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(Preprint) AAS 23-191

DUAL QUATERNION RELATIVE DYNAMICS FOR GRAVITY

RECOVERY MISSIONS

Ryan Kinzie*, Riccardo Bevilacqua† and Dongeun Seo‡

A dual quaternion modeling approach is compared to traditional modeling meth-
ods for formation flying spacecraft utilized for gravity recovery missions. A mod-
eling method that has traditionally been used for gravity recovery missions is pre-
sented which models the motion of two formation flying spacecraft and a test
mass. This is followed by the dual quaternion-based formulation for the equations
of motion of the twelve degree-of-freedom coupled relative dynamics of formation
flying spacecraft and a test mass. Lastly, utilizing data products from the Gravity
Recovery and Climate Experiment Follow-On mission, a comparison of these two
modeling methods is presented which proves the advantage of the proposed dual
quaternion-based modeling approach.

INTRODUCTION

As stated by the Committee on Earth Gravity from Space, measuring Earth’s temporal and spa-
tially varying gravity potential is of significant interest to many fields of study, including ocean
dynamics, continental water variation, sea-level rise, post-glacial rebound, structure and evolution
of the crust and Lithosphere, and mantle dynamics and plumes.1 Since the Earth is a dynamic sys-
tem that is constantly changing due to its fluid atmosphere and oceans, distribution of groundwater,
snow and ice, and shifting tectonic plates, the mapping of Earth’s gravity potential is a continually
ongoing process.

For twenty years, the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-
On (GRACE-FO) missions have provided a means of mapping Earth’s gravitational potential by
calculating the spherical harmonic coefficients and functions used to model Earth’s gravity. Both
of these missions’ science requirements called for the creation of a long-term gravity model up to
spherical harmonic degree 150 to show trends in water storage, mass loss ice sheets, etc., and a
temporally varying gravity model up to spherical harmonic degree 70 for sets of average values of
the geopotential coefficients over a month or less.2 However, as stated by Srinivasan et al.,3 most
practical applications require an increase to the temporal and spacial resolutions as well as an in-
crease to the accuracy of the coefficients and functions currently calculated by GRACE-FO. From P.
Kornfeld et al. it is stated that the four main contributions to the error of the estimated geopotential
parameters for the GRACE-FO mission are intersatellite ranging measurement errors, nongravita-
tional acceleration measurement errors, precision orbit determination errors, temporal and spatial
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undersampling, and dealiasing errors.2 More specifically, two of the contributors to the ranging
measurement and precision orbit determination error are attitude knowledge errors and errors in the
orbit determination processes.2 Additionally, for a gravity recovery mission such as GRACE-FO,
the relative positions of two spacecraft flying in formation are measured to an accuracy of less than
2 µm by a Laser Ranging Interferometer (LRI).2 This is significant because any use of the reaction
control system thrusters to make attitude adjustments also affect the orbit of the spacecraft and thus
changes the relative positions of the two spacecraft flying in formation (rotational and translational
coupling). However, even though this coupling is present, traditional dynamics modeling and con-
troller design approaches for gravity recovery missions involves decoupling the translational and
rotational dynamics of the formation flying spacecraft and then designing controllers for the rota-
tional and translational subsystems separately.4–6 This is significant because if the rotational and
translational coupling is not considered for the formation flying spacecraft, then the error between
the estimated relative positions between the two spacecraft and the actual LRI measurements may be
considerable and contribute to the intersatellite ranging measurement errors and attitude knowledge
errors. Therefore, since modeling the spacecraft dynamics using dual quaternions does not require
decoupling the rotational and translational dynamics of the spacecraft, it is expected that spacecraft
models and controllers designed by these methods will result in an increase in performance and/or
accuracy over the current methods. Dual quaternions also have the potential to reduce errors in the
orbit determination processes since these methods are able to simultaneously and efficiently model
the coupled translational and rotational motion of rigid bodies.7–12 For these reasons, this research
has chosen to compare dual quaternions to the traditional modeling approaches for modeling the
relative motion of spacecraft used for gravity recovery missions. It is hoped that this and future
research will be able to pave the way for new mathematical formulations for modeling formation
flying spacecraft that will reduce attitude knowledge errors and errors in the orbit determination
processes. This would ultimately improve the accuracy of the spherical harmonic coefficients and
functions calculated by gravity recovery missions.

EQUATIONS OF MOTION FORMULATION

In this section the frames of reference for the formation flying spacecraft and test mass are pre-
sented followed by the traditional formulation of the equations of motion for the two spacecraft and
test mass. Lastly, a dual quaternion-based formulation is presented for the same spacecraft and test
mass.

Frames of Reference

The equations of motion formulated here utilize four frames of reference that are illustrated in
Figures 1 and 2. The first frame is the Earth Centered Inertial Frame which is denoted by I , followed
by the Body-Fixed Frame and the Desired-Frame, which are denoted by B and D, respectively. The
Desired Frame is defined by a nadir pointing Z-axis, with the X-axis pointing from the center-of-
mass of the target spacecraft through the center of GRACE’s K/Ka band antenna, with the Y-axis
following from the right hand rule. The Body-Fixed Frame is fixed to the center-of-mass of the
chaser spacecraft and is identically co-aligned with the Desired Frame. The relative position vector
between the Body-Fixed Frame and the Desired Frame is denoted as r̄B/D and the position vectors
between the Inertial Frame and the Body-Fixed Frame and the Inertial Frame and the Desired Frame
are denoted by r̄B/I and r̄D/I , respectively. The Test Mass Frame is denoted by TM which is
defined the same as the Body-Fixed Frame, but is instead centered on the center-of-mass of the
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chaser spacecraft’s test mass. Lastly, the relative position vector between the Test Mass Frame and
the Body-Fixed Frame is denoted as r̄TM/B and the position vector between the Inertial Frame and
the Test Mass Frame is denoted by r̄TM/I .

Figure 1. Spacecraft Frames of Reference

Figure 2. Spacecraft Frames of Reference with Test Mass
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Traditional Formulation

The traditional method for formulating the equations of motion for formation flying spacecraft
used for gravity recovery missions is presented in Wang et al.,5 which formulates the translational
motion and rotational motion of the spacecraft separately. The translational equations of motion is
presented as,

¨̄rID/I = āIg + āIJ2 (1)

where āDg is the acceleration due to gravity, and āIJ2 is the acceleration due to J2 perturbations, both
resolved in the Inertial Frame. The equations for these follow as,

āIg = � µ
���r̄ID/I

���
3 r̄

I
D/I
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āIJ2 = �3
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where r̄ID/I = [rx, ry, rz]
T , J2 is the coefficient representing the effect of the Earth’s oblateness, Re

is Earth’s mean equatorial radius, and µ is Earth’s gravitational parameter. The rotational dynamics
are then formulated as,5

˙̄!D
D/I =

�
ID

��1
h
⌧̄D � !̄D

D/I ⇥
⇣
ID!̄D

D/I

⌘i
(2)

where !̄D
D/I is the angular velocity of the Desired Frame with respect to the Inertial Frame, resolved

in the Desired Frame, ID is the moment of inertia of the target spacecraft with respect to the Desired
Frame, and ⌧̄D is the externally applied torque on the spacecraft. It is also worth noting that ˙̄!D

D/I
denotes the time derivative of the angular velocity, expressed in the Desired Frame. For this model,
the externally applied torque on the spacecraft is simply equivalent to the gravity gradient torque,

⌧̄D = ⌧̄Drg =
3µr̄DD/I���r̄DD/I

���
5 ⇥ ID r̄DD/I

The differential equation of the attitude quaternion used for describing the rotational position of the
target spacecraft is then found by,

q̇D/I =
1

2

⇣
!̄D
D/I

⌘⇥
qD/I (3)

where (.)⇥ denotes the skew operator,
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The equations of motion of the Body-Fixed Frame and the Test Mass Frame have the same formu-
lation as Eq. (1) through Eq. (3), with the appropriate variables being resolved in the Body-Fixed
Frame and the Test Mass Frame instead of the Desired Frame.

Since the equations of motion formulated using the method presented above decouple the rota-
tional and translational motion of the spacecraft, any adjustments to the attitude of the spacecraft
may increase the error between the estimated relative positions of the two spacecraft and the actual
LRI measurements. This may contribute to the intersatellite ranging measurement errors, and atti-
tude knowledge errors, which would ultimately have the potential to decrease the accuracy of the
spherical harmonic coefficients and functions calculated by gravity recovery missions.

Dual Quaternion Formulation

A dual quaternion may be comprised of both quaternions and vector quaternions, where a vector
quaternion is a quaternion with a scalar part zero, and a vector part nonzero. In this research a dual
quaternion is denoted with .̂ over a variable, such as q̂ = qr+✏qd where qr is referred to the real part
of q̂, and qd is referred to as the dual part of q̂. Here, ✏ is the dual unit and is defined to be nilpotent
(✏2 = 0 and ✏ 6= 0), which is analogous to a complex number, where the complex part is denoted
canonically by i or j.9 The unit dual quaternion is defined as,7 1̂ =

⇥
1, 0̄T

⇤T
+ ✏

⇥
0, 0̄T

⇤T and the
zero quaternion is defined as, 0̂ =

⇥
0, 0̄T

⇤T
+ ✏

⇥
0, 0̄T

⇤T . Additionally, dual quaternion algebra is
comprised of a series of operators which are presented in Table 1. In this table it is import to note
that ar, ad, br, and bd are all quaternions, and therefore any operation depicted by these variables
are the canonical quaternion operations. For example, arbr is quaternion multiplication, a⇤r is the
quaternion conjugate, etc..

Table 1. Dual Quaternion Operators

To formulate the equations of motion of the Desired Frame, Filipe and Tsioas13 explain that the
six degree-of-freedom rigid body dynamics formulated with dual quaternions takes the form of:

˙̂!D
D/I =

⇣�
MD

��1
h
f̂D �

⇣
!̂D
D/I ⇥

⇣
MD

⇣
!̂D
D/I

⌘s⌘⌘i⌘s
(4)
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where, MD is the dual inertia matrix of the target spacecraft, f̂D is the dual force referenced from
the spacecraft’s center-of-mass, and !̂D

D/I is the dual velocity of the Desired Frame relative to the
Inertial Frame, expressed in the Desired Frame. Here, MD will take the form of:

MD =

2

664

1 01⇥3 0 01⇥3

03⇥1 mDI3⇥3 03⇥1 03⇥3

0 01⇥3 1 01⇥3

03⇥1 03⇥3 03⇥1 ID

3

775 (5)

where I3⇥3 denotes a 3⇥ 3 identity matrix, and mD is the mass of the target spacecraft. Then, the
pose of the Desired Frame, q̂D/I , is found by the dual quaternion differential equation:13

˙̂qD/I =
1

2
q̂D/I !̂

D
D/I (6)

which allows us to solve for the position of the Desired Frame with respect to the Inertial Frame,
r̄DD/I , by,

q̂D/I = qD/I + ✏
1

2
qD/Ir

D
D/I

since, rDD/I =


0,
⇣
r̄DD/I

⌘T
�T

,

rDD/I = 2q�1
D/IqD/Id

where, qD/Id is the dual part of q̂D/I . The dual force will take the form of, f̂D = fD + ✏⌧D

where fD and ⌧D denote the total force and total torque, respectively. The dual force may also be
expressed as a summation of the gravitational effects on the satellite,8

f̂D = f̂D
g + f̂D

J2 + f̂D
rg

where, f̂D
g is the gravitational force, f̂D

J2
is the J2 perturbation force, and f̂D

rg is the gravity gradient
torque. The gravitational force will then take the form of f̂D

g = MD ? âDg where,

âDg =

2

4
0
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3 r̄DD/I

3

5+ ✏


0
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�

Then, the perturbation force is expressed as f̂D
J2

= MD ? âDJ2where,

âDg =
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q̂⇤D/I

✓
0
āIJ2

�
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
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�◆s

q̂D/I
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Lastly, the gravity gradient torque may be written as,

f̂D
rg =

3µr̂DD/I���r̂DD/I

���
5 ⇥MD

⇣
r̂DD/I

⌘s

The relative pose between the Body-Fixed Frame and Desired Frame formulated with dual quater-
nions, q̂B/D, is similar to Eq. (6) and is formulated as,

˙̂qB/D =
1

2
q̂B/D!̂

B
B/D (7)
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where !̂B
B/D is the relative dual velocity between the target and chaser spacecraft. Yang and Stoll

derives the six degree-of-freedom coupled dual quaternion relative dynamics of the Body-Fixed
Frame relative to the Desired Frame as,8

˙̂!B
B/D =

⇣�
MB

��1
h
f̂B �

⇣
!̂B
B/D + !̂B

D/I

⌘
⇥MB

⇣⇣
!̂B
B/D

⌘s
+
⇣
!̂B
D/I

⌘s⌘

�MB ?
⇣
q̂⇤B/D

˙̂!D
D/I q̂B/D

⌘
�MB

⇣
!̂B
D/I ⇥ !̂B

B/D

⌘si⌘s
(8)

where, !̂B
D/I is the dual velocity of the Desired Frame with respect to the Inertial Frame expressed

in the Body-Fixed Frame, and MB is the same as the dual inertia matrix in Eq. (5) with elements
expressed in the Body-Fixed Frame for the chaser spacecraft. Lastly, we find !̂B

D/I by,

!̂B
D/I = q̂⇤B/D!̂

D
D/I q̂B/D

Additionally, as stated by Yang and Stoll8 q̂B/D = q̂⇤D/I q̂B/I , therefore we are able to solve for the
pose of the Body-Frame with respect to the inertial frame, q̂B/I , with the equation,

q̂B/I = q̂D/I q̂B/D

The equations of the motion for the relative dynamics of the Test Mass Frame relative to the Body-
Fixed Frame are the same as Eq. (7) and Eq. (8) but with every variable appropriately resolved
in either the Test Mass Frame or the Body Fixed Frame. Additionally, the summation of dual
forces on the test mass, f̂TM , consists of the same terms as the dual force on the spacecraft, with
the inclusion of the additional term f̂TM

coupled, which models the dual forces that result from the
spacecraft’s changing gravitational and magnetic field which act on the test mass,14

f̂TM = f̂TM
g + f̂TM

J2 + f̂TM
rg + f̂TM

coupled

This coupled dual force term is found by combining the force, F̄S , and moment, M̄S , that result from
multiplying the relative position and attitude of the test mass, r̄TM/B and #̄TM/B , respectively, to a
stiffness matrix, Ks 2 R6⇥6, which is described in Vidano et al.,14


F̄S

M̄S

�
= KS

"
r̄BTM/B

#̄TM/B

#

f̂TM
coupled =


0
F̄S

�
+ ✏


0

M̄S

�

where
rBTM/B = 2qTM/Bd

q�1
TM/B

since,
q̂TM/B = qTM/B + ✏

1

2
rBTM/BqTM/B

and, rBTM/B =


0,
⇣
r̄BTM/B

⌘T
�T

, where, qTM/Bd
is the dual part of q̂TM/B . To find #̄TM/B ,

we consider the linearized quaternion rotational matrix, which is equal to a small change in the
rotational matrix, [�T ]BL, multiplied to its previous iteration, [T ]BL

i�1,15

[T ]BL = [�T ]BL [T ]BL
i�1
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Here, [�T ]BL is equivalent to the small angle approximation of an î, ĵ, k̂ rotational matrix using
Euler Angles, where  is roll, ✓ is pitch, and � is yaw angles, respectively.

[�T ]BL ⇡

2

4
1 �� ��✓

��� 1 � 
�✓ �� 1

3

5

Then, [T ]BL
i�1 is given by,

[T ]BL
i�1 =

2

4
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3

5 =

2

4
1 0 0
0 1 0
0 0 1

3

5

Therefore, the linearization of [T ]BL follows as,

[T ]BL =

2

4
1 �� ��✓

��� 1 � 
�✓ �� 1

3

5

Additionally since we know the form [T ]BL takes with quaternions,

[T ]BL =

2

4
q20 + q21 � q22 � q23 2 (q1q2 + q0q3) 2 (q1q3 � q0q2)
2 (q1q2 � q0q3) q20 � q21 + q22 � q23 2 (q2q3 + q0q1)
2 (q1q3 + q0q2) 2 (q2q3 � q0q1) q20 � q21 � q22 + q23

3

5

we can state that,

#̄TM/B =

2

4
� 
�✓
��

3

5 = 2

2

4
q2q3 + q0q1
q1q3 + q0q2
q1q2 + q0q3

3

5

The above provides us with a full formulation for the coupled relative motion of two Earth orbiting
spacecraft formulated with dual quaternions, with the spacecraft - test mass coupling included.

SIMULATIONS AND DISCUSSION

In this section the comparison between the traditional uncoupled equations of motion and the
dual quaternion equations of motion for modeling the relative dynamics of the two spacecraft is
presented. The translational positions of both the target spacecraft and the chaser spacecraft are of
the most interest for this research, since these are the states that are affected when the coupling of
the equations of motion of the spacecraft changes. To make this comparison, the ECIF positions of
both GRACE C and GRACE D spacecraft from the Level-1B GRACE-FO data products are utilized.
The data from the GRACE C spacecraft was utilized for the Desired Frame, and the data from the
GRACE D spacecraft was utilized for the Body-Fixed Frame. This allowed for a comparison of
the accuracy of the dual quaternion modeling approach verses the traditional uncoupled modeling
approach using Eq. (9) and Eq. (10),

⇣
rID/I

⌘

Error
=

���
⇣
r̄ID/I

⌘

GRACE C
�
⇣
r̄ID/I

⌘

UC

����
����
⇣
r̄ID/I

⌘

GRACE C
�
⇣
r̄ID/I

⌘

DQ

���� (9)
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⇣
rIB/I

⌘

Error
=

���
⇣
r̄IB/I

⌘

GRACE D
�
⇣
r̄IB/I

⌘

UC

����
����
⇣
r̄IB/I

⌘

GRACE D
�
⇣
r̄IB/I

⌘

DQ

���� (10)

where (.)GRACE C denotes that the respective variable is a data product of the GRACE C spacecraft,
(.)GRACE D denotes that the respective variable is a data product of the GRACE D spacecraft, and
(.)DQ and (.)UC denote that corresponding vector was obtained using either the dual quaternion
(DQ) simulation, or the traditional uncoupled (UC) simulation. The initial conditions for both the
dual quaternion and uncoupled simulations were obtained by using the GRACE C and GRACE D
data products.

Figure 3. Dual Quaternion Simulation Results

Figure 3 presents the results of Eq. (9) and Eq. (10). From this figure it is clear that
⇣
rID/I

⌘

Error
and

⇣
rIB/I

⌘

Error
continually increase with time, which means that the error between the dual quaternion

modeling approach and the GRACE-FO data products is less than the error between the traditional
uncoupled modeling approach and the data products. As expected, this proves that the dual quater-
nion modeling approach is able to more accurately model the dynamics of both spacecraft. From
this figure we can also see that for the Body-Fixed Frame, the error between the two modeling
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Figure 4. Traditional Simulation Results

approaches reached 1 meter just after 15 hours, which yields an acceleration difference of approxi-
mately ⇠ 340.2 pm/s2. This is significant because it proves that the dual quaternion approach is able
to directly improve estimations of the spacecraft’s accelerations on the order of hundreds of picome-
ters per second per second, which may be significant for future gravity recovery missions that seek
to improve the spherical harmonic coefficients and functions beyond the current long-term gravity
model spherical harmonic degree 150 and temporally varying gravity model spherical harmonic
degree 70. Additionally, these simulations don’t include external torques beyond gravity gradient
torque. During a real mission more external torques would act on the spacecraft, which means that
the difference in error will only increase between the dual quaternion model and the uncoupled
model. Therefore, an increase in accuracy on the order of hundreds of picometers per second per
second is the minimum increase in estimations of the spacecraft’s acceleration that would directly
result from modeling the relative motion of a gravity recovery spacecraft using dual quaternions.

These results also imply direct improvements to the estimated error between the relative positions
between the two spacecraft and the actual LRI measurements as well as improvements to orbit deter-
mination processes. These improvements would reduce intersatellite ranging measurement errors
and attitude knowledge errors, thus ultimately improving the accuracy of the spherical harmonic
coefficients and functions calculated by gravity recovery missions.

CONCLUSION

This research successfully modeled the dynamics of formation flying spacecraft used for gravity
recovery missions using both dual quaternions, and the traditional modeling method of decoupling
the translational and rotational dynamics. Additionally, by utilizing data products from the Gravity
Recovery and Climate Experiment Follow-On mission, it was proven that the estimations of a for-
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Figure 5. Translational Position Error

mation flying spacecraft’s acceleration will be improved by a minimum of hundreds of picometers
per second per second by utilizing the relative dual quaternion modeling approach presented here.
Additionally, these results also imply direct improvements to the orbit determination process and
relative position estimation errors.

Future research will investigate controllers designed from dual quaternions, which will be com-
pared against traditional controllers designed by decoupling the translational and rotational dynam-
ics of the spacecraft and then designing separate controllers for the rotational and translational
subsystems.4–6 Since modeling the spacecraft dynamics using dual quaternions does not require
decoupling the rotational and translational dynamics of the spacecraft, it is expected that controllers
designed by this method will result in an increase in performance and/or accuracy over the tra-
ditional controller designs, which would further improve the accuracy of the spherical harmonic
coefficients and functions calculated by future gravity recovery missions.
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