HSV 
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After evaluating the results from Figure 34 there was a need to dive in further to see 

what exactly was happening. Upon further review of the vector plot in Figure 35, the 

flow which was generating the vortex in the original model is actually being passed 

downstream. 

 

Figure 35: Optimized Geometry vector plot showing flow moving down passage rather than recirculating 

There is still some vortex generation at this location where the cascade geometry 

meets the hub section but this is believed to be formed from how flat and bulbous 

the leading edge is. This also leads to the thought that by decreasing the radii on the 

leading edge of the fillet, there can be an even larger improvement.  

As the data was reviewed and plotted in Figure 36, Figure 37, and Figure 38, there 

are a few items of notice. The deviation in Total Pressure from design total pressure 

is approximately 1%, for static pressure varies by less than 0.5%. The significant 

factor is the reduction of the temperature in the boundary layer by almost 1.5%. 

This points to the same conclusion as Lethander et al. (14) that by optimizing the 

endwall junction of the cascade a reduction in temperature can be seen.  
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Figure 36: Inlet Total Pressure vs. Normalized span for Optimized Geometry and Meanline 

 

 

Figure 37: Inlet Static Pressure vs. Normalized span for Optimized Geometry and Meanline 
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Figure 38: Inlet Total Temperature vs. Normalized span for Optimized Geometry and Meanline 

6. Summary 

After reviewing the results from the analyzed geometries it was deemed noteworthy 

to show the progression from meanline to final design of the Total Pressure and 

Total Temperature distribution plots. It can be seen that the pressure deviation 

between the original model and meanline models at the lower twenty percent span 

has been improved by the geometry optimization, Figure 39, and Figure 40. 
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Figure 39: Inlet Static Pressure vs. Normalized Span for all CFD and Meanline 

 

 

Figure 40: Inlet Total Pressure vs. Normalized Span for all CFD and Meanline 

When looking at the total temperature plot for the geometries analyzed the total 

temperature at the hub region is roughly 1.5% colder than the meanline geometry. 
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This is a byproduct of reducing the endwall effects due to reducing the horseshoe 

vortex. 

 

Figure 41: Inlet Total Temperature vs. Normalized Span for all CFD and Meanline 

The effects of nozzle performance should also be evaluated at the trailing edge 

where an improvement in span wise total pressure and temperature can be seen, 

Figure 42 & Figure 43, respectively. There is a 7.58% difference in total pressure at 

the hub and a 0.12% difference in total temperature, Figure 43. 
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Figure 42: Exit Total Pressure vs. Normalized Span for CFD 

 

Figure 43: Exit Total Temperature vs. Normalized Span for CFD 

The preliminary design analysis has been completed and shows the feasibility of a 

gas turbine for the use in man-portable power generators. This also shows that the 

horseshoe vortex can be reduced and would improve the overall stage efficiency.  
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7. Future Work / Recommendations 

The future work on this project would be to investigate the effort of the leading edge 

radius of the fillet has any effect on helping to mitigate the HSV further. This will be 

followed by the modeling of the rest of the downstream blade rows, where design 

optimization will need to take place on the nozzle vane cascade to rotor blade 

interaction. It will also be of interest to see how the turbine rotor performance 

responds, to the newly designed nozzle vane cascade. 
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9. Appendix A: NPSS model output 

 

Concepts NREC Match - Detail

Parameter Design Point Off-Design Rematch Units

Altitude 0 0 ft

Mach No. 0 0

Gross Thrust 0.4081 0.4081 lbF

EGT 911.70042 911.70042 R

Net Thrust 0.4081 0.4081 lbF

Total Fuel 5.31926 5.31926 lbm

BSFC 0.39666 0.39666 lbm/hr/hp

Thermal Eff 34.86757 34.86757

Brg Fuel 0 0 lbm/hr

OPR 3.0005 3.0005

CPR 3.0005 3.0005

EPR 1.00166 1.00166

CDP 44.0952 44.0952 psi

CDT 789.96768 789.96768 R

HP Speed 110000 110000 Rpm

Amb.Pt 14.69595 14.69595 psi

Amb.Tt 529.67 529.67 R

Amb.MN 0 0

Amb.Ps 14.69595 14.69595 R

Amb.Ts 529.67 529.67 psi

Amb.VTAS 0 0

InFsEng.W 0.18055 0.18055 lbm/s

InEng.Fl_O.W 0.18055 0.18055 lbm/s

InEng.Fl_O.Pt 14.69595 14.69595 psi

InEng.Fl_O.Tt 529.67 529.67 R

InEng.Fl_O.Wc 0.18246 0.18246 lbm/s

InEng.eRam 1 1

InEng.eRamBase 1 1

InEng.Fl_O.rhot 0.074892 0.074892 lb/ft3

CmpH.Fl_O.W 0.18055 0.18055 lbm/s

CmpH.Fl_O.Pt 44.0952 44.0952 psi

CmpH.Fl_O.Tt 789.96768 789.96768 R

CmpH.Fl_O.Wc 0.074263 0.074263 lbm/s

CmpH.Fl_O.MN 0.4 0.4

CmpH.Fl_O.Ps 39.51199 39.51194 psi

CmpH.PR 3.0005 3.0005

CmpH.Nc 108850 108850 Rpm

CmpH.pwr -16.0452 -16.0452 hp

CmpH.eff 0.746 0.746

FsEng.LHV 18397 18397 Btu/lbm

FsEng.Fu_O.LHV 18397 18397 Btu/lbm
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Parameter Design Point Off-Design Rematch Units

FsEng.Fu_O.switchFuelType JP JP Jet Fuel

FsEng.Fu_O.Pfuel 14.696 14.696 psi

FsEng.Fu_O.Tfuel 540 540 R

FsEng.Fu_O.TrefFuel 0 0 R

FsEng.Fu_O.Wfuel 0.0014776 0.0014776 lbm/s

FsEng.Wfuel 0 0 lbm/s

BrnPri.Fl_I.W 0.18055 0.18055 lbm/s

BrnPri.Fl_I.Pt 43.0952 43.0952 psi

BrnPri.Fl_I.Tt 1712.65411 1712.65411 R

BrnPri.Fl_I.Wc 0.11188 0.11188 lbm/s

BrnPri.Fl_O.W 0.18203 0.18203 lbm/s

BrnPri.Fl_O.Pt 41.5952 41.5952 psi

BrnPri.Fl_O.Tt 2222.47789 2222.47789 R

BrnPri.Fl_O.Wc 0.13313 0.13313 lbm/s

BrnPri.TtCombOut 2222.5 2222.5 R

BrnPri.Wfuel 0.0014776 0.0014776 lbm/s

BrnPri.FAR 0.0081835 0.0081835

BrnPri.eff 0.998 0.998

B041.Fl_I.W 0.18203 0.18203 lbm/s

B041.Fl_I.Pt 41.5952 41.5952 psi

B041.Fl_I.Tt 2222.47789 2222.47789 R

B041.Fl_I.Wc 0.13313 0.13313 lbm/s

B041.Fl_I.MN 0 0

B041.Fl_I.Ps 0 0

B041.Fl_I.FAR 0.0081835 0.0081835

B041.Fl_O.W 0.18203 0.18203 lbm/s

B041.Fl_O.Pt 41.5952 41.5952 psi

B041.Fl_O.Tt 2222.47789 2222.47789 R

B041.Fl_O.Wc 0.13313 0.13313 lbm/s

B041.Fl_O.MN 0 0

B041.Fl_O.FAR 0.0081835 0.0081835

TrbH.Fl_O.W 0.18203 0.18203 lbm/s

TrbH.Fl_O.Pt 15.72043 15.72043 psi

TrbH.Fl_O.Tt 1815.179 1815.179 R

TrbH.Fl_O.Wc 0.31834 0.31834 lbm/s

TrbH.eff 0.87 0.87

TrbH.pwrExpand 29.60322 29.60322 hp

Perf.TrbH_DHRC 27.55136 27.55136 Btu/hr

TrbH.PR 2.64593 2.64593



50 
 

 

Parameter Design Point Off-Design Rematch Units

HX.effect 0.9 0.9 BTU/s

HX.Q -42.73504 -42.73504 lbm/s

HX.Fl_I1.Wc 0.074263 0.074263 lbm/s

HX.Fl_I1.W 0.18055 0.18055 psi

HX.Fl_I1.Pt 44.0952 44.0952 R

HX.Fl_I1.Tt 789.96768 789.96768 lbm/s

HX.Fl_I2.Wc 0.31834 0.31834 lbm/s

HX.Fl_I2.W 0.18203 0.18203 psi

HX.Fl_I2.Pt 15.72041 15.72041 R

HX.Fl_I2.Tt 1815.17482 1815.17482 lbm/s

HX.Fl_O1.Wc 0.11188 0.11188 lbm/s

HX.Fl_O1.W 0.18055 0.18055 psi

HX.Fl_O1.Pt 43.0952 43.0952 R

HX.Fl_O1.Tt 1712.65411 1712.65411 lbm/s

HX.Fl_O2.Wc 0.24094 0.24094 lbm/s

HX.Fl_O2.W 0.18203 0.18203 psi

HX.Fl_O2.Pt 14.72041 14.72041 R

HX.Fl_O2.Tt 911.70042 911.70042

Perf.HotDelta 1 1

Perf.ColdDelta 1 1

Pressure drop 2 2 lbm/s

B042.Fl_I.W 0.18203 0.18203 psi

B042.Fl_I.Pt 14.72041 14.72041 R

B042.Fl_I.Tt 911.70042 911.70042 lbm/s

B042.Fl_I.Wc 0.24094 0.24094

B042.Fl_I.MN 0 0 lbm/s

B042.Fl_O.W 0.18203 0.18203 psi

B042.Fl_O.Pt 14.72041 14.72041 R

B042.Fl_O.Tt 911.70042 911.70042 lbm/s

B042.Fl_O.Wc 0.24094 0.24094 lbm/s

D060.Fl_O.W 0.18203 0.18203 psi

D060.Fl_O.Pt 14.72041 14.72041 R

D060.Fl_O.Tt 911.70042 911.70042 lbm/s

D060.Fl_O.Wc 0.24094 0.24094 psi

D060.Fl_O.Ps 13.19619 13.19615

D060.Fl_O.MN 0.4 0.4 ft/s

D060.Fl_O.V 580.45239 580.4537

D060.Fl_O.FAR 0 0 lbm/s

NozPri.Fl_O.W 0.18203 0.18203
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Parameter Design Point Off-Design Rematch Units

NozPri.Fl_O.Pt 14.72041 14.72041 psi

NozPri.Fl_O.Tt 911.70042 911.70042 R

NozPri.Fl_O.Wc 0.24094 0.24094 lbm/s

NozPri.Fl_O.Ps 14.69595 14.69595 psi

NozPri.Fl_O.Ts 911.27828 911.27828 R

NozPri.PR 1.00166 1.00166

NozPri.Fl_O.V 72.13082 72.13082 ft/s

NozPri.AR 1 1

NozPri.Ag 8.34826 8.34826 in2

NozPri.Af 8.34826 8.34826 in3

NozPri.Fl_O.Aphy 8.34826 8.34826 in4

NozPri.Cv 1 1

NozPri.Cd 1 1

NozPri.Cfg 1 1

NozPri.Fl_O.MN 0.048993 0.048993

NozPri.Fg 0.4081 0.4081 lbF

NozPri.FgIdeal 0.4081 0.4081 lbF

ShH.Nmech 110000 110000 Rpm

ShH.pwrOut -29.4552 -29.4552 hp

ShH.trqIn 1.41345 1.41345 ft*lbF

ShH.trqNet -1.4877E-14 -1.4877E-14 ft*lbF

ShH.bearingFuelFlow 0 0 lbm/s

Load16.pwr -13.41 -13.41 hp

Load16.Nload 110000 110000 Rpm

Load16.NR 1 1

Load16.trqLoad -0.64028 -0.64028 ft*lbF

Load16.trq -0.64028 -0.64028 ft*lbF
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