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SYMBOLS 

The following is a list of variables with their respective units, which are used throughout 

the report. 

 

h Altitude (ft) 
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δe Elevator Deflection (deg) 

hi Engine Inlet Height (ft) 

η1 First Flexible Mode (rad) 
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Ni ith Generalized Modal Force (rad/s2) 
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Θ Pitch Angle (deg) 
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p1 Pressure at the engine inlet, behind the shock (lbs/ft2) 

η2 Second Flexible Mode (rad) 

η˙2 Second Flexible Mode Rate (rad/s) 

β Shock angle (deg) 

V Speed (kft/sec) 

M1 Speed of flow in the engine inlet, behind the shock (Mach) 

Te Temperature at the engine exit (◦R) 

T1 Temperature at the engine inlet, behind the shock (◦R) 

η3 Third Flexible Mode (rad) 

η˙3 Third Flexible Mode Rate (rad/s) 

Ad Diffuser Area Ratio  

An Exit nozzle area ratio  
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ABSTRACT 

 
Aditya, Ron MSAE, Embry-Riddle Aeronautical University, December 2015. Direct 

Adaptive Control for Stability and Command Augmentation System of an Air-breathing 

Hypersonic Vehicle 

In this paper we explore a Direct Adaptive Control scheme for stabilizing a non-

linear, physics based model of the longitudinal dynamics for an air breathing hypersonic 

vehicle. The model, derived from first principles, captures the complex interactions 

between the propulsion system, aerodynamics, and structural dynamics. The linearized 

aircraft dynamics show unstable and non-minimum phase behavior. It also shows a strong 

short period coupling with the fuselage-bending mode. The value added by direct adaptive 

control and the theoretical requirements for stable convergent operation is displayed. One 

of the main benefits of the Direct Adaptive Control is that it can be implemented knowing 

very little detail about the plant. The implementation uses only measured output feedback 

to accomplish the adaptation. A stability analysis is conducted on the linearized plant to 

understand the complex aero-propulsion and structural interactions. The multivariable 

system possesses certain characteristics beneficial to the adaptive control scheme; we 

discuss these advantages and ideas for future work.  
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1. INTRODUCTION 

1.1 Hypersonic Flight Background 

Air-breathing hypersonic aircraft are seen as a possible solution to making access 

to space routine and affordable. The historic 2004 scramjet-powered Mach 7 and 10 flights 

of the X-43A (Voland, et al 2005; McClinton 2006; Rausch, et al 1997) have revived 

hypersonic research. In the 1990’s, the Air Force Research Laboratory (AFRL) began the 

HyTECH program for hypersonic propulsion. Pratt and Whitney received a contract from 

the AFRL to develop a hydrocarbon-fueled scramjet engine, which led to the development 

of the SJX61 engine. The SJX61 engine was originally meant for the NASA X-43C, which 

was eventually cancelled. The engine was applied to the AFRL’s Scramjet Engine 

Demonstrator program in late 2003 (Letsinger, 2012). The scramjet flight test vehicle was 

designated X-51 in September 2005.  

In flight demonstrations, the X-51 is carried to an altitude of 50,000 feet by a B-52 

and released over the Pacific Ocean (Air Force Times, 2009). The X-51 is initially 

propelled by an MGM-140 ATACMS solid rocket booster to approximately Mach 4.5. The 

booster is then jettisoned and the vehicle’s Pratt and Whitney Rocketdyne SYJ61 scramjet, 

using JP-7 fuel, accelerates it to a top flight speed near Mach 6 – 8 (Villanueva, 2007; 

Wright-Patterson Air Force Base News, 2010). A layout of the mission profile is shown in 

Figure 1.1. 
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Figure 1.1: X-51 Mission Profile (Mutzman, et al 2011) 

During this 8 year long program the Air Force Research Lab, Wright-Patterson Air 

Force Base, developed a modeling environment that control engineers could use early in 

the design process to help understand the physical manifestation of the complex 

interactions between the aerothermodynamics, propulsion system, control system, and 

structural dynamics that occur for a given configuration (Bolender, 2009). 

The team at AFRL maintained the philosophy that the aerodynamic forces and 

moments are not stored in look-up tables, but instead calculated at each time step of the 

simulation given the actuation of the controls and the current state of the vehicle. This 

approach takes the simulation much closer to the real dynamics than a mathematical model.  

The idea of this modeling effort from the start has been to incrementally add 

complexity to the model. The initial model was based on the assumption of quasi-steady 

airflow over the vehicle, which allowed oblique shock theory and Prandtl-Meyer flow to 
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determine the pressure distribution on the vehicle. This approach was replaced by linear 

piston theory in order to capture the unsteady components of the flow field. The original 

model was based on the assumption of inviscid flow; an analytical skin friction model using 

Eckert’s reference temperature method is incorporated into the model to give more realistic 

drag estimates (Bolender, et al 2006).  

Changes were made to the Aeroelastic model to improve the estimation of the mode 

shapes and frequencies of the structural dynamics. By utilizing the Assumed Modes 

Method, it was possible to calculate any desired number of frequencies and mode shapes 

(Doman, et al 2006). In the following section, we will review the history and evolution of 

adaptive controls and describe the problem and the proposed solution.  

 

1.2 Adaptive Controls Literature Survey 

Research in adaptive control has a long history of intense activities that involved 

debate about the precise definition of adaptive control, examples of instabilities, stability 

and robustness proofs, and applications (Ioannou, et al 2012). 

 Starting in the early 1950s, the design of autopilots for high performance aircraft 

motivated intense research activity in adaptive control (Ioannou, et al 2012). High 

performance aircraft have a highly non-linear flight envelope that cannot be handled by 

constant gain feedback control. Gain scheduling or other linear control approaches demand 

linearization at hundreds and thousands of operating points. This created a demand for a 

sophisticated controller, such as an adaptive controller, that could learn and accommodate 

changes in the flight dynamics (Ioannou, et al 2012). MRAC was suggested by Whitaker 
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in (Osburn, et al 1961; Whitaker, et al 1958) to solve the autopilot control problem, which 

used sensitivity method and MIT rule to design the adaptive law of the various proposed 

adaptive control scheme.  

 The field of adaptive control over time has advanced to be one of the richest in 

terms of design techniques, algorithms, analytical tools, and modifications. Books such as 

Stable Adaptive Systems by Narendra and Annaswamy (Narendra, et al 2012), Adaptive 

Control by Åström† and Wittenmark (Åström†, et al 1989), Adaptive Filtering, Prediction 

and Control by Goodwin and Sin (Goodwin, et al 1984) , Robust Adaptive Control by 

Ioannou and Sun (Ioannou, 2012) and published research monographs (Fuentes, et al 2000; 

Balas, et al 2016; Balas, 2012; Wen, 1989; Tsypkin, 1971; Harris, et al 1981; Unbehauen, 

1980; Chalam, 1987; Egardt, 1979) already exist on the topic of adaptive control. 

The terms “adaptive control” and “adaptive systems” have been used as early as 

1950 (Aseltine, et al 1985; Caldwell, 1950). The design of autopilots for high-performance 

aircraft was one of the primary motivations for active research on adaptive control in the 

early 1950s (Ioannou, 2012). Aircraft operate over a wide range of speeds and altitudes, 

and their dynamics are non-linear and conceptually time varying (Ioannou, 2012). For a 

given operating point, specified by the aircraft speed (Mach number) and altitude, the 

complex aircraft dynamics can be approximated by a linear model of the form: 

{
�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑥(0) = 𝑥0
𝑦 = 𝐶𝑥 + 𝐷𝑢                             

 

Where 𝑥 ∈ 𝑹𝑛 is the state of the model, 𝑢 ∈ 𝑹𝑟the plant input, if 𝑦 ∈ 𝑹𝑝 the plant 

model output. The matrices 𝐴 ∈ 𝑹𝑛×𝑛, 𝐵 ∈ 𝑹𝑛×𝑟 , 𝐶 ∈ 𝑹𝑝×𝑛𝑎𝑛𝑑 𝐷 ∈ 𝑹𝑝×𝑟could be 
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constant or time varying. For an operating point 𝑖, the linear aircraft model takes the 

following form:  

{
�̇� = 𝐴𝑖𝑥 + 𝐵𝑖𝑢, 𝑥(0) = 𝑥0
𝑦 = 𝐶𝑖𝑥 + 𝐷𝑖𝑢                             

 

Where 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 𝑎𝑛𝑑 𝐷𝑖 are functions of the operating point i. As the aircraft goes 

through different conditions, the operating point changes leading to different values 

of 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 and 𝐷𝑖. 𝑦(𝑡) the output response carries information about the state 𝑥 as well 

as the parameters, thus a sophisticated feedback controller should be able to learn about 

parameter changes by processing 𝑦(𝑡) and using the appropriate gains to compensate them. 

This ideology led to the feedback control structure upon which adaptive control is based 

(Narendra, 2005). The controller structure consists of a feedback loop and a controller with 

adjustable gains as shown in Figure 1.2 (Ioannou, et al 2012). The way of adjusting the 

controller gains in response to variation in the plant and disturbance dynamics 

differentiates one scheme from another. 

 

Figure 1.2: General Adaptive Controller Structure (Ioannou, et al 2012) 

This control law is formulated by merging an on-line parameter estimator, 

providing estimates of unknown parameters at each instance, with the control law that is 
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driven from the known parameter case. Adaptive controls bifurcate into two categories. In 

indirect adaptive control, the plant parameters are estimated on-line and used to calculate 

the controller parameters. This approach is also known as explicit adaptive control 

(Ioannou, et al 2012).  

 

Figure 1.3: Principle Structure of Indirect Adaptive Control (Ioannou, et al 2012) 

In indirect adaptive control, the plant model 𝑃(𝜃∗) is parameterized with respect to 

some unknown parameter vector 𝜃∗ with 𝜃∗representing unknown coefficients of the 

transfer function. So, an on-line parameter estimator builds an estimate 𝜃(𝑡) of 𝜃∗ at each 

time step by processing the input 𝑢 to the system and output 𝑦 from the system. The 

parameter estimates 𝜃(𝑡) specifies an estimated plant model characterized by �̂�(𝜃(𝑡)), 

which is used to calculate the controlled parameters vector 𝜃𝑐(𝑡) by solving the algebraic 

equation 𝜃𝑐(𝑡) = 𝐹(𝜃(𝑡)) at each time t.  

The second approach is called direct adaptive control. Ioannou and Sun define this 

as where “the plant model is parameterized in terms of the controller parameters that are 
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estimated directly without intermediate calculations involving plant parameter estimates” 

(Ioannou, et al 2012), shown in Figure 1.4.  

 

Figure 1.4: Design Principle of Direct Adaptive Control (Ioannou, et al 2012) 

In contrast to this Narendra and Annaswamy define “direct adaptive control as 

where no effort is made to identify the plant parameter but the control parameters are 

directly adjusted to improve a performance index” (Narendra, et al 2005), shown in Figure 

1.5 where M is the model reference plant, P is the plant and C is the controller.  

 

Figure 1.5: Design Principle of MR Direct Adaptive Control (Narendra, et al 2012) 

The first step in the stability approach to adaptive system design is the choice of 

the adaptive law for adjusting the control parameters to assure stability.  Narendra and 
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Annaswamy define this class of direct adaptive schemes as error models (Narendra, et al 

2005). For this scheme let 𝜃∗ be a constant unknown vector such that the output of the 

adaptive system follows the output of the reference model exactly when 𝜃(𝑡) ≡ 𝜃∗. The 

state error vector 𝑒(𝑡) and the parameter error vector ∅(𝑡) are defined as: 

𝑒(𝑡) ≜ 𝑥(𝑡) − 𝑥∗(𝑡),       ∅(𝑡) ≜ ∅(𝑡) − ∅∗ 

Where 𝑥∗(𝑡) is the desired trajectory. The goal is for 𝑒(𝑡) to tend to zero as 𝑡 → ∞, 

in the absence of external disturbances. In many cases, it is also desirable to assure 

that 𝑙𝑖𝑚𝑡→∞∅(𝑡) = 0. This approach was first suggested by Narendra (Narendra, et al 

1971) in 1971. This can also be represented in terms of the error vector. Focusing attention 

directly on the error/error vector, rather than on the actual response of the plant or reference 

model enables the designer to concentrate on the essential features of the problem 

(Narendra, et al 2005). 

Based on this philosophy Wen and Balas (Wen, et al 1989) developed Narendra’s 

direct adaptive scheme a class of error model adaptive control law in infinite dimensional 

space in 1989 (Wen, et al 1989), shown in Figure 1.6. This scheme in particular was one 

of the very first that generalized the finite-dimensional control law to the infinite-

dimensional Hilbert Space. Here a finite-dimensional adaptive controller was modified and 

Lagrange stability was proved for closed-loop systems close to being positive real. This 

was a major advancement from Wen’s previous work in (Wen, 1985).  
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Figure 1.6: Error Model Class MRAC Scheme (Wen, et al 1989) 

 

In the late 1990s, a relatively large amount of attention was devoted to stochastic 

disturbances in the system and references were scarce on deterministic noise compensation.  

Fuentes and Balas (Fuentes, et al 2000) generated a new scheme in 2000 for the error model 

class of adaptive control. They illustrated a technique, complementing the previous MRAC 

work and guaranteed asymptotically stable tracking in the presence of external 

disturbances, shown in Figure 1.7.  

This scheme has served as a foundation for future work. Over the years the control 

law has been modified and reformulated. In the mid and late 2000s the majority of the 

attention was devoted to formulating techniques in order to meet the stability theorem 

requirements. The fundamental hypothesis for direct adaptive control is developed in 

(Balas, et al 2004) for both ASPR and APR systems. Efforts have also been made and 

MRAC now has been shown to handle unknown delays and persistent disturbances (Balas, 

et al 2009). 
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Figure 1.7: Error Model Class MRAC Scheme with Persistent Disturbance Rejection (Fuentes, et al 

2000) 

 

These efforts have broadened the class of systems MRAC can be implemented on, 

which has allowed researchers to conduct experiments using this scheme. Since 2010, 

focus has been put on formulating stronger and more sophisticated stability proofs along 

with testing the control law on various linear, nonlinear, linear time invariant and time 

varying systems (Balas, et al 2012; Balas, et al 2012; Schlipf 2013).  

Stability proofs have been formulated for periodic linear time varying systems (Li, 

et al 2014). Sophisticated techniques like sensor blending and use of zero filters to mitigate 

non-minimum phase have already been published (Balas, et al 2012; Hartman, 2012).  

A complete stability analysis in infinite-dimensional space, ease of implementation 

and need of very little information about the plant make this control law a viable scheme 

for systems with high order and a large number of parameters. 
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1.3 Problem Description 

A number of recent flight test programs have demonstrated the feasibility of 

airbreathing hypersonic flight (Voland, et al 2005; McClinton 2006). The flight test 

vehicles flown to date were relatively small in scale, stiff, and some were statically stable. 

Large scale scramjet powered aircraft designed for long range cruise or access to space are 

generally unstable and mechanically flexible which leads to significant control challenges. 

The coupling between the aerodynamics, propulsion system, structure, controls, 

and thermal system presents a complex modeling and control problem (Bolender, 2009; 

Bolender, et al 2007; Bolender, et al 2007; Bolender, et al 2006; Doman, et al 2006; 

Oppenheimer, et al 2007). CFD models with coupled aerodynamic and structural grids 

provide the most accurate tools for analysis of such systems; however, they are not well 

suited for control design. Even with the use of such sophisticated computational tools, there 

is a considerable amount of uncertainty in even relatively stiff entry-vehicle models and 

major differences between predicted and observed behavior have been found in practice 

(Cobleigh, 1998).   

One approach to control design and analysis is to make use of control-oriented 

models that capture the salient aerothermoservoelastic features of large-scale hypersonic 

vehicles (Bolender, 2009; Bolender, et al 2007; Oppenheimer, et al 2007). This allows one 

to quickly explore control strategies, identify fundamental control challenges, and to 

quickly assess performance before moving toward more costly and time-consuming high 

fidelity simulation models for testing.  

Hypersonic vehicles due to a long fore body and aft engine tend to have an aft CG 

creating nose-up pitching moment (instability). The long structure and issues of heating at 
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the forebody restricts placement of any control surfaces like canards in the forebody; an aft 

control surface gives the system a non-minimum phase characteristic. 

This presents control challenges and performance limitations for any control 

method. The high levels of uncertainty present in even the highest fidelity models motivate 

the exploration of adaptive control methods for use with large-scale scramjet powered 

hypersonic aircraft.  Elements of the control-oriented models described in (Bolender, 2009; 

Bolender, et al 2007; Oppenheimer, et al 2007) are used in the present work to design a 

stability and command augmentation system using a direct adaptive control scheme that is 

capable of adapting to nonlinearities.   

The X-51 being a successful scramjet engine demonstrator, we use the nonlinear 

simulation as a platform to evaluate the control scheme for providing artificial longitudinal 

stability.  

The usual mission profile for the X-51 hypersonic demonstrator consists of a drop 

from the B-52 at 50,000 feet after which a rocket booster climbs and accelerates the vehicle 

to Mach 4.5. At this point the booster separates, the scramjet engine is ignited and the 

vehicle cruises at this altitude with slow incremental increases in speed (need for speed 

command augmentation) until it runs out of fuel and crashes in the ocean.  

In this work we take the problem of instability and requirement for tracking a speed 

command and use an adaptive control scheme, obscure in terms of application until very 

recently, to compensate for longitudinal instability by providing artificial longitudinal 

stability and track a speed command. 
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We achieve longitudinal stability by designing a pitch-axis stability augmentation 

and enable accurate speed command tracking by designing a speed command and hold 

augmentation using the direct adaptive control scheme mentioned previously in section 

1.2. 

In Chapter 2, we examine the direct adaptive control scheme and the stability theory 

upon which this thesis relies. We look at the requirements a system must meet in order to 

satisfy the nonlinear stability theorem. The linearized plant being non-minimum phase we 

discuss ways of mitigating this. In Chapter 3 we briefly discuss the hypersonic model 

derived by the AFRL team (Bolender, 2009; Bolender, et al 2007; Bolender, et al 2007; 

Bolender, et al 2006; Doman, et al 2006; Oppenheimer, et al 2007) and also look at the 

simulation model coded using Matlab and Simulink. 

In Chapter 4, we discuss the conventional ideas behind the design of a pitch-axis 

stability augmentation system and speed command and hold augmentation system. We 

discuss the two proposed control laws and review the results from the linearized and 

nonlinear simulation. In order to mitigate non-minimum phase, we conduct sensor blending 

on the linearized plant in order to meet the conditions of the stability theorem. 

In Chapter 5, we design the stability and command control law through a 

multivariable approach. We briefly discuss multivariable systems and the two broad 

categories. Next we look at the stability requirements for the control scheme in case of 

multivariable systems and discuss the definition of transmission zeros. We then look at 

ways of computing these transmission zeros and implement the direct adaptive scheme and 

also compare performance characteristics for different coupling weightings and with the 



14 

 

 

SISO case. In Chapter 6, we discuss some conclusions gathered from the observations and 

results in Chapter 4 and 5 and also discuss areas of interest for future work.  
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2. DIRECT ADAPTIVE CONTROL SCHEME 

In this section, we review the results of (Balas, et al 2014; Balas, et al 2003) for the 

direct adaptive scheme mentioned in section 1.2. Let  𝑋 ≡ 𝑹𝑁 with the usual inner product 

(𝑥, 𝑦) and corresponding norm ‖𝑥‖  ≡  √(𝑥, 𝑥). Consider the linear finite-dimensional 

plant: 

{
�̇�   =   𝐴𝑥 + 𝐵𝑢                     
𝑦  =   𝐶𝑥, 𝑥0 ≡ 𝑥(0) ∈ ℝ𝑁

                      (1) 

Where 𝐴:𝑹𝑁 → 𝑹𝑁 , 𝐵: 𝑹𝑀 → 𝑹𝑁 , and 𝐶:𝑹𝑁 → 𝑹𝑀 are real valued matrix operators. We 

define (1) to be globally exponentially stable if 𝑅𝑒(𝜆𝑖(𝐴)) < 0 for eigenvalues  

𝜆𝑖, 𝑖  =   1, … ,𝑁                                                   (2) 

This system is said to be output feedback stabilizable if there exists 𝐺∗: 𝑹𝑀 → 𝑹𝑀 such 

that the operator (𝐴 + 𝐵𝐺∗𝐶): 𝑹𝑁 → 𝑹𝑁 is exponentially stable. We say the triplet (A, B, 

C) is strictly dissipative (SD) if (A, B) is controllable, and there exist symmetric positive 

definite matrix operators 𝑃, 𝑄 ∈ 𝑹𝑁×𝑁 such that: 

{
𝐴𝑇𝑃 + 𝑃𝐴   ≤    −𝑄

             𝑃𝐵   =    𝐶𝑇 
                                                         (3) 

These equations are called the Kalman-Yacubovic (K-Y) equations. Almost strict 

dissipativity is defined here as ∃ 𝐺∗ ∋ (𝐴 + 𝐵𝐺∗𝐶, 𝐵, 𝐶) is SD. For the non-adaptive model-

tracking control design, we are given a plant model 

{
�̇�𝑝   =   𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢𝑝                       

𝑦𝑝   =   𝐶𝑝𝑥𝑝;  𝑥𝑝
0 ≡ 𝑥𝑝(0) ∈  𝑅

𝑁𝑝 ,
                     (4)  
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Having 𝑢𝑝, 𝑦𝑝 ∈ 𝑹
𝑀 with the equations in (1) output feedback is stabilizable by gain 𝐺𝑒

∗. 

The above system is required to track the reference trajectory output of the following stable 

reference model: 

{

�̇�𝑚   =   𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚                  

𝑦𝑝      =   𝐶𝑝𝑥𝑝;  𝑥𝑚
0 ≡ 𝑥𝑚(0) ∈ 𝑅

𝑁𝑝

𝑁𝑚   ≤   𝑁𝑝, 𝑦𝑚 ∈ 𝑅
𝑀                       

                    (5) 

With excitation: 

{
�̇�𝑚   =   𝐹𝑚𝑧𝑚                                        

𝑢𝑚   =   𝜃𝑚𝑞𝑚;  𝑞𝑚
0 ≡ 𝑞𝑚(0) ∈ 𝑅

𝑁𝑚
                  (6) 

We assume that all the trajectories of (6) are bounded, and that (5) is exponentially 

stable. An ideal trajectory is assumed such that the ideal output matches that of the 

reference model: 

{
�̇�∗    =    𝐴𝑝𝑥∗ + 𝐵𝑝𝑢∗
𝑦∗    =    𝐶𝑝𝑥∗ = 𝑦𝑚    

                                         (7) 

If there exists a transformation, (8), which satisfies the matching conditions given by (9), 

we say that (5 – 7) are totally consistent: 

[
𝑥∗
𝑢∗
]    =    [

𝑆11
∗ 𝑆12

∗

𝑆21
∗ 𝑆22

∗ ] [
𝑥𝑚
𝑧𝑚
]                                    (8) 

                                          𝐴𝑝𝑆11
∗ + 𝐵𝑝𝑆21

∗     =    𝑆11
∗ 𝐴𝑚   

                                   (𝐴𝑝𝑆21
∗ + 𝐵𝑝𝑆22

∗ )𝐶𝑞    =    𝑆11
∗ 𝐵𝑚𝐶𝑞 + 𝑆12

∗ 𝐶𝑞𝐴𝑞 

                                                         𝐶𝑚𝑆11
∗    =    𝐶𝑚    

  𝐶𝑝𝑆12
∗   =   0.                                                           (9) 

Define 𝑒𝑦 ≡ 𝑦𝑝 − 𝑦𝑚 as the output tracking error, 𝑒∗ ≡ 𝑥𝑝 − 𝑥∗ as the state tracking error 

and the control input for the system in (4) as: 

𝑢𝑝 = 𝑆21
∗ 𝑥𝑚 + 𝑆22

∗ 𝑢𝑚 + 𝐺𝑒
∗𝑒𝑦.                       (10) 
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The closed loop can be shown to produce asymptotic output tracking, 𝑒𝑦 → 0 𝑎𝑠 𝑡 → ∞, 

when the complete knowledge of the plant is assumed and the matching conditions are 

solved.  

However, the following fundamental direct adaptive control result is valid without solving 

the matching conditions in equations (8) and (9): 

Theorem 1: If (𝐴𝑝, 𝐵𝑝, 𝐶𝑝) is ASD, and (5), (6), and (7) are totally consistent, then the 

adaptive gain laws, 

                                                              �̇�21  =    −𝑒𝑦𝑥𝑚
𝑇𝐻1  

                �̇�22   =  −𝑒𝑦𝑢𝑚
𝑇 𝐻2       Hi positive definite         (11) 

                                                              �̇�𝑒   =    −𝑒𝑦𝑒𝑦
𝑇𝐻3 

along with the control law, 

𝑢𝑝 = 𝑆21𝑥𝑚 + 𝑆22𝑢𝑚 + 𝐺𝑒𝑒𝑦, produce asymptotic output tracking ( 𝑒𝑦𝑡→∞
𝑙𝑖𝑚 = 0) with 

uniformly bounded adaptive gains (𝑆21, 𝑆22, 𝐺𝑒). 

Stability theorem proof: It is evident that 

{

�̇�∗    =    𝐴𝑝𝑒∗ + 𝐵𝑝∆𝑢             

𝑒𝑦    =    𝐶𝑝𝑒∗                              

∆𝑢   =    𝑢𝑝 − 𝑢∗ = 𝐺𝑒
∗𝑒𝑦 + 𝑤

𝑤   ≡    ∆𝐺𝑧                             

                    (12) 

Where the data error 𝑧 ≡ [𝑥𝑚
𝑇 𝑢𝑚

𝑇 𝑒𝑦
𝑇]∗ and ∆𝐺 ≡ 𝐺 − 𝐺∗ with 𝐺 ≡ [𝑆21𝑆22𝐺𝑒] and 𝐺∗ ≡

[𝑆21
∗ 𝑆22

∗ 𝐺𝑒
∗]. Therefore 

{

�̇�∗    =    𝐴𝑐𝑒∗ + 𝐵𝑝𝑤  

𝑒𝑦    =    𝐶𝑝𝑒∗                

𝐴𝑐    ≡    𝐴𝑝 + 𝐵𝑝𝐺𝑒
∗𝐶𝑝

                                       (13) 

Let 𝑉1 ≡
1

2
𝑒∗
𝑇𝑃𝑐𝑒∗. Then �̇�1 ≡

1

2
(�̇�∗
𝑇𝑃𝑐𝑒∗ + 𝑒∗

𝑇𝑃𝑐�̇�∗) = 
1

2
𝑒∗
𝑇(𝐴𝑐

𝑇𝑃𝑐 + 𝑃𝑐𝐴𝑐)𝑒∗ + 𝑒∗
𝑇𝑃𝑐𝐵𝑝𝑤 = 

≤ −
1

2
𝑒∗
𝑇𝑄𝑐𝑒∗ + 𝑒𝑦

𝑇𝑤                                     (14) 



18 

 

 

using (10) since (𝐴𝑐, 𝐵𝑝, 𝐶𝑝) is SPR. Now let 𝑉2 ≡
1

2
𝑡𝑟(∆𝐺𝐻−1∆𝐺𝑇). 

                                               ⇒ �̇�2       =      𝑡𝑟(∆𝐺𝐻
−1∆�̇�𝑇)    

= 𝑡𝑟 (∆𝐺𝐻−1(−𝑒𝑦𝑧
𝑇𝐻)

𝑇
)        =     −𝑡𝑟(∆𝐺𝑧𝑒𝑦

𝑇)                                    (15) 

                                                              =     −𝑒𝑦
𝑇𝑤.  

Because  

∆�̇�      =      −𝑒𝑦𝑧
𝑇𝐻                                                     (16) 

from (11) with positive definite   𝐻     ≡     𝑑𝑖𝑎𝑔(𝐻1, 𝐻2, 𝐻3). 

Taking the Lyapunov function     𝑉      ≡     𝑉1 + 𝑉2.    

                                                       ⇒ �̇�       =     −
1

2
𝑒∗
𝑇𝑄𝑐𝑒∗ + 𝑒𝑦

𝑇𝑤 + (−𝑒𝑦
𝑇𝑤)  

               =     −
1

2
𝑒∗
𝑇𝑄𝑐𝑒∗ ≤ 0                                          (17) 

Lyapunov theory guarantees the stability of the zero equilibrium point of (13) and (16), 

and we have 𝑒∗ and ∆𝐺 bounded. Since xm, um and 𝑒𝑦 = 𝐶𝑝𝑒∗ are bounded, this implies that 

z is bounded. The second derivative of the Lyapunov function is  

�̈� ≤ −2𝑒∗
𝑇𝑄𝑐�̇�∗ = −2𝑒∗

𝑇𝑄𝑐(𝐴𝑐𝑒∗ + 𝐵𝑝∆𝐺𝑧)                             (18) 

≤ −2. ‖𝑒∗‖. ‖𝑄𝑐‖. (‖𝐴𝑐‖‖𝑒∗‖ + ‖𝐵𝑝‖. ‖∆𝐺‖. ‖𝑧‖) ≤ 𝑀,             (19) 

for some M>0. Equation (18) is bounded because each term in (19) is bounded in the 

appropriate norm. Invoking the mean value theorem, we have |�̇�(𝑡1) − �̇�(𝑡2)| ≤

𝑀|𝑡1 − 𝑡2| ∀ 𝑡1, 𝑡2 ∈ ℝ. Hence �̇�(𝑡) is uniformly continuous, so by Barbalat’s lemma 

(Popov, et al 1973) ( �̇�𝑡→∞
𝑙𝑖𝑚 (𝑡) = 0). Hence, we have  ( 𝑒∗𝑡→∞

𝑙𝑖𝑚 = 0) because Qc is positive 

definite in (17) the output tracking error has the property of asymptotic stability with 

( 𝑒𝑦𝑡→∞
𝑙𝑖𝑚 = 0) and ( 𝐶𝑝𝑡→∞

𝑙𝑖𝑚 𝑒∗ = 0). Furthermore, since ∆𝐺 is uniformly bounded, we have 
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that the gains, S21, S22 and Ge are uniformly bounded. End of proof.  In the following 

section, we show how a persistent disturbance can be rejected. 

Persistent disturbance rejection: Consider the linear finite-dimensional plant with 

persistent disturbance: 

{
�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝛤 𝑢𝐷
𝑦 = 𝐶𝑥                         

                                      (20) 

where 𝑥 is the plant state, 𝑢, 𝑦 ∈  𝑹𝑀 are the control input and plant output, 

respectively, and 𝑢𝐷is a persistent disturbance input (Balas, et al 2013). We will follow the 

development given in (Balas, et al 2014). 

Definition: A disturbance vector 𝑢𝐷 ∈ 𝑹
𝑞 is said to be persistent if it satisfies the 

disturbance generator equations: 

𝑢𝐷 = 𝜃𝑧𝐷 

𝑧�̇� = 𝐹𝑧𝐷 

Or 

𝑢𝐷 = 𝜃𝑧𝐷 

𝑧𝐷 = 𝐿∅𝐷 

where 𝐹 is a marginally stable matrix and ∅D is a vector of known functions forming 

a basis for all such possible disturbances. This is known as “a disturbance with known 

wave form but unknown amplitude”. The adaptive controller must eliminate or mitigate all 

linear combinations of the known disturbance basis functions. 

The objective of control in this paper is to cause the output 𝑦 of the plant to 

asymptotically track the model output 𝑦𝑚 of a linear finite-dimensional reference model 

given by: 
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                                                {
�̇�𝑚     =    𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚,        

𝑦𝑚     =    𝐶𝑚𝑥𝑚, 𝑥𝑚(0) = 𝑥0
𝑚 ,

 

Where the reference model state 𝑥𝑚 is an 𝑁𝑚- dimensional vector with reference 

model output 𝑦. In general, the plant and reference models need not have the same 

dimension. The excitation of the reference model is accomplished via 𝑢𝑚 which is 

generated by 

                                                              �̇�𝑚    =    𝐹𝑚𝑢𝑚, 

                                                         𝑢𝑚(0)    =    𝑢0
𝑚. 

The reference model parameters (𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐹𝑚) will be assumed known. The 

meaning of asymptotic tracking is as follows. 

We define the output error vector as 

                                                                         𝑒𝑦   ≡       𝑦 − 𝑦𝑚
   𝑡
        
→  ∞    

→       0, 

The control objective will be accomplished by a direct adaptive control law in the form of 

                                                                        𝑢    =      𝐺𝑚𝑥𝑚 + 𝐺𝑢𝑢𝑚 + 𝐺𝑒𝑒𝑦 + 𝐺𝐷∅𝐷 

The direct adaptive controller will have adaptive gains given by (Balas, et al 2014) 

                                                               𝐺�̇�    =    −𝑒𝑦𝑢𝑚
∗ 𝛾𝑢, 𝛾𝑢 > 0 

                                                              𝐺�̇�    =    −𝑒𝑦𝑥𝑚
∗ 𝛾𝑚, 𝛾𝑚 > 0 

                                                               𝐺�̇�    =    −𝑒𝑦𝑒𝑦
∗𝛾𝑒 ,     𝛾𝑒 > 0 

                          𝐺�̇�    =    −𝑒𝑦∅𝐷
∗ 𝛾𝐷,   𝛾𝐷 > 0 
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2.1 System Requirements 

An aircraft model, characterized by its aerodynamic behavior, propulsion system 

performance, weight, center of gravity (𝑥𝑐𝑔) position, airspeed, altitude, flight path angle 

and structural modes is subject to a wide range of parameter variations. These 

characteristics change its dynamics and for this reason a dynamic mode that is stable and 

adequately damped in one flight condition may become unstable or at least inadequately 

damped in another flight condition creating a need for self-adjusting controllers. For the 

given problem, the system also exhibits an unstable behavior. Thus in order to solve this 

issue we design a pitch-axis stability augmentation system using a direct adaptive control 

scheme.   

Implementation of this control scheme requires a very little knowledge of the plant. 

To ensure error convergence to zero and bounded gains the open loop plant must have 

(Balas, et al 2014): 

 𝐶𝐵 positive definite and symmetric, sign definite for scalar CB. 

 Absence of RHP transmission zeros. 

These are sufficient conditions for ASD; although even if not satisfied, the direct 

adaptive control law may still work. However, by meeting these requirements one can be 

assured of bounded adaptive gains and error convergence to zero. In practice, aircraft 

models are linearized at various points of the flight envelope and a linear controller is tuned 

for every linearized section of the flight envelope. In the case of hypersonic air-breathing 

vehicles this becomes a very difficult task as breaking down the flight envelope for 

linearization would result in numerous models varying in mass, dimensions, number of 
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control surfaces, etc. A nonlinear direct adaptive controller that ensures adaptability to 

parametric changes along with providing artificial stability and global asymptotic stability 

seems essential. 

All tail-controlled aircraft are non-minimum phase systems. Thus in order to assure 

adaptation, ways of mitigating non-minimum phase behavior have been developed (Balas, 

2012; Hartman, 2012) and are discussed in the following section. 

 

2.2 Non-Minimum Phase Mitigation 

Sensor blending is a method of alleviating the non-minimum phase behavior of a 

system. The idea is to manipulate the output feedback in order to present the adaptive 

controller with a system that is minimum phase (Balas, 2012; Hartman, 2012). There are a 

few ways this could be achieved, namely zero-relocation and minimum phase feedback 

leakage. 

2.2.1 Zero-relocation 

This method first appeared in (Hartman, 2012). In this method a given non-

minimum phase system is represented in controllable canonical form through a coordinate 

transformation. In the controllable canonical form, the entries in the  𝐶 matrix are the 

coefficients of the transfer function numerator for the system. The set of equations in the 

following show the steps to obtain the controllable canonical matrix 𝐶̅.  

Let ABC represent a state space system, 

         𝐻  =     [𝐵   𝐴1𝐵    𝐴2𝐵… 𝐴𝑛−1𝐵]  

                                                             �̃�    =     𝐻−1𝐴𝐻  
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      �̃�   =      {
0 0 −𝑎1
1 ⋮ ⋮
0 1 −𝑎𝑛

} 

                                                                �̅�   =     �̃� 𝑇  

                              Therefore,         �̅�    =     {
0 1 0
⋮ ⋮ 1
−𝑎1 ⋯ −𝑎𝑛

} 

                                                        �̅�    =     {0 … 1}𝑇  

                                                        �̅�    =     {�̅�   �̅�1�̅�      �̅�2�̅�     ⋯⋯⋯   �̅�𝑛−1�̅�}   

                                                         𝑇   =     𝐻𝐻−1̅̅ ̅̅ ̅  

                                                        𝐶̅     =     𝐶𝑇  

Once 𝐶̅ is obtained its entries form the coefficients of the numerator in  

𝑃(𝑠) =
𝑛(𝑠)

𝑑(𝑠)
=

𝑐0 + 𝑐1𝑠 + ⋯⋯⋯+ 𝑐𝑛−1𝑠
𝑛−1

𝑎0 + 𝑎1𝑠 +⋯⋯⋯+ 𝑎𝑛−1𝑠𝑛−1 + 𝑠𝑛
 

The numerator in factorized form is: 

(𝑠 + 𝑧1)(𝑠 + 𝑧2)(𝑠 − 𝑧3)⋯⋯⋯(𝑠 + 𝑧𝑛−1) 

The above factorization gives the locations of the zeros; the unstable zero is relocated to 

the left half plane. Let 𝑧3̅ be the new location for the unstable 𝑧3. Then the numerator of 

the transfer function changes to (𝑠 + 𝑧1)(𝑠 + 𝑧2)(𝑠 + 𝑧3̅)…… (𝑠 + 𝑧𝑛−1) with all stable 

zeros. Since the values are in the controllable canonical form the coefficients of the 

numerator for the transfer function is the new blended matrix called 𝐶�̅�.The following 

coordinate transformation can be done to obtain the blended 𝐶 matrix in the original 

coordinate system 𝐶𝑏 = 𝐶�̅�𝑇
−1. 
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2.2.2 Minimum Phase Feedback Leakage 

In this method, a small amount of leakage from a sensor is added to the original 

output feedback. This can pull the unstable zero into the left half plane. In-depth 

understanding of system dynamics is required to achieve this. For example if we consider 

a pitch rate to elevator transfer function, there will always be a zero at the origin because 

it is a rate term, discussed in detail in Section 4.8. In general, it is good practice to choose 

a leakage signal which is minimum phase with respect to the input. This method works 

well for systems with a zero at the origin. 

    for system output 𝑦 =     𝐶𝑥 and 𝑦𝐴 = 𝐶𝐴𝑥 

    we define the blended output as      𝑦𝑛𝑒𝑤 =    𝑦 + 𝐿𝐴𝑦𝐴 = 𝐶𝑥 where 𝐶𝐴 ≡ 𝐶 + 𝐿𝐴𝐶𝐴 

                                    such that 𝑃(𝑠) =    𝐶𝐴(𝑠𝐼 − 𝐴)
−1𝐵 is minimum phase 

Here we see that in order to meet the stability theorem of the direct adaptive control scheme 

the plant must be strictly dissipative. In linear terms, this maps to a system G(s) being 

minimum phase with positive high frequency gain. In cases where a plant does not meet 

the minimum phase requirement we compensate for it with the technique discussed here. 

We use this non-minimum phase mitigation method to achieve a minimum phase HSV 

plant in Section 4.
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3. HSV MODEL AND SIMULATION OVERVIEW 

A first principles nonlinear 3 − 𝐷𝑂𝐹 longitudinal dynamics model of a generic 

scramjet-powered hypersonic vehicle developed by Bolender, Doman and, Oppenheimer 

in (Bolender, 2009; Bolender, et al 2007; Bolender, et al 2006; Oppenheimer, et al 2007) 

is discussed in this section. The vehicle under consideration was developed to study the 

salient features of a large scale hypersonic cruise or access-to-space vehicle. We use 

relevant sections of (Korad, 2010) which summarizes the work in (Bolender, 2009; 

Bolender, et al 2007; Bolender, et al 2007; Bolender, et al 2006; Doman, et al 2006, 

Oppenheimer, et al 2007) to briefly address the description of the HSV in this section.  

 

The vehicle is 100 feet long, has a mass of 182 slugs and has a first bending mode 

of roughly 22.6 rad/s (Doman, et al 2006). The control inputs are: elevator, 

stoichiometrically normalized fuel equivalency ratio (𝐹𝐸𝑅), diffuser area ratio (not 

considered in this work), and a canard. The canard was added later on in order to increase 

the available bandwidth for the controller (Bolender, et al 2006). It should be noted 

however that a canard may not be physically realizable given the harsh environment in the 

forward part of the vehicle. For that reason, the HSV model is constructed in a way such 

that the canard effects can easily be removed. The aircraft may be visualized as shown in 

Figure 3.1.  
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Figure 3.1: Schematic of Hypersonic Scramjet Vehicle (Korad, 2010) 

 

The following sections we briefly discusses the modeling approach. 

 

3.1 Propulsion 

The forebody compression ramp provides conditions to the scramjet engine placed 

in the lower aft end of the body (Bolender, et al 2007). The engine inlet is variable 

geometry, not considered in the simulation considered in this work. The model assumes 

the presence of a cowl door, which maintains shock-on-lip condition through 𝐴𝑂𝐴 

feedback also assuming no forebody flexing (Bolender, et al 2006). At cruise condition, 

the bow shock impinges on the engine inlet (assuming no forebody flexing). At higher or 

lower speeds the shock angle is either bigger or smaller. If smaller, the shock is captured 

by the inlet; if bigger, the cowl door reflects it into the engine intake (Bolender, et al 2007), 

shown in Figure 3.2. Fuel mass flow rate is assumed to be insignificant compared to the air 

mass flow and for all the range of fuel equivalency ratio (𝐹𝐸𝑅) the thrust is assumed to be 

linear. For values greater than 1, thrust decreases. This phenomenon and shock-shock 
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interactions are not captured in the model. Reference (Anderson, 2006) discusses such 

interactions in detail. 

 

Figure 3.2: Schematic of Scramjet Engine (Korad, 2010) 

 

3.2 Aerodynamics 

Prandtl-Meyer theory of expansion and inviscid compressible oblique shock theory 

are used to calculate the pressure distribution (Korad, 2010). Constant specific heat and 

specific heat ratio (γ) is assumed to be 1.4. A standard atmosphere model is used, discussed 

later in this section. Skin friction model or viscous drag effects are based on Eckert’s 

reference temperature method (Bolender, et al 2007); for this the steady state wall 

temperature is assumed to be 2500𝑅 after a few minutes of flight. Linear piston theory is 

used to capture the unsteady effects (Oppenheimer, et al 2007).  

 

3.3 Structures 

Effects such as out of plane bending and torsional bending are neglected due to the 

geometry of the vehicle (i.e. narrow, long and slender) (Doman, et al 2006). A single free-

free Euler-Bernoulli beam partial differential equation (infinite dimensional PDE) model 

is used instead of the Timoshenko beam theory for modeling the longitudinal elasticity of 



28 

 

 

the vehicle (Oppenheimer, et al 2007). The assumed mode method is used to obtain the 

natural frequencies 𝜔𝑛, mode shapes and finite-dimensional approximations. This 

approach allows the capture of realistic flexible dynamics. Rigid body modes interact and 

influence the flexible modes through generalized forces (Oppenheimer, et al 2007). It is 

important to analyze the flexible effects as the flexibility affects the flow field and varies 

the pressure distribution on the vehicle (Doman, et al 2006; Oppenheimer, et al 2007; 

Korad, 2010). 

 

3.4 Actuator Dynamics 

Simple first order actuator models were used in each of the control channels:  

 

Table 3.1: Actuator Model (Bolender, 2009; Korad, 2010) 

Actuator Model Input Output 

Elevator −
20

𝑠 + 20
 Reference Signal Deflection Angle 

FER −
10

𝑠 + 10
 Reference Signal FER Value 

Canard (disabled in this work) −
20

𝑠 + 20
 Reference Signal Deflection Angle 

 

These dynamics did not prove to be critical here. Elevator saturation of ±30° is 

considered, however the adaptive stability augmentation system (SAS) modeled never 

reached these values. 𝐹𝐸𝑅 range of [0 − 1] is used in this work. 𝐹𝐸𝑅 is the 

stoichiometrically normalized fuel equivalency ratio given by 
𝑓

𝑓𝑠𝑡
, where 𝑓 denotes the fuel-
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to-air ratio and 𝑓𝑠𝑡denotes the stoichiometric fuel-to-air ratio (Bolender, 2009; Bolender, 

et al 2007; Korad, 2010). 𝐹𝐸𝑅 is the engine control primarily associated with the vehicle 

velocity; its impact on the flight path angle is significant since the engine is placed below 

the vehicle 𝑐𝑔 (Bolender, et al 2007). 

 

As we will see, the vehicle exhibits both unstable and non-minimum phase 

dynamics with non-linear aero-elastic-propulsion coupling and critical 𝐹𝐸𝑅 constraint. The 

linearized model consists of eleven states. Five rigid body states namely speed, pitch, pitch 

rate, altitude, 𝐴𝑂𝐴 and six flexible states representing modal coordinates and modal 

velocities of 3 flexible modes (Bolender, et al 2007; Doman, et al 2006). 

 

3.5 Longitudinal Dynamics 

3.5.1 Equations of Motion 

The equations of motion for the 3𝐷𝑂𝐹 flexible vehicle are given as follows 

(Bolender, et al 2007): 

 

�̇�    =   [
𝑇 cos 𝑎 − 𝐷

𝑚
] − 𝑔 sin 𝛾 

�̇�    =   − [
𝐿 + 𝑇 sin 𝑎

𝑚𝑣
] + 𝑞 + [

𝑔

𝑣
−

𝑣

𝑅𝐸 + ℎ
] cos 𝛾 

�̇�    =   
𝑀

𝐼𝑦𝑦
 

ℎ̇    =   𝑣 sin 𝛾 

�̇�    =   𝑞 

�̈�𝑖   =   −2𝜁𝑖𝜔𝑖�̇�𝑖 − 𝜔𝑖
2𝜂𝑖 + 𝑁𝑖     𝑖 = 1, 2, 3… 

𝛾   ≝   𝜃 − 𝑎 

                                        𝑔   =   𝑔0 [
𝑅𝐸

𝑅𝐸+ℎ
]
2

, 
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where 𝐿 denotes lift, 𝑇 denotes engine thrust, 𝐷 denotes drag, 𝑀 is the pitching 

moment, 𝑛𝑖 denotes generalized forces, 𝜁 denotes flexible mode damping factor, 𝜔𝑖 

denotes flexible mode undamped natural frequencies, 𝑚 denotes the vehicle’s total mass, 

𝐼𝑦𝑦 is the pitch axis moment of inertia, 𝑔0 is the acceleration due to gravity at sea level, 

and 𝑅𝐸 is the radius of the Earth and h is the geometric altitude. 

 

 

3.5.2 State Variables 

The states consist of five classical rigid body states and six flexible modes states. 

The rigid states are velocity (𝑣), 𝐹𝑃𝐴 (𝛾), altitude (ℎ), pitch rate (𝑞), pitch angle (𝜃), and 

the flexible body states (𝜂1,  �̇�1,  𝜂2, �̇�2,  𝜂3, �̇�3) (Oppenheimer, et al 2007). These eleven 

states with the units are summarized in Table 3.2. 

 

Table 3.2: States for Hypersonic Vehicle Model 

# Symbol Description Units 

1 𝑉 Speed ft/sec 

2 𝛾 Flight Path Angle Deg 

3 𝛼 Angle of Attack Deg 

4 𝑞 Pitch Rate Deg/sec 

5 ℎ Altitude Ft 

6 𝜂1 1st Flex Mode - 

7 �̇�1 1st Flex Mode Rate Sec-1 
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8 𝜂2 2nd Flex Mode - 

9 �̇�2 2nd Flex Mode Rate Sec-1 

10 𝜂3 3rd Flex Mode - 

11 �̇�3 3rd Flex Mode Rate Sec-1 

 

 

3.5.3 Control Variables 

The vehicle has three (3) control inputs: a rearward situated elevator 𝛿𝑒, a forward 

situated canard 𝛿𝑐 (not considered), and stoichiometrically normalized fuel equivalence 

ratio (𝐹𝐸𝑅). These control inputs with the units are summarized in Table 3.3 

(Oppenheimer, et al 2007). In this research, we will only consider elevator and 𝐹𝐸𝑅. 

 

Table 3.3: Controls for Hypersonic Vehicle Model 

# Symbol Description Units 

1 FER Stoichiometrically normalized fuel equivalency ratio - 

2 δe Elevator deflection deg 

3 δc Canard deflection deg 

Nominal model parameter values for the vehicle under consideration are given in Table 

3.4. Additional details about the model may be found in (Bolender, et al 2007; Bolender, 

et al 2007; Bolender, et al 2006; Doman, et al 2006; Oppenheimer, et al 2007; Sigthorsson, 

et al 2006).  
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Table 3.4: Vehicle Nominal Parameter Values (Korad, 2010) 

Parameter Nominal Value 

Elevator Position (-85, -3.5)ft 

Diffuser exit/inlet area ratio 1 

Titanium Thickness 9.6 in 

Center of Gravity (-55, 0)ft 

 

Figure 3.3 shows the 2-dimensional HSV considered in this work. The longitudinal 

force and moment analysis is taken as unit depth into the page. The vehicle consists of 4 

surfaces: an upper surface (defined by point 𝑐𝑓) and three lower surfaces (defined by points 

𝑐𝑑, 𝑔ℎ and 𝑒𝑓). All applicable lengths and dimensions are in units of feet and degrees, 

respectively. Vehicle dimensions are shown in Table 3.5 along with vehicle angles, mass 

and moment of inertia. 

 

Figure 3.3: Hypersonic Vehicle (Bolender, et al 2007) 
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Table 3.5: Vehicle Dimensions (Bolender, et al 2007) 

L 100 ft 𝑥𝑎 45 ft 

Lf 47 ft xelev 30 ft 

La 33 ft hi 3.25 ft 

Ln 20 ft xcanard 40 ft 

Le 17 ft τ1,u 3° 

Lc 10 ft τ2,u 6° 

𝑥𝑓 55 ft τ2 14.41° 

 

 

3.5.4 Summary and Conclusion 

In this section, we briefly review the design of the first principles based nonlinear 

3-DOF model, for the longitudinal dynamics of the scramjet-powered hypersonic vehicle 

derived in (Oppenheimer, et al 2007). The model attempts to capture interactions between 

the aerodynamics, the propulsion system and the flexible dynamics (Doman, et al 2006).  

Simplifying assumptions such as neglecting high-temperature gas dynamics, 

infinitely fast cowl door, no out-of-plane loading, no torsion, no Timoshenko effects, etc. 

are made. We discuss the dynamic analysis in detail in chapter 4. 

 

3.6 Simulation Overview 

The three degree of freedom, physics model derived in (Bolender, et al 2007, 

Oppenheimer, et al 2007) is coded in Matlab to develop the simulation by Bolender. In this 
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section we briefly discuss the simulation model, references on this are scarce; thus content 

of this section are based on the observations made. 

 

Figure 3.4: Block Diagram Representation of the Nonlinear Model 

The model is run through the main code called "trim_xdot". This code loads the 

aircraft geometry, which is contained in a structure called "ac_param". By default, three 

flex modes are kept in the model, but five are calculated. It is not recommended to use 

more than five due to numerical conditioning. The lift, drag, thrust and pitching moment 

are calculated in the file "xz_generic".  This file requires a vector that contains the vehicle 

geometry.  This geometry is defined in the file "hsv_param".  When "trim_xdot" is called, 

it writes this vector to the workspace. Properties such as aircraft's outer mold line or the 
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mass properties can be edited in this function. The assumed modes approach is coded in 

“modes_shape” and “mode_shaped2” where the mode shapes/frequencies are calculated. 

The routine “aeroforces” calculates the pressure, temperature and Mach number after the 

oblique shocks and the expansion fans for upper and lower surface of the vehicle. The 

function also computes viscous effects for different sections (upper surface, lower fore 

body, engine nacelle, rear ramp, elevator and canard) and adds them to find the total viscous 

lift, drag and moment.  

The Matlab code is embedded in a Simulink block as an s-function. The linearizing 

points are defined in a script and the system is linearized at those operating points to obtain 

the linearized state-space representation of the system. The linearized state-space 

representation consists of the following state variables shown in the table below: 

Table 3.6: State Variables 

State Variables Symbols (in simulation) Description 

x(1) V TAS 

x(2) alpha AOA 

x(3) q Pitch rate 

x(4) h Altitude 

x(5) theta Pitch angle  

x(6) eta1 Modal coordinate FM1 

x(7) eta1dot Modal velocity FM1 

x(8) eta2 Modal coordinate FM2 

x(9) eta2dot Modal velocity FM2 
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x(10) eta3 Modal coordinate FM2 

x(11) eta3dot Modal velocity FM2 

 

and the control variables shown in the following table: 

Table 3.7: Controls Variables 

State Variables Symbols (in simulation) Description 

u(1) delta_e Elevator Deflection 

u(2) phi FER 

  

The sim "ndi_flex" contains a simple dynamic inversion control for the flexible 

system.  Running "calc_alphaflex" loads all the necessary parameters for the feedback 

loops. The sim tracks AoA through a commanded pitch rate. The velocity loop is there for 

stabilization. The output from this setup is considered to be the baseline performance and 

is discussed in section 4.4.  

  

At some instances the simulation stops and indicates an error. The reason is that 

there is a fundamental limitation in either the underlying aerodynamic or propulsion model 

where it is no longer valid. One common instance is when the engine thermally chokes. 

The Rayleigh flow model predicts that the Mach number of a supersonic flow decreases 

with increasing heat addition; therefore, it will ultimately reach a sonic condition where 

the model is no longer valid.  Something similar can occur on the control surface when a 

larger flow expansion angle is required the model has simply reached a point where it 
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breaks down. The easiest solution is to be less aggressive with the controlled variables, 

although with pitch-axis stability and appropriate saturation on the control actuators these 

instances can be completely removed. 
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4. ADAPTIVE STABILITY AND COMMAND AUGMENTATION 

4.1 Linearization 

In this section, the linearization procedure for the HSV model is presented. For a 

general nonlinear system, we have the following state space representation: 

{

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑥(0) = 𝑥0                     

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))

 

In order to use the LINMOD command in Matlab, we define the following operating 

conditions: 

 Flight Condition 

Dynamic Pressure     =   1500 (lbf/ft2) 
Altitude  =   92000 (feet) 
 

 Vehicle Parameters 

Structure containing all the vehicle parameters = ℎ𝑠𝑣_𝑝𝑎𝑟𝑎𝑚 

Function containing earth’s atmospheric model calculates the temperature, static pressure 

and density (rho). Velocity is computed using the equation √
2×�̅�

𝜌
  and the speed of sound 

is calculated using the equation √𝛾𝑅𝑇. 

 

 Initial Guesses and Constraints Set-Ups for upper and lower surface of the vehicle 

𝑥𝑜    =  [𝑉    0.0314    0    92000    0.0349    0    0    0    0    0    0]   - States 
𝑢𝑜    =  [0.157    0.4]                                             - Input 
𝑥𝑢0  =  [𝑥𝑜;  𝑢𝑜]                                   - Concatenated Vector 
𝑥𝐿     = 𝑧𝑒𝑟𝑜𝑠(13,1)           𝑥𝑈 = 𝑧𝑒𝑟𝑜𝑠(13,1) 

  

 States 

𝑥𝐿(1) = 𝑉                        𝑥𝑈(1) = 𝑉                           - Velocity 
𝑥𝐿(2) = 0                         𝑥𝑈(2) = 0.0698                  - Angle of Attack 
𝑥𝐿(3) = 0                         𝑥𝑈(3) = 0                           - Pitch Rate 
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𝑥𝐿(4) = 92000               𝑥𝑈(4) = 92000                  - Altitude 
𝑥𝐿(5) = 0.0349              𝑥𝑈(5) = 0.0349        - Pitch Attitude 

  

 Flex Mode States 

𝑥𝐿(6) =    −1                   𝑥𝑈(6)   =  3                   - Modal Coordinate 1 
𝑥𝐿(7) =       0                   𝑥𝑈(7)   =   0                   - Modal Velocity 1 
𝑥𝐿(8) =    −1                   𝑥𝑈(8)   =   1                 - Modal Coordinate 2 
𝑥𝐿(9) =       0                   𝑥𝑈(9)   =   0                   - Modal Velocity 2 
𝑥𝐿(10) = −1                   𝑥𝑈(10) =   1                  - Modal Coordinate 3 
𝑥𝐿(11) =     0                  𝑥𝑈(11) =   0                  - Modal Velocity 3 

  

 Input States 

𝑥𝐿(12) = 0                       𝑥𝑈(12) = 0.261          - Elevator 
𝑥𝐿(13) = 0.1                   𝑥𝑈(13) = 0.6              - Throttle 

 

It is desirable to linearize the plant at the trim condition. In this case, the control 

variables along with the state variables are optimized (minimized) to achieve trimmed level 

flight. In order to use the optimization function, it is necessary to create an optimization 

options structure and specify the constraints for the parameters. Following are the values 

identified by the optimization function: 

Table 4.1: Optimized Values for Trim Condition 

State Variables Control Variables 

𝒙 = 
1.0𝑒 + 04 ∗ 
    0.7878 
    0.0000 
         0 
    9.2000 
    0.0000 
    0.0001 
         0 

   −0.0000 
         0 

   −0.0000 
         0 

𝒖 = 

0.1836 
0.5674 
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The non-linear model with above state and control variables is trimmed using the 

Matlab linearization command LINMOD.  

 

 

Figure 4.1: Aero Model used for Linearization 

 

The following state space representation is obtained: 

𝐴11×11= 

0 -17.7 0 0 -31.9 1.8 0 1.1 0 3.7 0 

0 -0.1 1 0 0 0 0 0 0 0 0 

0 8.8 0 0 0 -0.1 0 -0.3 0 -0.1 0 

0 -7878 0 0 7878 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 

0.1 7937.6 0 0 0 -509.6 -0.8 -40.7 0 -150.2 0 

0 0 0 0 0 0 0 0 1 0 0 

0 -388.2 0 0 0 3.2 0 -2531.7 -2 11.7 0 

0 0 0 0 0 0 0 0 0 0 1 

0 636.3 0 0 0 1.1 0 -1.8 0 -9753.7 -4 

 

𝐵11×2= 

-56.3 27.2 

0 0 

-8.7 0.2 

0 0 

0 0 

0 0 

2106.2 11 

0 0 

-1435.5 38.3 

0 0 

-133.4 -33 
 

𝐶 = 𝐼11×11 

𝐷 = 011×2 
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In order to access the requirement of stability and command augmentation on the 

plant, in the next section we discuss the dynamic analysis conducted in order to understand 

the various aero and structural modes.  

 

4.2 Dynamic Properties 

The nonlinear model is linearized at 𝑀 = 8 and ℎ = 92,000𝑓𝑡. We compute the 

poles and zeros of the linearized plant in order to assess stability and minimum phase 

characteristics. Poles of the linearized plant are shown in Figure 4.2. 

 

Figure 4.2: Poles of the Plant 

Note that the short period mode has both stable and unstable poles. The long forebody and 

rear mounted engine, typical for hypersonic Waveriders gives them an aft center of gravity, 

resulting in pitch-up instability. 

x10-3 
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Table 4.2: Poles location, 𝜔𝑛 and 𝜁 for longitudinal and structural modes 

Poles Damping Frequency Mode Name 

-1.98E+00 + 9.87e+01i 2.00E-02 9.88E+01 FM3 

-1.98E+00 - 9.87e+01i 2.00E-02 9.88E+01 FM3 

-1.00E+00 + 5.03e+01i 1.99E-02 5.03E+01 FM2 

-1.00E+00 - 5.03e+01i 1.99E-02 5.03E+01 FM2 

-4.21E-01 + 2.25e+01i 1.86E-02 2.26E+01 FM1 

-4.21E-01 - 2.25e+01i 1.86E-02 2.26E+01 FM1 

-2.83E+00 + 0 1.00E+00 2.83E+00 Short Period 

2.75E+00 + 0 -1.00E+00 2.75E+00 Short Period 

-3.24E-03 + 0 1.00E+00 3.24E-03 Altitude 

3.88E-04 + 3.93e-02i -9.88E-03 3.93E-02 Phugoid 

3.88E-04 - 3.93e-02i -9.88E-03 3.93E-02 Phugoid 

 

In Table 4.2, a closer look at the numerical values of the poles shows us that the 

system is unstable with unstable short period and phugoid poles. For conventional aircraft, 

the short period mode is usually heavily damped and has a short period oscillation that 

occur at nearly constant speed. High frequency and heavy damping are desirable for rapid 

response to elevator commands without undesirable oscillation and overshoot (Nelson, 

1998).    

The long period mode represents interchange of potential and kinetic energy about 

the equilibrium level at constant alpha (Nelson, 1998). The phugoid mode is usually lightly 

damped, but in our case, the poles are unstable (shown in Table 4.2). Phugoid motion is 
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almost non-existent in the case of the given hypersonic vehicle. Hypersonic speed and low 

weight results in a low trade-off between kinetic and potential energy. This characteristic 

also effects the design of speed augmentation systems; we will discuss this in the following 

sections. 

Table 4.2 also show the characteristics of the structural modes. The flexible modes 

have a high frequency and low damping, typical of aerospace structures. Results are similar 

to ones shown in (Bolender, 2009; Bolender, et al 2007; Oppenheimer, et al 2007). Table 

4.3 lists the zeros of the linearized model. Notice that the plant is non-minimum phase; this 

characteristic is a common trend for all tail-controlled aircraft, unless a canard is used 

(Bolender, at al 2006). Zeros for the transfer function 
𝑞(𝑠)

𝛿𝑒(𝑠)
 are shown in Figure 4.3. A single 

zero at the origin makes the transfer function weakly non-minimum phase. Figure 4.4 

shows the zeros for 
𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
 transfer function. Equation (14) shows that the high frequency 

gain for this transfer function is negative.  

Since the plant is non-minimum phase, in order to meet the requirements of the 

adaptive stability theorem discussed in Section 2, we modify the sensor arrangement using 

“sensor blending” which is discussed later in section 4.8.  
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Figure 4.3: Zero map of 
𝑞(𝑠)

𝛿𝑒(𝑠)
 

 

 

Figure 4.4: Zero Map of  
v(s)

δFER(s)
  

  

Table 4.3: Zeros for transfer function  
𝑞(𝑠)

𝛿𝑒(𝑠)
  and  

𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
 

Transfer Function Stable/Unstable Location 

𝑞(𝑠)

𝛿𝑒(𝑠)
 

Stable 

-1.9755 ± 98.7339i 

-0.9986 ± 49.8296i 

-0.4659 ± 22.9452i 

-0.0596 + 0 

-0.0208 + 0 

-0.0028 + 0 

Marginally Stable 0 + 0 

𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
 

Stable 

-1.9755 ± 98.7184i 

-1.0002 ± 50.3215i 

-0.4208 ± 22.5611i 

-2.8554 + 0 

Unstable 2.7824 + 0 
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Stable 

-0.0007 + 0.0395i 

-0.0007 - 0.0395i 

 

From the open loop response (Figure 4.5 and Figure 4.6), it is evident that the plant 

is unstable. Elevator input is set to 0.183 radians and FER is held steady at 0.5674 for this 

test (trim setting). As soon as the simulation is executed, the vehicle pitches up and goes 

in a loop across the lateral axis indicating longitudinal instability. 

 

 

Figure 4.5: Open Loop A0A, q and Θ (Incremental Values) 
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Figure 4.6: Open Loop V and H (Incremental Values) 

Thus in order to fix the pitch up instability we propose a stability augmentation system, 

which is discussed in the next section. 

4.3 Pitch-Axis Stability Augmentation 

Stability augmentation of an aircraft’s dynamics using a feedback control system 

allows one not only to improve its handling quality characteristics, but also to expand the 

flight envelope and increase the aircraft’s performance characteristics (Hartmmann, et al 

1979). An aircraft with an aerodynamically unstable configuration, stabilized by a control 

system can provide higher lift-to-drag ratio, which results in increased endurance 

(Hartmmann, 1979; Ngo, et al 1996; Cameron, et al 2000). Critical flight regimes such as 

high-incidence departures or aeroelastic instabilities can be significantly relaxed or even 

eliminated by an active control approach (Friedmann, 1999).  

The pitch-axis stability augmentation system provides satisfactory natural 

frequency and damping for the short-period mode. The short-period mode primarily 
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involves angle-of-attack and/or pitch rate (Ngo, et al 1996). The feedback of these variables 

to the elevator input modifies the frequency and damping. The phugoid mode is largely 

unaffected by this feedback. The outer feedback control loops are usually closed around 

the pitch SAS to provide autopilot systems (Stevens, et al 1992). The pitching moment 

curve of a statically unstable aircraft has a positive slope over some or all range of alpha 

(Stevens, et al 1992). To generate a restoring pitching moment, perturbation in alpha are 

sensed and fed back to the elevator servo to generate a stabilizing pitching moment 

(Stevens, et al 1992). This makes the slope of the pitching moment curve more negative in 

the region around the operating AoA.  

Due to the vulnerability of the AoA sensor to failure/damage at hypersonic speeds 

and also due to difficulty in obtaining accurate, quick responding noise-free measurements 

AoA feedback is usually avoided (Stevens, et al 1992). Thus, we use pitch rate feedback 

to generate a restoring pitching moment compensation. The pitch-rate sensor is normally a 

mechanical gyroscopic device, arranged to measure the inertial angular rate around the 

lateral axis. It is essential to place the gyro in an appropriate location to avoid picking up 

the vibrations of the aircraft structure (Stevens, et al 1992). Figure 4.7 shows a schematic 

of a conventional longitudinal pitch-axis stability augmentation control loop. 

 

Figure 4.7: General Pitch-Axis Stability Control Loop 
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4.4 Development of the Pitch-Axis Stability Augmentation 

The simulation model consists of a pitch SAS which uses a dynamic inversion 

control law as mentioned in section 3.6. We analyze the system with this control law; 

Figure 4.9 shows the closed loop pitch-rate response of the system with the baseline 

controller. The oscillation amplitude grows over time indicating an unstable closed loop 

response. 

 

Figure 4.8: Baseline Pitch SAS Control System 

 

 

Figure 4.9: Elevator Input and Pitch Rate Response with Dynamic Inversion Controller 

In order to test the feasibility of the adaptive control for the given problem, we implement 

the adaptive control in the outer loop as shown in the figure below, to evaluate 

improvements (if any) in the pitch rate response. 
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Figure 4.10: Baseline Control with Adaptive Regulator 

Figure 4.11 shows the pitch rate response for the same elevator input, the pitch rate damps 

out stabilizing the plant longitudinally.  

 

Figure 4.11:  Elevator Input and Pitch Rate with Adaptive Regulator 

The eleven states flexible model is reduced to a rigid body (five states) model in order to 

simplify the system by cancelling the structural flexible mode coupling with the 

longitudinal dynamics. We test the control law with small adjustments on the gain 

weightings for this simplified system. Figure 4.12 shows that the pitch rate oscillations 

damp out for the same perturbation. 
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Figure 4.12: Elevator Input and Pitch Rate (Rigid body model) 

To satisfy the direct adaptive control scheme’s stability theorem we multiply the output 

feedback by a negative one in order to achieve a positive high frequency gain. Both the 

simplified rigid body and flexible model are non-minimum phase. We discussed in section 

2.2 how non-minimum phase could be alleviated. In the following section, we conduct 

sensor blending on the system in order to fully satisfy the stability theorem. 

The same controller is implemented on the rigid body model of the HSV is implemented 

on the flexible body model. We see that the control scheme stabilizes the vehicle from the 

pitch rate response (shown in Figure 4.12). 

 

Figure 4.13: Elevator Input and Pitch Rate (Flexible body model) 
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Figure 4.14 shows the closed loop system for the results obtained in Figure 4.13. 

Multiplying the output feedback by negative one (shown in Figure 4.14) cancels the 

negative one shown in equation (21) giving a positive high frequency gain. 

 

Figure 4.14: δe to q loop with adaptive controller for the flexible Model 

 

The numerator for the transfer function 
𝑞(𝑠)

𝛿𝑒(𝑠)
  is: 

𝑞(𝑠) = (−𝟏)[𝟖. 𝟕𝟒𝟗𝑠10 + 60.92𝑠9 + 1.118 × 10−5𝑠8 + 3.928 × 10−5𝑠7 + 2.686𝑠 ×

10−8𝑠6 + 3.548 × 10−8𝑠5 + 1.117 × 10−11𝑠4 + 9.287 × 10−9𝑠3 + 1.634 × 10−8𝑠2 +

3.817 × 10−5𝑠1 + 0𝑠0]             (21) 

Throughout the development of the pitch-axis stability augmentation the FER input was 

set to a constant trim value. In order to track a speed, aircrafts use a system called the Mach-

Hold control a type of command augmentation system. The pitch-axis stability 

augmentation developed in this section serves as a primary inner control system for the 

development of the Mach-Hold control system. In the following section, we discuss the 

development of this command augmentation system. 
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4.5 Mach-Hold by FER Compensation 

Mach/Speed-hold is generally used in aircraft with poor longitudinal stability. It is 

similar to altitude hold in that it is used for cruise condition, and generally involves elevator 

control, and same inner-loop feedback signals and mixture of fast and slow 

poles (𝑞 𝑎𝑛𝑑 𝜃) (Stevens, et al 1992). The speed-hold mode maintains constant speed and 

the vehicle climbs as the vehicle burns fuel. In this mode, throttle position is fixed and 

generally, speed is controlled by aircraft pitch attitude through operation of the horizontal 

stabilizer surfaces. A conventional speed-hold control loop schematic is shown in Figure 

4.15. Pitch angle output feedback is passed to the controller, which adjusts elevator and the 

aircraft pitches down or up in order to gain or lose speed respectively. A pitch angle has 

higher control authority over speed compared to throttle input for aircrafts with low thrust 

to weight ratio. 

 

Figure 4.15: General Speed-Hold Control Law 

 In our case the thrust to weight ratio is greater than one and there is a need to be 

able to increase speed incrementally for example see mission profile discussed in section 

1.3. Thus, considering this we design the Mach-Hold control in order to hold and track 

commanded speed. In order to achieve this we use the speed output feedback and the 
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adaptive control scheme generates a FER compensation. In hypersonic aircraft, throttle 

command has higher control authority on speed over pitch angle. Figure 4.16 shows the 

proposed Mach-hold and command control loop. 

 

Figure 4.16: Mach-Hold W/ Command Augmentation Proposed 

 

 

 

4.6 Mach-Hold Control Development 

In order to achieve the goals set in Section 4.5 we design the Mach-Hold control 

system as an outer loop to the pitch-axis augmentation controller designed in Section 4.4. 

We implement the Mach-Hold loop shown in Figure 4.17 to the setup shown in Figure 

4.14. 

 

Figure 4.17: FER to v Loop with Adaptive Controller for the Flexible Model 
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Equation (22) shows the numerator of the transfer function 
𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
. The (𝑛 − 1)𝑡ℎ 

term of the numerator is positive indicating satisfied stability theorem.  

𝑣(𝑠) = [𝟓𝟔. 𝟑𝟓𝑠10 + 387.4𝑠9 + 7.19 × 10−5𝑠8 + 2.456 × 10−6𝑠7 + 1.704 ×

10−9𝑠6 + 2.022 × 10−9𝑠5 + 5.944 × 10−11𝑠4 + 1.972 × 10−10𝑠3 − 7.147 ×

10−12𝑠2 − 2.89 × 10−11𝑠1 − 2.154 × 10−10𝑠0]                 (22) 

A plot of zeros for the transfer function for FER to speed loop is shown in Figure 

4.4. The zero on the right half plane makes the FER to speed transfer function strongly 

non-minimum phase. We compensate for the non-minimum phase behavior in the 

following section through sensor blending. 

 

4.6.1 Simulation Results 

To summarize, the system is unstable with non-minimum phase zeros in both the 

loops. With slight gain weighting adjustments, the model successfully tracks a speed 

command as illustrated in Figure 4.20 for a given elevator deflection shown in Figure 4.19. 

From Figure 4.19 and Figure 4.20 we conclude that due to a five deg elevator step input, 

the plant gains altitude and as a result, the speed should decrease. Instead, the Mach-Hold 

controller adjusts the FER input to hold the initial speed. It should be noted that in Figure 

4.19 the FER compensation eventually damps out at a value higher than the initial value 

demonstrating the adjustment made to the input. Figure 4.19 to Figure 4.22 are incremental 

plots and thus represent the deltas from the trimmed values presented in Table 4.1 in section 

3.6. The full control system of two control loops is shown in Figure 4.18. 
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Figure 4.18: Combined FER to v and δe to q Adaptive Controller Loops on the Flexible Model 

 

 

Figure 4.19: Elevator and FER Input 

 

 

Figure 4.20: Outputs TAS and Altitude 
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Figure 4.21: AoA, Pitch Rate and Pitch Angle 

 

 

Figure 4.22: Modal Coordinate and Velocity 

 

Figure 4.22 plots the structural flexible modes, the modal coordinates represent the 

magnitude of bending and the modal velocity denotes the rate of bending. Thus, for any 

given condition once the vehicle comes to a steady state flight, the modal velocity will 

always decay to zero whereas the modal coordinate may or may not decay to zero. 

In the case presented above, we design a control system in order to track the trim 

speed and successfully achieve. We modify the control law such that it is possible to 
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command the speed. Figure 4.23 and Figure 4.24 show the Mach-Hold and Command 

control loop and the full schematic respectively.  

 

Figure 4.23: Mach-Hold and Command Control System 

 

 

 

Figure 4.24: Pitch-Axis Stability Augmentation and Mach-Hold and Command Augmentation Control 

System 

 

We conduct a speed command tracking test on the above closed loop system in 

order to inspect the control system designed. In Figure 4.25, we can see the incremental 

speed commands. The Mach-Hold control system adjusts FER to track the commanded 
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speed. We conduct the test for up to 60 seconds. The powered flight phase (shown in Figure 

1.1) of the mission profile consists of similar speed command and lasts up to 200 – 300 

seconds. 

 

Figure 4.25: TAS, Delta Speed Command and FER Input 

 

4.7 Nonlinear System Application 

In this section both the stability augmentation and the command augmentation 

control systems designed on the linearized plant are implemented on the nonlinear system. 

The HSV model trimmed at 7878 feet/s and 90,000 feet. Figure 4.27 plots the elevator 

input time history. In the plots, it should be noted that the elevator is deflected up and down 

a few times from 0 – 30 seconds. A typical open loop response for the given unstable plant 

would be growing pitch rate. Here in a closed loop setup, for every elevator input, the 

adaptive controller compensates accordingly to damp out the pitch rate as shown in Figure 
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4.28. Throughout these maneuvers, the control system constantly adjusts the FER 

compensation to track the trimmed speed (shown in Figure 4.27). At 30 seconds, the 

elevator is deflected and held at five degrees. The pitch-axis stability augmentation loop 

drives the pitch rate to zero and the vehicle begins to gain altitude as expected (presented 

in Figure 4.29). The command augmentation loop adjusts FER input to the speed 

command. 

 

Figure 4.26: Control System on the Nonlinear Model 

 

 

 

Figure 4.27: Elevator and FER input 
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Figure 4.28: AoA, Pitch Rate and Pitch Angle 

 

 

Figure 4.29: TAS and Altitude 

 

 

Figure 4.30: Modal Velocity and Coordinate 
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4.8 Sensor Blending 

Although the adaptive controller in both the cases performs very reasonably, the 

open loop system is still non-minimum phase thus the stability theorem is not satisfied. We 

use sensor blending on the loops to restore numeric minimum phase. Out of the two 

different methods discussed in section 2.2, we use minimum phase feedback leakage 

technique the respective transfer function consists of a zero at the origin. 

Table 4.3 shows the numeric values of the zeros for the transfer function 
𝑞(𝑠)

𝛿𝑒(𝑠)
 in 

Section 4.2. The non-minimum phase zero in this transfer function is at the origin. The 

original 𝐶 matrix is 𝐶 = [0   0   1   0   0   0   0   0   0   0   0], the state vector is 

𝒙 = [𝑣    𝛼    𝑞    ℎ    𝛩    𝜂1    �̇�1    𝜂2    �̇�2    𝜂3    �̇�3]
𝑇 

 

A small leakage to the fifth entry representing the signal pitch angle is added. Thus, 

the new leaked 𝐶 matrix is 𝐶𝑙 = [0   0   1   0   𝜀   0   0   0   0   0   0], where 𝜀 is the leakage 

factor. Here the leakage factor 𝜀 is equal to 0.001. Figure 4.31 compares original zero 

location to the new zero obtained after adding a leakage. The blended 𝐶𝑙 matrix is placed 

in the feedback loop replacing the original C. Figure 4.32 shows the pitch rate response to 

a pulse elevator input for the unblended setup. 
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Figure 4.31: Zero Location before and After Sensor Blending 

 

 

 

Figure 4.32: Elevator Input and Pitch Rate Response (Unblended System) 
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Figure 4.33: Elevator Input and Pitch Rate Response (blended System) 

 

Figure 4.33 shows the pitch rate response to an elevator input for the sensor-blended 

system. A closer comparison revealed a faster damping in the case of the blended plant. 

Moreover, the plant meets both the stability theorem requirements (discussed in section 

2.1). This guarantees error convergence to zero with bounded adaptive gains. 

In the next chapter, we take the multivariable approach and combine the two single 

input single output loops into one unified multivariable control loop and design a control 

law using the same control scheme to achieve the same goal of creating a stability and 

command augmentation system. We compare the results obtained with the SISO setup.
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5. MULTIVARIABLE APPROACH 

A multivariable system is a system with more than one input and output. Multi 

Input Multi Output (MIMO) systems bifurcate into two main categories: 

 Interactive Systems (non-diagonal transfer function matrix) 

 

 Non-interactive Systems (diagonal transfer function matrix) 

 

 

In a MIMO plant with input 𝑚 and output 𝑙, the basic transfer function model 

is 𝑦(𝑠)  =  𝐺(𝑠)𝑢(𝑠), where 𝒚 ∈ 𝑅𝑙, 𝒖 ∈ 𝑅𝑚 and 𝐺(𝑠) is an 𝑙 × 𝑚 transfer function 

matrix. When a change in one input, 𝑢1 affects more than one outputs from a given set of 

outputs; 𝑦1, 𝑦2, …… , 𝑦𝑙 the plant is called an interactive system (Skogestad, et al 2005).  

For a non-interacting plant, 𝑢1 will only affects 𝑦1, 𝑢2 will only affects 𝑦2, and so on. 

5.1 Control Scheme in Multivariable Setup 

In case of a SISO setup we already know that the stability theorem requires positive 

high frequency gain (𝑖. 𝑒. 𝐶𝐵 > 0) and minimum phase. However, this does not precisely 

apply to a multivariable plant since 𝐶𝐵 ∈ 𝑅𝑛×𝑛, n being the number of inputs and the 
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outputs. A multivariable system can be broken down into n2 transfer functions, where each 

transfer functions can have unique set of zeros. This creates a need for a more precise 

definition of zeros in the case of a multivariable plant. In addition, since CB is a vector and 

not a scalar, it should be symmetric and positive definite for a multivariable system to 

satisfy the direct adaptive control scheme’s stability theorem. It should be noted that CB 

may not be symmetric and positive definite. In these situations, the C matrix has to be 

blended in order to achieve those conditions. We discuss the definition of multivariable 

transmission zeros in the following section. 

 

5.2 Multivariable Zeros 

As for SISO systems, it is known that RHP-zeros impose fundamental limitations 

on control, and its definition is clearly stated and understood. Skogestad and Postlethwaite 

in [60] describe the multivariable zeros as the values of 𝑠 = 𝑧 where 𝐺(𝑠) loses rank. 

However, this definition may fail in case of an incorrect pole zero cancellation where the 

poles and zeros have same location but different direction. 

Skogestad and Postlethwaite (Skogestad, et al 2005) also describe the multivariable 

zeros as poles of 𝐺−1(𝑠). The set of zeros obtained through this definition contain all the 

multivariable zeros. Extraneous zeros ∪ transmission zeros ≡ Multivariable zeros; it 

should be noted that the set of extraneous zeros may be empty. 
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Figure 5.1: Multivariable Zeros 

For the given HSV system, this seem to be the case. However, as per the 

requirements we only need to assure that the multivariable transmission zeros are stable.  

 

Thus, from Hespanha’s definition in (Hespanha, 2009) a multivariable transmission 

zero is the value of λ which completely blocks the input signal and outputs a zero showing 

a transmission blocking property, thus we refer to them as blocking zeros as well in this 

work. In more formal terms multivariable zeros are all the values of 𝜆∗ for which 𝑦 = 0 in 

system (A, B, C) with input signal 𝑢 = 𝑒𝜆∗𝑡 or  

𝑍(𝐴, 𝐵, 𝐶) ≡ { 𝜆 such that 𝐻(𝜆) ≡ [
𝐴 − 𝜆𝐼 𝐵
𝐶 0

] : is singular} 

For example if we assume the system 𝐴 = (
0 1
0 0

) , 𝐵 = [
0
1
] , 𝐶 = [1 1]. Then ⇒

𝐻(𝜆) [
𝜆 −1 0
0 𝜆 1
1 1 0

] ⇒ det(𝐻(𝜆)) = −𝜆 − 1. Therefore 𝑍(𝐴, 𝐵, 𝐶) = {−1}. 

 

Based on this definition we discuss ways of computing these multivariable 

transmission zeros. In order to compute the transmission zeros we obtain the normal form 

(Balas, et al 2016) of the given system. Normal form is a coordinate transformation to 



67 

 

 

obtain a matrix �̅�, such that �̅� = [
�̅�11 �̅�12
�̅�21 �̅�22

], where all the multivariable transmission 

zeros are the eigenvalues of the matrix �̅�22. We discuss the zeros computed through this 

method in the following section. 

 

5.2.1 Multivariable Zeros 

We compute the multivariable zeros for the definition in (Hespanha, 2009). 

Table 5.1: SISO Zeros vs Multivariable Zeros 

Zeros Elevator to Pitch Rate FER to Speed Multivariable Zeros 

1 -1.9755 +98.7339i -1.9755 +98.7184i -1.9755 +98.7033i 

2 -1.9755 -98.7339i -1.9755 -98.7184i -1.9755 -98.7033i 

3 -0.9986 +49.8296i -1.0002 +50.3215i -0.9984 +49.8332i 

4 -0.9986 -49.8296i -1.0002 -50.3215i -0.9984 -49.8332i 

5 -0.4659 +22.9452i -0.4208 +22.5611i -0.4688 +23.0660i 

6 -0.4659 -22.9452i -0.4208 -22.5611i -0.4688 -23.0660i 

7 -0.0596 + 0.0000i -2.8554 + 0.0000i -0.0617 + 0.0000i 

8 -0.0208 + 0.0000i 2.7824 + 0.0000i -0.0206 + 0.0000i 

9 -0.0028 + 0.0000i -0.0007 + 0.0395i 0.0000 + 0.0000i 

10 0.0000 + 0.0000i -0.0007 - 0.0395i  
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Figure 5.2: Zeros of 
𝑞(𝑠)

𝛿𝑒(𝑠)
 vs Multivariable Zeros Overlay 

 

 

 

Figure 5.3: Zeros of 
𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
 vs Multivariable Zeros Overlay 
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It should be observed that the set of multivariable zeros does not contain any zero 

with 𝑅𝑒(𝜆) > 0, shown in Table 5.1 and Figure 5.3. Thus, the set of multivariable 

transmission zeros also should not contain any such non-minimum phase zeros, since the 

set of multivariable transmission zeros are contained in the set of multivariable zeros. A 

possible reason could be pole zero cancellation or the multivariable dynamics. In this work 

we do not investigate the cause of this, since it is only required to know if the multivariable 

transmission zeros are stable. In the next section, we discuss the normal form technique in 

detail and present the zeros obtained through this computation. 

 

5.2.2 Multivariable Transmission Zeros 

Computation through normal form: In this technique we conduct a coordinate 

transformation and look for values of lambda for which outputs are zero, see (Balas, et al 

2016). 

Assume the open loop system is: 

                      {
�̇�     =     𝐴𝑥 + 𝐵𝑢                   

𝑦     =    𝐶𝑥; 𝑥(0) =  𝑥0 ∈ Χ
                    (23) 

Let the dimension of 𝒚 = 𝒙 = 𝑅𝑚 and assume the determinant of 𝐶𝐵 ≠ 0. 

                   Let [𝑦
𝑧
]   =    [ 𝐶𝑚×𝑛

𝑊2𝑟×𝑛
] 𝑥 ∋ (𝑟 ≡ 𝑛 −𝑚)  

                        ⇒  𝑥   =      [
𝐶

𝑊2
]
−1

[
𝑦

𝑧
]  

assuming    [ 𝐶
𝑊2
]
−1

=      𝑄          =   [𝑄1𝑄2]  

                    ⇒ [𝑦
𝑧
]
̇
     =      [ 𝐶

𝑊2
] �̇�   =  [ 𝐶

𝑊2
] [𝐴𝑥 +  𝐵𝑢]   
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Therefore:                   [𝑦
𝑧
]
̇
    =    [[ 𝐶

𝑊2
] 𝐴[𝑄1𝑄2] [

𝑦

𝑧
] + [ 𝐶

𝑊2
] 𝐵𝑢]                             (24) 

Now let:   [[ 𝐶
𝑊2
] 𝐴[𝑄1𝑄2]]   =    𝐴    = [

𝐴11
𝐴21

𝐴12
𝐴22
] and 

                                 [[ 𝐶
𝑊2
] 𝐵]   =    𝐵    = [𝐶𝐵

0
]                                                                            (25) 

                                      ⇒  𝑦    =    𝐶𝑥  =  𝐶[𝑄1𝑄2]⏟    
𝐶

[𝑦
𝑧
]  =  [𝐼𝑚 0] [

𝑦

𝑧
]              (26) 

 

We solve for 𝑊2, 𝑄1, 𝑄2  ∋  𝑊2𝐵 = 0;  𝐶𝑄1 = 𝐼𝑚;  𝐶𝑄2 = 0              (27) 

With equations from (23) - (27) the following theorem is proved in (Balas, et al 2014).  

Theorem: Let 𝐶𝐵 be non-zero. Then Χ =  ℝ𝑁 = 𝑅(𝐵)⨁𝑁(𝐶)   𝑤ℎ𝑒𝑟𝑒   𝑃1 ≡

𝐵(𝐶𝐵)−1𝐶   𝑎𝑛𝑑   𝑃2 ≡ 𝐼 − 𝑃1 are non-orthogonal projections onto 𝑅(𝐵) and 

𝑁(𝐶) respectively.  

It can also be proved that 𝑁(𝐶) = 𝑅(𝑃2) =  𝑠𝑝{𝜃1……𝜃𝑟}, where 𝜃1……𝜃𝑟 are 

basis of columns of 𝑃2. These linearly independent columns can be ortho-normalized to 

get {∅1, … , ∅𝑟}, which span 𝑁(𝐶). 

Define  𝑄2    ≡      [∅1……∅𝑟]𝑟×𝑟
 

                                  𝑄2
∗𝑄2     =     [

𝑄1
∗

𝑄𝑟
∗] [∅1…∅𝑟] = 𝐼𝑟 and 

                                     𝐶𝑄2     =     𝐶[∅1……∅𝑟] 

                                                  =     [𝐶∅1……𝐶∅𝑟] = [0……0] = 0 𝑆𝑖𝑛𝑐𝑒 ∅𝑘 ∈ 𝑁(𝐶)  

In addition, defining: 𝑄1     ≡    𝐵(𝐶𝐵)
−1 ⇒ 𝐶𝑄1 = 𝐶𝐵(𝐶𝐵)

−1 = 𝐼𝑚 and 

                                  𝑊2     ≡    𝑄2
∗𝑃2  

                          ⇒ 𝑊2𝐵    =    𝑄2
∗𝑃2𝐵 = 𝑄2

∗(0) = 0  

Since,                       𝑃2𝐵    =    (𝐼 − 𝑃1)𝐵 = 𝐵 − 𝐵 = 0. Now, it can be proved that  

                                     𝑄   =    [ 𝐶
𝑊2
]
−1

=  [𝑄1𝑄2]  
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Thus in normal form: 

               {
�̇�     =     𝐴11 𝑦 + 𝐴12𝑧 + 𝐶𝐵𝑢

�̇�      =     𝐴21𝑦 + 𝐴22𝑧               
 

Where   𝐴       =    [
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐶
𝑊
]𝐴[𝑄1 𝑄2] =

[
 
 
 
𝐶𝐴𝐵(𝐶𝐵)−1 𝐶𝐴 [∅1……∅𝑟]⏞      

𝑄2

𝑄2
∗𝑃2𝐴𝐵(𝐶𝐵)

−1 𝑄2
∗𝑃2𝐴𝑄2⏟      
𝐴22 ]

 
 
 
 

It can be proved that 𝐴
22
= [(∅𝐾, 𝑃2𝐴∅𝑙)]𝑟×𝑟 is equal to [𝑄2

∗𝑃2𝐴𝑄2] and that W2 is an 

isometry on N(C). We can finally prove that the zero dynamics transfer function of the 

system is  𝐴12(𝑠𝐼 − 𝐴22)
−1𝐴21 

 

 

Figure 5.4: System in Normal Form 

Definition: 𝜆∗ ∈ ℂ is a blocking zero of (𝐴, 𝐵, 𝐶) when 𝐻(𝜆∗) = [
𝐴 − 𝜆∗𝐼 𝐵
𝐶 0

] is singular, 

i.e. 𝑁(𝐻(𝜆∗)) ≠ {0}. This allows proving that ∀ 𝐶𝐵 non-singular ℤ(𝐴, 𝐵, 𝐶) ≡ {𝜆∗ ∈

ℂ 𝐻(𝜆∗) singular } = {𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 �̅�22} (Balas, et al 2016). 

 

In order to compute the transmission zeros using this method 𝐶𝐵 of the system must be 

non-singular. From theory, it is known that 𝑃1 and 𝑃2 are non-ortho-normal projections 

on 𝑅(𝐵) and 𝑁(𝐶). Therefore, the first step is to calculate 𝑃1 and 𝑃2. 
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𝑃1  =  𝐵(𝐶𝐵)
−1𝐶,     𝑃2  =  𝐼 −  𝑃1               (28) 

The next step is to ortho-normalize the basis of 𝑃2 which spans the null space of 𝐶. The 

newly obtained vectors form the matrix 𝑄2. We calculate the matrix �̅�22 using the 

following equation  

�̅�22  =  𝑄2
∗ 𝑃2 𝐴 𝑄2                                             (29) 

Eigenvalues of �̅�22 give the multivariable transmission zeros for the given system. In Table 

5.2, we show the multivariable transmission zeros computed through normal form. 

Table 5.2: Multivariable Zeros Set VS Transmission Zeros Set 

 Multivariable                  

Zeros (for A,B,C,D)  

Multivariable Transmission 

Zeros (for A,B,Cl,D) 

1 -1.9755 +98.7033i -2.59 - 1.1089i 

2 -1.9755 -98.7033i -2.59 + 1.1089i 

3 -0.9984 +49.8332i -0.78 - 0.3314i 

4 -0.9984 -49.8332i -0.78 + 0.3314i 

5 -0.4688 +23.0660i -0.14 - 0.1554i 

6 -0.4688 -23.0660i -0.14 + 0.1554i 

7 -0.0617 + 0.0000i -0.06 + 0.0000i 

8 -0.0206 + 0.0000i -0.02 + 0.0000i 

9 0.0000 + 0.0000i 0.0000 + 0.0000i 

Note: The C matrix for the above computation is adjusted such that the matrix CB 

is invertible, symmetric and positive definite in order to satisfy the stability theorem. As 

predicted in section 5.2.1 the set of multivariable zeros also does not contain any 𝑅𝑒(𝜆) >

0 non-minimum phase zeros, but it does contain a zero at the origin. 
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Figure 5.5: Zeros of 
𝑞(𝑠)

𝛿𝑒(𝑠)
  vs Multivariable Transmission Zeros Overlay 

 

 

 

Figure 5.6: Zeros of 
𝑣(𝑠)

𝛿𝐹𝐸𝑅(𝑠)
 vs Multivariable Transmission Zeros Overlay 
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It should be noted that the set of multivariable transmission zeros does not contain 

any strongly non-minimum phase zero “satisfying the stability theorem requirement”. In 

the following section, we discuss the implementation of the control scheme on the 

multivariable plant and discuss some of the results obtained. 

 

5.3 Multivariable Direct Adaptive Control 

We briefly go over the stability theorem requirements of the control scheme.  

 Matrix CB symmetric, positive definite 

 ℤ(𝐴, 𝐵, 𝐶) ≡ {𝜆 ∈ | 𝑅𝑒 𝜆 < 0} 

The plant meets both the requirements except for the one zero at the origin. It should be 

noted that this could be easily compensated by using a zero filter as discussed in (Balas, et 

al 2016). Multivariable zeros for the HSV system with δe and δFER as input signals, v, and 

q as system output signals are computed using the normal form in section 5.2.2. We list 

these zeros and compare them with the zeros of the SISO system.  

Table 5.3: SISO vs Transmission Zeros Comparison 

Zeros Elevator to Pitch Rate FER to Speed Transmission Zeros 

(for A,B,Cl,D) 

1 -1.9755 +98.7339i -1.9755 +98.7184i -2.59 - 1.1089i 

2 -1.9755 -98.7339i -1.9755 -98.7184i -2.59 + 1.1089i 

3 -0.9986 +49.8296i -1.0002 +50.3215i -0.78 - 0.3314i 

4 -0.9986 -49.8296i -1.0002 -50.3215i -0.78 + 0.3314i 

5 -0.4659 +22.9452i -0.4208 +22.5611i -0.14 - 0.1554i 
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6 -0.4659 -22.9452i -0.4208 -22.5611i -0.14 + 0.1554i 

7 -0.0596 + 0.0000i -2.8554 + 0.0000i -0.06 + 0.0000i 

8 -0.0208 + 0.0000i 2.7824 + 0.0000i -0.02 + 0.0000i 

9 -0.0028 + 0.0000i -0.0007 + 0.0395i 0.0000 + 0.0000i 

10 0.0000 + 0.0000i -0.0007 - 0.0395i  

 

 

As noted previously, there are no transmission zeros with 𝑅𝑒(𝜆) > 0 in the 

multivariable system compared to the SISO system. We apply the control scheme on the 

HSV system in a setup shown in the figure below, in order to provide artificial pitch-axis 

stability and speed-hold and command control. In Figure 5.8, we show the time history of 

the inputs δe and δFER made to the system. Figure 5.11 shows the pitch rate response, 

implying correct compensation by the control law in order to maintain longitudinal 

stability. With these results, it is evident that the control scheme provides the appropriate 

elevator compensation using the pitch rate output feedback.  

 

Figure 5.7: Multivariable System and Control System 
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Figure 5.8: System Inputs Figure 5.9: TAS and Altitude 

  

Figure 5.10: Modal Coordinate and Velocity Figure 5.11: System Output 

In the next section, we observe the system response to different gain weightings in 

the coupling terms. 

 

 

5.4 Coupling Gain Weightings 

In this section, we manipulate the coupling terms in the gain-weighting matrix and 

compare the plots for the following elevator input. The coupling terms in the gamma-e 

weighting matrix are named k1 and k2 for referencing. The term k1 multiplies with the 

error −𝑒𝑣𝑒𝑣
∗ and generates a compensation for elevator. Thus, increasing k1 will increase 

the compensation produced for elevator for a change in 𝐹𝐸𝑅 input. The term k2 multiplies 
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with the error −𝑒𝑞𝑒𝑞
∗ and generates a compensation for 𝐹𝐸𝑅. Thus increasing k2 will 

increase the compensation produced for 𝐹𝐸𝑅 for a change in elevator input. In the first 

case, we set the coupling weightings k1 = k2 = -0.001 and set up the following input signal 

shown in Figure 5.12 as the standard input for all the cases.  

 

Figure 5.12: Input Command Speed and Elevator Deflection for Test Cases 

 

 

We set k1 = k2 = -0.001 as the baseline case and test the following weightings: 

 

Table 5.4: Coupling Weightings 

 k1 k2 

Baseline 0.001 0.001 

Case 1 0.001 100 

Case 2 100 0.001 

Case 3 100 100 

 

The baseline case has the smallest cross coupling and the output signal should be close to 

the SISO system response. We compare the pitch rate response and speed command 
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tracking to identify the best coupling weightings. It can be observed that for larger 

weightings on k1 speed tracking and pitch rate response are very poor, shown in Figure 

5.13. We can see that the speed tracking error grows for case 2 but converges to zero for 

the baseline case. We see a similar trend for case 3 shown in Figure 5.14. 

 

Figure 5.13: Speed, Speed tracking error and pitch rate (Red - Baseline, Blue - Case 2) 

 

 

 

Figure 5.14: Speed, Speed tracking error and pitch rate (Red - Baseline, Blue - Case 3) 
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In case 1, the response is similar to the baseline response shown in Figure 5.15. A 

close look reveals better convergence in case 1. From this, we can conclude that the high 

weightage on FER compensation deteriorates the performance. 

 

Figure 5.15: Speed, Speed tracking error and pitch rate (Red - Baseline, Blue - Case 1) 

 

Lastly, we compare the SISO system response with the MIMO case 1 response.  
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Figure 5.16: Speed, Speed tracking error and pitch rate (Red – SISO System, Blue – MIMO Case 1) 

We see a faster speed tracking convergence, smaller overshoot and smaller speed 

tracking error for the MIMO case 1 when compared with SISO system (shown in Figure 

5.16).  

 For elevator maneuver, only the MIMO case 1 provides a better pitch rate response 

and better speed hold control.  

 Although for speed command, input the SISO system provides much better pitch 

rate response but the MIMO case 1 control tracks speed more closely.  

 For simultaneous elevator and speed, input the MIMO system provides a better 

pitch rate response and speed tracking. 
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Thus, in general the MIMO case 1 control setup performs comparatively better in all the 

aspects than the SISO control setup. In the next section, we summarize all the results in 

this report and share our future work ideas for the direct adaptive control scheme, 

multivariable systems, and hypersonic flight.
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6. CONCLUSION AND FUTURE WORK 

6.1 Summary 

This thesis examines a high fidelity non-linear physic model of the hypersonic 

vehicle developed at the Air Force Research Lab, Wright-Patterson Air Force Base. The 

vehicle is characterized by unstable non-minimum phase dynamics with significant 

longitudinal coupling between fuel equivalency ratio and the angle of attack and the pitch 

angle. At high Mach number, the coupling between FER and FPA is increased.  This 

coupling, inherent instability and non-minimum phase behavior create a need for control 

systems to provide augmented stability and control of the hypersonic vehicle. 

 In order to solve this problem we use a direct adaptive control scheme to design 

a stability and command augmentation system. The general mission profile was kept in 

consideration for this and the control system was designed in order to assist that mission 

goal. The pitch-axis stability augmentation is designed with the second control input set to 

a constant trim value. After successfully achieving an appropriate pitch rate response a 

second level of control system is added to track a speed command.  

This work is followed by the multivariable direct adaptive approach. In this 

approach, the primary stability augmentation and secondary speed tracking control system 

is combined to study the advantages of the multivariable approach. It is observed that the 

multivariable HSV system possesses certain characteristics beneficial to the control 

scheme in terms of satisfying the stability theorem requirements. We also compare the 

performance of both control systems for a given set of commands.   
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6.2 Future Work 

Apart from being longitudinally unstable, the X-51 hypersonic vehicle is also laterally 

unstable at both low and high speeds. At low speeds, the vehicle is directionally unstable 

for AoA less than 6 degrees and laterally unstable for AoA less than 2 degrees shown in 

Figure 6.1 and Figure 6.2 respectively. At high speeds, the vehicle is laterally unstable for 

AoA less than 9 degrees shown in Figure 6.3. 

 

 

Figure 6.1: Directionally Unstable for AoA < 2 deg (Low Speed) (Mutzman, et al 2011) 
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Figure 6.2: Laterally Unstable for AoA < 6 Deg (Low Speed) (Mutzman, et al 2011) 

 

 

Figure 6.3: Laterally Unstable for AoA < 9 Deg (low Speed) (Mutzman, et al 2011) 

 

With the control system designed in this work a third level lateral and directional stability 

augmentation system could be designed in order to achieve straight level flight on the 6-
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DOF model. Once accomplished the direct adaptive control scheme could also be tested 

for the boosting phase. From boosting phase to cruising phase, the craft goes through a 

drastic change in weight, dimensions and parameters, posing a greater need for adaptivity 

on the control system. 
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