
Annual ADFSL Conference on Digital Forensics, Security and Law 2012
Proceedings

May 30th, 1:45 PM

A Fuzzy Hashing Approach Based on Random Sequences and A Fuzzy Hashing Approach Based on Random Sequences and

Hamming Distance Hamming Distance

Frank Breitinger
Center for Advanced Security Research Darmstadt (CASED) and Department of Computer Science,
Hochschule Darmstadt, Germany, frank.breitinger@cased.de

Harald Baier
Center for Advanced Security Research Darmstadt (CASED) and Department of Computer Science,
Hochschule Darmstadt, Germany, harald.baier@cased.de

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Scholarly Commons Citation Scholarly Commons Citation
Breitinger, Frank and Baier, Harald, "A Fuzzy Hashing Approach Based on Random Sequences and
Hamming Distance" (2012). Annual ADFSL Conference on Digital Forensics, Security and Law. 15.
https://commons.erau.edu/adfsl/2012/wednesday/15

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2012
https://commons.erau.edu/adfsl/2012
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2012/wednesday/15?utm_source=commons.erau.edu%2Fadfsl%2F2012%2Fwednesday%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

ADFSL Conference on Digital Forensics, Security and Law, 2012

89

A FUZZY HASHING APPROACH BASED ON RANDOM

SEQUENCES AND HAMMING DISTANCE

Frank Breitinger & Harald Baier

Center for Advanced Security Research Darmstadt (CASED) and

Department of Computer Science, Hochschule Darmstadt,

Mornewegstr. 32, D – 64293 Darmstadt, Germany,

Mail: {frank.breitinger, harald.baier}@cased.de

ABSTRACT

Hash functions are well-known methods in computer science to map arbitrary large input to bit strings

of a fixed length that serve as unique input identifier/fingerprints. A key property of cryptographic

hash functions is that even if only one bit of the input is changed the output behaves pseudo randomly

and therefore similar files cannot be identified. However, in the area of computer forensics it is also

necessary to find similar files (e.g. different versions of a file), wherefore we need a similarity

preserving hash function also called fuzzy hash function.

In this paper we present a new approach for fuzzy hashing called bbHash. It is based on the idea to

‘rebuild’ an input as good as possible using a fixed set of randomly chosen byte sequences called

building blocks of byte length l (e.g. l= 128). The proceeding is as follows: slide through the input

byte-by-byte, read out the current input byte sequence of length l , and compute the Hamming

distances of all building blocks against the current input byte sequence. Each building block with

Hamming distance smaller than a certain threshold contributes the file’s bbHash. We discuss (dis-

)advantages of our bbHash to further fuzzy hash approaches. A key property of bbHash is that it is the

first fuzzy hashing approach based on a comparison to external data structures.

Keywords: Fuzzy hashing, similarity preserving hash function, similarity digests, Hamming distance,

computer forensics.

1. INTRODUCTION

The distribution and usage of electronic devices increased over the recent years. Traditional books,

photos, letters and LPs became ebooks, digital photos, email and mp3. This transformation also

influences the capacity of todays storage media ([Walter, 2005]) that changed from a few megabyte to

terabytes. Users are able to archive all their information on one simple hard disk instead of several

cardboard boxes on the garret. This convenience for consumers complicates computer forensic

investigations (e.g. by the Federal Bureau of Investigation), because the investigator has to cope with

an information overload: A search for relevant files resembles no longer to find a needle in a haystack,

but more a needle in a hay-hill.

The crucial task to solve this data overcharge is to distinguish relevant from non-relevant information.

In most of the cases an automated preprocessing is used, which tries to filter out some irrelevant data

and reduces the amount of data an investigator has to look at by hand. As of today the best practice of

this preprocessing is quite simple: Hash each file of the evidence storage medium, compare the

resulting hash value (also called fingerprint or signature) against a given set of fingerprints, and put it

in one of the three categories: known-to-be-good, known-to-be-bad, and unknown files. For instance,

unmodified files of a common operating system (e.g. Windows, Linux) or binaries of a wide-spread

application like a browser are said to be known-to-be-good and need not be inspected within an

investigation. The most common set/database of such non-relevant files is the Reference Data Set

(RDS) within the National Software Reference Library (NSRL, [NIST, 2011]) maintained by the US

ADFSL Conference on Digital Forensics, Security and Law, 2012

90

National Institute of Standards and Technology (NIST)
1
.

Normally cryptographic hash functions are used for this purpose, which have one key property:

Regardless how many bits changes between two inputs (e.g. 1 bit or 100 bits), the output behaves

pseudo randomly. However, in the area of computer forensics it is also convenient to find similar files

(e.g. different versions of a file), wherefore we need a similarity preserving hash function also called

fuzzy hash function.

It is important to understand that in contrast to cryptographic hash functions, there is currently no

sharp understanding of the defining properties of a fuzzy hash function. We will address this topic in

Sec. 2, but we emphasize that the output of a fuzzy hash function need not be of fixed length.

In general we consider two different levels for generating similarity hashes. On the one hand there is

the byte level which works independently of the file type and is very fast as we need not interpret the

input. On the other hand there is the semantic level which tries to interpret a file and is mostly used for

multimedia content, i.e. images, videos, audio. In this paper we only consider the first class. As

explained in Sec. 2 all existing approaches from the first class come with drawbacks with respect to

security and efficiency, respectively.

In this paper we present a new fuzzy hashing technique that is based on the idea of data deduplication

(e.g. [Maddodi et al., 2010, Sec. II]) and eigenfaces (e.g. [Turk and Pentland, 1991, Sec. 2]).

Deduplication is a backup scheme for saving files efficiently. Instead of saving files as a whole, it

makes use of small pieces. If two files share a common piece, it is only saved once, but referenced for

both files. Eigenfaces are a similar approach. They are used in biometrics for face recognition.

Roughly speaking, if we have a set of N eigenfaces, then any face can be represented by a

combination of these standard faces. Eigenfaces resemble to the well-known method in linear algebra

to represent each vector of a vector space by a linear combination of the basis vectors.

Our approach uses a fixed set of random byte sequences called building blocks. In this paper we

denote the number of building blocks by N . The length in bytes of a building block is denoted by l .

It shall be ‘short’ compared to the file size (e.g. l= 128). To find the optimal representation of a

given file by the set of building blocks, we slide through the input file byte-by-byte, read out the

current input byte sequence of length l , and compute the Hamming distances of all building blocks

against the current input byte sequence. If the building block with the smallest Hamming distance is

smaller than a certain threshold, too, its index contributes to the file’s bbHash.

Besides similarity of files we are also able to match back parts of files to its origin, which could arise

due to file fragmentation and deletion.

1.1 Contribution and Organization of this Paper

Similarity preserving hash functions on the byte level are a rather new area in computer forensics and

get more and more important due to the increasing amount of data. Currently the most popular

approach is implemented in the software package ssdeep ([Kornblum, 2006]). However, ssdeep can be

exploited very easily ([Baier and Breitinger, 2011]). Our approach bbHash is more robust against an

active adversary. With respect to the length of the hash value our approach is superior to sdhash

([Roussev, 2009, Roussev, 2010]), which generates hash values of about 2.6% to 3.3% of the input,

while our bbHash similarity digest only comprises 0.5% of the input size. Additionally, sdhash has a

coverage of only about 80% of the input, while our approach is designed to cover the whole input.

Additionally, in contrast to ssdeep and sdhash, our similarity digest computation is based on a

comparison to external data structures, the building blocks. The building blocks are randomly chosen

1. NIST points out that the term known-to-be-good depends on national laws. Therefore, NIST calls files within the RDS
non-relevant. However, the RDS does not contain any illicit data.

ADFSL Conference on Digital Forensics, Security and Law, 2012

91

static byte blocks being independent of the processed input. Although this implies a computational

drawback compared to other fuzzy hashing approaches, we consider this as a security benefit as

bbHash stronger withstands active anti-blacklisting.

The rest of the paper is organized as follows: In the subsequent Sec. 1.2 we introduce the notation used

in this paper. Then in Sec. 2 we introduce the related work. The core of this paper is given in Sec. 3

where we present our algorithm bbHash. We give a first analysis of our implementation in Sec. 4. Sec.

5 concludes our paper and gives an overview of future work.

1.2 Notation and Terms used in this Paper

In this paper, we make use of the following notation and terms:

 A building block is a randomly chosen byte sequence to rebuild files.

 N denotes the number of different building blocks used in our approach. We make use

of the default value N = 16 .

 For 0≤ k≤ N we refer to the k -th building block as bbk .

 l denotes the length of a building block in bytes. Throughout this paper we assume a

default value of l= 128 .

 l bit denotes the length of a building block in bits. In this paper we assume a default

value of lbit= 8⋅ 128= 1024 .

 L f denotes the length of an input (file) in bytes.

 bbHash denotes our new proposed fuzzy hash function on base of building blocks.

 BS denotes a byte string of length l : BS = B0 B1 B2... B l− 1 .

 BS i denotes a byte string of length l starting at offset byte i within the input file:
BS i= Bi Bi+ 1 Bi+ 2 ... B i+ l− 1 .

 t denotes the threshold value. t is an integer with 0≤ t≤ lbit .

2. FOUNDATIONS AND RELATED WORK

According to [Menezes et al., 1997] hash functions have two basic properties, compression and ease of

computation. In this case compression means that regardless the length of the input, the output has a

fixed length. This is why the term Fuzzy Hashing might be a little bit confusing and similarity digest is

more appropriate – most of the similarity preserving algorithms do not output a fixed sized hash value.

Despite this fact we call a variable-sized compression function hf a fuzzy hash function if two similar

inputs yield similar outputs.

The first fuzzy hashing approach on the byte level was proposed by Kornblum in 2006 [Kornblum,

2006], which is called context-triggered piecewise hashing, abbreviated as CTPH. Kornblum’s CTPH

is based on a spam detection algorithm of Andrew Tridgell [Tridgell, 2002]. The main idea is to

compute cryptographic hashes not over the whole file, but over parts of the file, which are called

chunks. The end of each chunk is determined by a pseudo-random function that is based on a current

context of 7 bytes. In recent years, Kornblum’s approach was examined carefully and several papers

had been published.

[Chen and Wang, 2008, Roussev et al., 2007, Seo et al., 2009] find ways to improve the existing

implementation called ssdeep with respect to both efficiency and security. On the other side [Baier and

Breitinger, 2011, Breitinger, 2011] show attacks against CTPH with respect to blacklisting and

whitelisting and also some improvements for the pseudo random function.

[Roussev, 2009, Roussev, 2010] present a similarity digest hash function sdhash, where the idea is “to

select multiple characteristic (invariant) features from the data object and compare them with features

selected from other objects”. He uses multiple unique 64-byte features selected on the basis of their

entropy. In other words files are similar if the have the same features/byte-sequences. [Sadowski and

ADFSL Conference on Digital Forensics, Security and Law, 2012

92

Levin, 2007] explains a tool called Simhash which is another approach for fuzzy hashing “based on

counting the occurrences of certain binary strings within a file”. As we denote a similarity preserving

hash function a fuzzy hash function, we rate ssdeep, sdhash and Simhash as possible implementations

for fuzzy hashing.

[Roussev et al., 2006] comes with a tool called md5bloom where “the goal is to pick from a set of

forensic images the one(s) that are most like (or perhaps most unlike) a particular target”. In addition,

it can be used for object versioning detection. The idea is to hash each hard disk block and insert the

fingerprints into a Bloom filter. Hard disks are similar if their Bloom filters are similar.

3. A NEW FUZZY HASHING SCHEME BASED ON BUILDING BLOCKS

In this section, we explain our fuzzy hashing approach bbHash. First, in Sec. 3.1 we describe the

generation of the building blocks followed by the algorithm details in Sec. 3.2. Finally, Sec. 3.3

describes how to compare two bbHash similarity digests.

bbHash aims at the following paradigm:

1. Full coverage: Every byte of the input file is expected to be within at least one offset

of the input file, for which a building block is triggered to contribute to the bbHash.

This behavior is very common for hash functions: each byte influences the hash value.

2. Variable-sized length: The length of a file’s bbHash is proportional to the length of the

original file. This is in contrast to classical hash functions. However, it ensures to be

able to store sufficiently information about the input to have good similarity

preserving properties of bbHash.

3.1 Building Blocks

We first turn to the set of building blocks. Their number is denoted by N . In our current

implementation we decided to set the default value to N = 16 . Then we can index each building

block by a unique hex digit 0,1 ,2... f (half a byte), therefore we have the building blocks
bb0 ,bb1 ,... bb16− 1 . This index is later used within the bbHash to uniquely reference a certain

building block.

The length of a building block in bytes is referred to by l and influences the following two aspects:

1. A growing l decreases the speed performance as the Hamming distance is computed

at each offset i for l bytes.

2. An increased l shortens the length of the hash value as there should be a trigger

sequence every l bytes approximately (depending on the threshold t).

Due to run time efficiency reasons we decided to use a ‘short’ building block size compared to the file

size. Currently we make use of l= 128 .

The generation of the building blocks is given in Fig. 1. We use the rand() function to fill an array of

unsigned integers. Hence, all building blocks are stored in one array whereby the boundaries can be

determined by using their size. As rand() uses the same seed each time, it is a deterministic generation

process. Using a fixed set of building blocks is comparable to the use of a fixed initialization vector

(IV) of well-known hash functions like SHA-1. A sample building block is given in Fig. 2.

ADFSL Conference on Digital Forensics, Security and Law, 2012

93

3.2 Our Algorithm bbHash

In this section we give a detailed description of our fuzzy hash function bbHash. It works as follows:

To find the optimal representation of a given file by the set of building blocks, we slide through the

input file byte-by-byte, read out the current input byte sequence of length l , and compute the

Hamming distances of all building blocks against the current input byte sequence. If the building block

with the smallest Hamming distance is smaller than a certain threshold, too, its index contributes to the

file’s bbHash.

We write L f for the length of the input file in bytes. The pseudocode of our algorithm bbHash is

given in Algorithm 1. It proceeds as follows for each offset i within the input file, 0≤ i≤ L f − 1− l :

If BS i denotes the byte sequence of length l starting at the i -th byte of the input, then the algorithm

computes the N Hamming distances of BS i to all N building blocks: hd k ,i= HD(bbk , BS i) is

the Hamming distance of the two parameters bbk and BS i , 0≤ k< N . As the Hamming distance is

the number of different bits, we have 0≤ hd k , i≤ 8⋅ l . In Sec. 3.1 we defined the default length of a

building block in bytes to be 128, i.e. we assume l= 128 . As an example HD (bb2, BS100) returns

the Hamming distance of the building block bb
2 and the bytes B

100 to B
227 of the input. In other

words the algorithm slides through the input, byte-by-byte, and computes the Hamming distance at

each offset for all N building blocks like it is given in Fig. 3.

The bbHash value is formed by the ordered indicies of triggered building blocks. In order to

trigger a building block to contribute to the bbHash, it has to fulfill two further conditions:

1. For a given i (fixed offset), we only make use of the closest building block, i.e. we

are looking for the index k with the smallest Hamming distance hd k , i .

Fig. 2: Building block with index 0

Fig. 1. Generation of the building blocks

ADFSL Conference on Digital Forensics, Security and Law, 2012

94

2. This smallest hd k , i also needs to be smaller than a certain threshold t .

Each
BS i that fulfills both conditions will be called a trigger sequence. To create the final bbHash

hash value, we concatenate all indicies k of all triggered building blocks (in case we have two

triggered building blocks for
BS i , only the smallest index k is chosen).

ADFSL Conference on Digital Forensics, Security and Law, 2012

95

In Sec. 3.1 we’ve already motivated why the choices l= 128 and N = 16 are appropriate for our

approach. In what follows we explain how to choose a fitting threshold t . Our first paradigm in the

introduction to Sec. 3 states full coverage, i.e. every byte of the input file is expected to be within at

least one offset of the input file, for which a building block is triggered to contribute to the bbHash.

Thus we expect to trigger every l -th byte, i.e. every 128-th byte. In order to have some overlap, we

decrease the statistical expectation to trigger at every 100-th byte.

For our theoretic considerations we assume a uniform probability distribution on the input file blocks

of byte length l . Let d be a non-negative integer (the distance) and P (hd k ,i= d) denote the

probability, that the Hamming distance of our building block k at offset i of the input file is equal to
d .

1. We first consider the case d= 0 , i.e. the building block and the input block coincide.

Then we simply have P (hd k ,i= 0)= 0.5lbit= 0.51024

.

2. For d≥ 0 we have (
l

bit

d) possibilities to find an input file block of Hamming distance

d to bbk . Thus P (hd k ,i= d)=(lbit

d)⋅0.5
lbit=(1024

d)⋅ 0.5
1024

.

3. Finally, the probability to receive a Hamming distance smaller than t for bbk is

The binomial coefficients in Eq. (1) are large integers and we make use of the computer

algebra system LiDIA
2
 to evaluate Eq. (1) (LiDIA is a C++-library maintained by the

Technical University of Darmstadt).

2. http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/ ; visited 05.09.2011

Fig. 3: Workflow of the Algorithm

http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/

ADFSL Conference on Digital Forensics, Security and Law, 2012

96

Let p
t denote the probability that at least one of the N buildings blocks satisfies Eq. (1), i.e. we

trigger our input file and find a contribution to our bbHash. This may easily computed by the opposite

probability that none of the building blocks triggers, that is pt= 1− (1− p1)
N

. As explained above

we aim at pt= 0.01 . Thus we have to find a threshold t with

Now we use our LiDIA-computations of Eq. (1) to identify a threshold of t= 461 . An example hash

value of a 68,650 byte (≈ 70 kbyte) JPG image is given in Fig. 4. Overall the hash value consists of

693 digits which is 346.5 bytes and therefore approximately 0.5% of the input.

3.3 Hash Value Comparison

This paper focuses on the hash value generation and not on its comparison. Currently there are two

approaches from existing fuzzy hash functions which could be also usable for bbHash:

 Roussev uses Bloom filters where the similarity can be identified by generating the

Hamming distance.

 Kornblum uses the weighted edit distance to compare the similarity of two hash

values.

Both approaches may easily be adopted to be used for bbHash.

4. ANALYSIS OF BBHASH

In this section we analyze different aspects of our approach. The length of the hash values and how

can it be influenced by different parameters is presented in Sec. 4.1. Our current choices yield a

bbHash of length 0.5% of the input size. This is an improvement by a factor 6.5 compared to sdhash,

where for practical data the similarity digest comprises 3.3% of the input size. Next, in Sec. 4.2 we

discuss the applicability of bbHash depending on the file size of the input. An important topic in

Fig. 4: bbHash of a 68,650 byte JPG-Image

ADFSL Conference on Digital Forensics, Security and Law, 2012

97

computer forensics is the identification of segments of files, which is addressed in Sec. 4.3. The run

time performance is shown in Sec. 4.4. At least we have a look at attacks and compare our approach

against existing ones. We show that bbHash is more robust against an active adversary compared to

ssdeep.

4.1 Hash Value Length

The hash value length depends on three different properties: the file size L f , the threshold t and the

building block length l . If we expect that both other parameters are fixed, then

 a larger L f will increase the hash value length as the input is supposed to have more

trigger sequences.

 a higher t will increase the hash value length as more BS i will have a Hamming

distance lower than the threshold t .

 a large l will decrease the performance and the hash value length
3
.

In order to have full coverage our aim is to have a final hash value where every input byte influences

the final hash value. Due to performance reasons we’ve decided for a building block length of
l= 128 byte. As we set the threshold to t= 461 , the final hash value length nearly results in
L f /100 digits whereby every 100 digit has half a byte length. Thus the final hash value is

approximately 0.5% of the original file size.

Compared to the existing approach sdhash where “the space requirements for the generated similarity

digests do not exceed 2.6% of the source data” [Roussev, 2010], it is quite short. However, for real

data sdhash generates similarity digests of 3.3% of the input size.

Besides these two main aspects the file type may also influence the hash value length. We expect that

random byte strings will have more trigger sequences. Therefore we think that compressed file formats

like ZIP, JPG or PDF have very random byte strings and thus yield a bbHash of 0.5% of the input size.

This relation may differ significantly when processing TXT, BMP or DOC formats as they are less

random.

4.2 Applicability of bbHash Depending on the File Size

Our first prototype is very restricted in terms of the input file size and will not work reliable for small

files. Files smaller than the building blocks’ length l cannot have a trigger sequence and cannot be

hashed. To receive some trigger sequences the input file should be at least 5000 bytes, which results in
5000− l− 1 possible trigger sequences. On the other side large files result in very long hashes

wherefore we recommend to process files smaller than a couple of megabytes.

By changing the threshold t , it is possible to influence the hash value length. We envisage to

customize this parameter depending on the input size which will be a future topic.

4.3 Detection of Segments of Files

A file segment is a part of a file, which could be the result of fragmentation and deletion. For instance,

if a fragmented file is deleted but not overwritten, then we can find a byte sequence, but do not know

anything about the original file. Our approach allows to compare hashes of those pieces against hash

values of complete files. Depending on the fragment size, ssdeep is not able to detect fragments

(roughly ssdeep may only fragments being at least about half the size of the original file size).

Fig. 5 simulates the aforementioned scenario. We first copy a middle segment of 20000 byte from the

3. Remember, we would like to have a triggering in approximately every l-th byte and therefore we have to adjust t.

ADFSL Conference on Digital Forensics, Security and Law, 2012

98

JPG image from Fig. 4 using dd. We then compute the hash value of this segment. If we compare this

hash value against Fig. 4
4
 (starting line 4), we recognize that they are completely identical. Thus we

can identify short segments as a part of its origin.

4.4 Run Time Performance

The run time performance is the main drawback of bbHash which is quite slow compared to other

approaches. ssdeep needs about 0.15 seconds for processing a 10MiB file where bbHash needs about

117 seconds for the same file. This is due to the use of building blocks as external comparison data

structures and the computation of their Hamming distance to the currently processed input byte

sequence. Recall that at each position i we have to build the Hamming distance of 16 building blocks

each with a length of 1024 bits. To receive the Hamming distance we XOR both sequences and count

the amount of remaining ones (bitcount(bbk ⊕ BS i)). To speed up the counting process, we

precomputed the amount of ones for all sequences from 0 to 2
16
− 1 Bits. Thus we can lookup each

16-Bit-sequence with a complexity of O (1) . But since we have N⋅
lbit

16
= 16⋅

1024

16
= 1024 lookups

at each processed byte of the input it is quite slow.

Although the processing in its first implementation is quite slow which results from a straight forward

programming, this problem is often discussed in literature and there are several issues for

improvements. For instance [Amir et al., 2000] states that their algorithm finds all locations where the

pattern has at most t errors in time O (L f√t log t) . Compared against our algorithm which needs

time O (L f⋅ l) that’s a great improvement. As we make use of N building blocks, we have to

multiply both run time estimations by N . For a next version we will focus on improving the run time

performance.

4.5 Attacks

This section is focusing on attacks with respect to both forensic issues blacklisting and whitelisting.

From an attacker’s point of view anti-blacklisting/anti-whitelisting can be used to hide information

and increase the amount of work for investigators.

Anti-blacklisting means that an active adversary manipulates a file in a way that fuzzy hashing will not

identify the files as similar – the hash values are too different. We rate an attack as successful if a

human observer cannot see a change between the original and manipulated version (the files

4. We rearranged the output by hand to make an identification easier.

Fig. 5: Hash value of a segment. The bbHash of the whole file is listed in Fig. 4.

ADFSL Conference on Digital Forensics, Security and Law, 2012

99

look/work as expected). If a file was manipulated successfully then it would not be identified as a

known- to-be-bad file and will be categorized as unknown file.

The most obvious idea is to change the triggering whereby the scope of each change depends on the

Hamming distance. For instance, at position i the Hamming distance is 450, then an active adversary

has two possibilities:

1. He needs to change at least 11 bits in this segment to overcome the threshold t and kick out

this trigger sequence from the final hash.

2. He needs to manipulate it in a way that another bb has a closer Hamming distance.

In a worst case each building block has a Hamming distance of 460 and a ‘one-bit- change’ is enough

to manipulate the triggering. In this case an active adversary approximately needs to change L f /100

bits, one bit for each position i . Actually a lot of 100 more changes needs to be done as there are also

positions where the Hamming distance is much lower than 460. This is an improvement compared to

sdHash where it is enough to change exactly one bit in every identified feature. Compared to

Kornblum’s ssdeep this is also a great improvement as [Baier and Breitinger, 2011] states that in most

of the cases 10 changes are enough to receive a non-match.

Our improvement is mainly due to the fact that in contrast to ssdeep and sdhash we do not rely on

internal triggering, but on external. However, the use of building blocks results in the bad run time

performance as discussed in Sec. 4.4.

Anti-whitelisting means that an active adversary uses a hash value from a whitelist (hashes of known-

to-be-good files) and manipulates a file (normally a known-to-be-bad file) that its hash value will be

similar to one on the whitelist. Again we rate an attack as successful if a human observer couldn’t see

a change between the original and manipulated version (the files look/work as expected).

In general this approach is not preimage-resistance as it is possible to create files for a given signature:

generate valid trigger sequences for each building block and add some zero-strings in between. The

manipulation of a specific file to a given hash value should also be possible but will result in an

useless file. In a first step an active adversary has to remove all existing trigger sequences (result in

approximately L f /100). Second, he needs to 100 imitate the triggering behavior of the white-listed

file which will cause a lot of more changes.

5. CONCLUSION & FUTURE WORK

We have discussed in the paper at hand a new approach for fuzzy hashing. Our main contribution is a

tool called bbHash that is more robust against anti- blacklisting than ssdeep and sdHash due to the use

of external building blocks. The final signature has about 0.5% of the original file size, is not fixed and

can be adjusted by several parameters. This allows us to compare very small parts of a file against its

origin which could arise due to file fragmentation and deletion.

In general there are two next steps. On the one side the run time performance needs to be improved

wherefore we will use existing approaches (e.g. given in [Amir et al., 2000]). On the other side we

have to do a security analysis for our approach to give more details about possible attacks. Knowing

attacks also allows further improvements of bbHash.

6. ACKNOWLEDGEMENTS

This work was partly supported by the German Federal Ministry of Education and Research (project

OpenC3S) and the EU (integrated project FIDELITY, grant number 284862).

ADFSL Conference on Digital Forensics, Security and Law, 2012

100

7. REFERENCES

[Amir et al., 2000] Amir, A., Lewenstein, M., and Porat, E. (2000). Faster algorithms for string

matching with k mismatches. In 11th annual ACM-SIAM symposium on Discrete algorithms, SODA

’00, pages 794–803, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

[Baier and Breitinger, 2011] Baier, H. and Breitinger, F. (2011). Security Aspects of Piecewise

Hashing in Computer Forensics. IT Security Incident Management & IT Forensics, pages 21–36.

[Breitinger, 2011] Breitinger, F. (2011). Security Aspects of Fuzzy Hashing. Master’s thesis,

Hochschule Darmstadt.

[Chen and Wang, 2008] Chen, L. and Wang, G. (2008). An Efficient Piecewise Hashing Method for

Computer Forensics. Workshop on Knowledge Discovery and Data Mining, pages 635–638.

[Kornblum, 2006] Kornblum, J. (2006). Identifying almost identical files using context triggered

piecewise hashing. In Digital Investigation, volume 3S, pages 91–97.

[Maddodi et al., 2010] Maddodi, S., Attigeri, G., and Karunakar, A. (2010). Data Dedu- plication

Techniques and Analysis. In Emerging Trends in Engineering and Technology (ICETET), pages 664–

668.

[Menezes et al., 1997] Menezes, A., Oorschot, P., and Vanstone, S. (1997). Handbook of Applied

Cryptography. CRC Press.

[NIST, 2011] NIST (2011). National Software Reference Library. [Roussev, 2009] Roussev, V.

(2009). Building a Better Similarity Trap with Statistically Improbable Features. 42nd Hawaii

International Conference on System Sciences, 0:1– 10.

[Roussev, 2010] Roussev, V. (2010). Data fingerprinting with similarity digests. Internation

Federation for Information Processing, 337/2010:207–226.

[Roussev et al., 2006] Roussev, V., Chen, Y., Bourg, T., and Rechard, G. G. (2006). md5bloom:

Forensic filesystem hashing revisited. Digital Investigation 3S, pages 82– 90.

[Roussev et al., 2007] Roussev, V., Richard, G. G., and Marziale, L. (2007). Multi-resolution

similarity hashing. Digital Investigation 4S, pages 105–113.

[Sadowski and Levin, 2007] Sadowski, C. and Levin, G. (2007). Simhash: Hash-based similarity

detection. http://simhash.googlecode.com/svn/ trunk/paper/SimHashWithBib.pdf.

[Seo et al., 2009] Seo, K., Lim, K., Choi, J., Chang, K., and Lee, S. (2009). Detecting Similar Files

Based on Hash and Statistical Analysis for Digital Forensic Investigation. Computer Science and its

Applications (CSA ’09), pages 1–6.

[Tridgell, 2002] Tridgell, A. (2012). Spamsum. Readme.

http://samba.org/ftp/unpacked/junkcode/spamsum/README, 03.01.2012

[Turk and Pentland, 1991] Turk, M. and Pentland, A. (1991). Face recognition using eigenfaces. In

Computer Vision and Pattern Recognition, 1991. IEEE, pages 586 –591.

[Walter, 2005] Walter, C. (2012). Kryder’s law,

http://www.scientificamerican.com/article.cfm?id=kryders-law&ref=sciam, 18.01.2012

http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://www.scientificamerican.com/article.cfm?id=kryders-law&ref=sciam

	A Fuzzy Hashing Approach Based on Random Sequences and Hamming Distance
	Scholarly Commons Citation

	A Fuzzy Hashing Approach Based on Random Sequences and Hamming Distance

