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ABSTRACT 

Hash functions are well-known methods in computer science to map arbitrary large input to bit strings 

of a fixed length that serve as unique input identifier/fingerprints. A key property of cryptographic 

hash functions is that even if only one bit of the input is changed the output behaves pseudo randomly 

and therefore similar files cannot be identified. However, in the area of computer forensics it is also 

necessary to find similar files (e.g. different versions of a file), wherefore we need a similarity 

preserving hash function also called fuzzy hash function.  

In this paper we present a new approach for fuzzy hashing called bbHash. It is based on the idea to 

‘rebuild’ an input as good as possible using a fixed set of randomly chosen byte sequences called 

building blocks of byte length l  (e.g. l= 128 ). The proceeding is as follows: slide through the input 

byte-by-byte, read out the current input byte sequence of length l , and compute the Hamming 

distances of all building blocks against the current input byte sequence. Each building block with 

Hamming distance smaller than a certain threshold contributes the file’s bbHash. We discuss (dis-

)advantages of our bbHash to further fuzzy hash approaches. A key property of bbHash is that it is the 

first fuzzy hashing approach based on a comparison to external data structures.  

Keywords: Fuzzy hashing, similarity preserving hash function, similarity digests, Hamming distance, 

computer forensics.  

1. INTRODUCTION  

The distribution and usage of electronic devices increased over the recent years. Traditional books, 

photos, letters and LPs became ebooks, digital photos, email and mp3. This transformation also 

influences the capacity of todays storage media ([Walter, 2005]) that changed from a few megabyte to 

terabytes. Users are able to archive all their information on one simple hard disk instead of several 

cardboard boxes on the garret. This convenience for consumers complicates computer forensic 

investigations (e.g. by the Federal Bureau of Investigation), because the investigator has to cope with 

an information overload: A search for relevant files resembles no longer to find a needle in a haystack, 

but more a needle in a hay-hill.  

The crucial task to solve this data overcharge is to distinguish relevant from non-relevant information. 

In most of the cases an automated preprocessing is used, which tries to filter out some irrelevant data 

and reduces the amount of data an investigator has to look at by hand. As of today the best practice of 

this preprocessing is quite simple: Hash each file of the evidence storage medium, compare the 

resulting hash value (also called fingerprint or signature) against a given set of fingerprints, and put it 

in one of the three categories: known-to-be-good, known-to-be-bad, and unknown files. For instance, 

unmodified files of a common operating system (e.g. Windows, Linux) or binaries of a wide-spread 

application like a browser are said to be known-to-be-good and need not be inspected within an 

investigation. The most common set/database of such non-relevant files is the Reference Data Set 

(RDS) within the National Software Reference Library (NSRL, [NIST, 2011]) maintained by the US 
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National Institute of Standards and Technology (NIST)
1
.  

Normally cryptographic hash functions are used for this purpose, which have one key property: 

Regardless how many bits changes between two inputs (e.g. 1 bit or 100 bits), the output behaves 

pseudo randomly. However, in the area of computer forensics it is also convenient to find similar files 

(e.g. different versions of a file), wherefore we need a similarity preserving hash function also called  

fuzzy hash function. 

It is important to understand that in contrast to cryptographic hash functions, there is currently no 

sharp understanding of the defining properties of a fuzzy hash function. We will address this topic in 

Sec. 2, but we emphasize that the output of a fuzzy hash function need not be of fixed length.  

In general we consider two different levels for generating similarity hashes. On the one hand there is 

the byte level which works independently of the file type and is very fast as we need not interpret the 

input. On the other hand there is the semantic level which tries to interpret a file and is mostly used for 

multimedia content, i.e. images, videos, audio. In this paper we only consider the first class. As 

explained in Sec. 2 all existing approaches from the first class come with drawbacks with respect to 

security and efficiency, respectively.  

In this paper we present a new fuzzy hashing technique that is based on the idea of data deduplication 

(e.g. [Maddodi et al., 2010, Sec. II]) and eigenfaces (e.g. [Turk and Pentland, 1991, Sec. 2]). 

Deduplication is a backup scheme for saving files efficiently. Instead of saving files as a whole, it 

makes use of small pieces. If two files share a common piece, it is only saved once, but referenced for 

both files. Eigenfaces are a similar approach. They are used in biometrics for face recognition. 

Roughly speaking, if we have a set of N  eigenfaces, then any face can be represented by a 

combination of these standard faces. Eigenfaces resemble to the well-known method in linear algebra 

to represent each vector of a vector space by a linear combination of the basis vectors.  

Our approach uses a fixed set of random byte sequences called building blocks. In this paper we 

denote the number of building blocks by N . The length in bytes of a building block is denoted by l . 

It shall be ‘short’ compared to the file size (e.g. l= 128 ). To find the optimal representation of a 

given file by the set of building blocks, we slide through the input file byte-by-byte, read out the 

current input byte sequence of length l , and compute the Hamming distances of all building blocks 

against the current input byte sequence. If the building block with the smallest Hamming distance is 

smaller than a certain threshold, too, its index contributes to the file’s bbHash.  

Besides similarity of files we are also able to match back parts of files to its origin, which could arise 

due to file fragmentation and deletion.  

1.1 Contribution and Organization of this Paper  

Similarity preserving hash functions on the byte level are a rather new area in computer forensics and 

get more and more important due to the increasing amount of data. Currently the most popular 

approach is implemented in the software package ssdeep ([Kornblum, 2006]). However, ssdeep can be 

exploited very easily ([Baier and Breitinger, 2011]). Our approach bbHash is more robust against an 

active adversary. With respect to the length of the hash value our approach is superior to sdhash 

([Roussev, 2009, Roussev, 2010]), which generates hash values of about 2.6% to 3.3% of the input, 

while our bbHash similarity digest only comprises 0.5% of the input size. Additionally, sdhash has a 

coverage of only about 80% of the input, while our approach is designed to cover the whole input.  

Additionally, in contrast to ssdeep and sdhash, our similarity digest computation is based on a 

comparison to external data structures, the building blocks. The building blocks are randomly chosen 

                                                 
1. NIST points out that the term known-to-be-good depends on national laws. Therefore, NIST calls files within the RDS 
non-relevant. However, the RDS does not contain any illicit data. 
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static byte blocks being independent of the processed input. Although this implies a computational 

drawback compared to other fuzzy hashing approaches, we consider this as a security benefit as 

bbHash stronger withstands active anti-blacklisting.  

The rest of the paper is organized as follows: In the subsequent Sec. 1.2 we introduce the notation used 

in this paper. Then in Sec. 2 we introduce the related work. The core of this paper is given in Sec. 3 

where we present our algorithm bbHash. We give a first analysis of our implementation in Sec. 4. Sec. 

5 concludes our paper and gives an overview of future work.  

1.2 Notation and Terms used in this Paper  

In this paper, we make use of the following notation and terms:   

 A building block is a randomly chosen byte sequence to rebuild files. 

 N denotes the number of different building blocks used in our approach. We make use 

of the default value N = 16 .  

 For 0≤ k≤ N  we refer to the k -th building block as bbk .  

 l  denotes the length of a building block in bytes. Throughout this paper we assume a 

default value of l= 128 .  

 l bit  denotes the length of a building block in bits. In this paper we assume a default 

value of  lbit= 8⋅ 128= 1024 . 

 L f  denotes the length of an input (file) in bytes.  

 bbHash denotes our new proposed fuzzy hash function on base of building blocks.  

 BS  denotes a byte string of length l : BS = B0 B1 B2... B l− 1 .  

 BS i  denotes a byte string of length l  starting at offset byte i  within the input file: 
BS i= Bi Bi+ 1 Bi+ 2 ... B i+ l− 1 .  

 t denotes the threshold value. t  is an integer with 0≤ t≤ lbit . 

2. FOUNDATIONS AND RELATED WORK  

According to [Menezes et al., 1997] hash functions have two basic properties, compression and ease of 

computation. In this case compression means that regardless the length of the input, the output has a 

fixed length. This is why the term Fuzzy Hashing might be a little bit confusing and similarity digest is 

more appropriate – most of the similarity preserving algorithms do not output a fixed sized hash value. 

Despite this fact we call a variable-sized compression function hf a fuzzy hash function if two similar 

inputs yield similar outputs.  

The first fuzzy hashing approach on the byte level was proposed by Kornblum in 2006 [Kornblum, 

2006], which is called context-triggered piecewise hashing, abbreviated as CTPH. Kornblum’s CTPH 

is based on a spam detection algorithm of Andrew Tridgell [Tridgell, 2002]. The main idea is to 

compute cryptographic hashes not over the whole file, but over parts of the file, which are called 

chunks. The end of each chunk is determined by a pseudo-random function that is based on a current 

context of 7 bytes. In recent years, Kornblum’s approach was examined carefully and several papers 

had been published.  

[Chen and Wang, 2008, Roussev et al., 2007, Seo et al., 2009] find ways to improve the existing 

implementation called ssdeep with respect to both efficiency and security. On the other side [Baier and 

Breitinger, 2011, Breitinger, 2011] show attacks against CTPH with respect to blacklisting and 

whitelisting and also some improvements for the pseudo random function.  

[Roussev, 2009, Roussev, 2010] present a similarity digest hash function sdhash, where the idea is “to 

select multiple characteristic (invariant) features from the data object and compare them with features 

selected from other objects”. He uses multiple unique 64-byte features selected on the basis of their 

entropy. In other words files are similar if the have the same features/byte-sequences. [Sadowski and 
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Levin, 2007] explains a tool called Simhash which is another approach for fuzzy hashing “based on 

counting the occurrences of certain binary strings within a file”. As we denote a similarity preserving 

hash function a fuzzy hash function, we rate ssdeep, sdhash and Simhash as possible implementations 

for fuzzy hashing.  

[Roussev et al., 2006] comes with a tool called md5bloom where “the goal is to pick from a set of 

forensic images the one(s) that are most like (or perhaps most unlike) a particular target”. In addition, 

it can be used for object versioning detection. The idea is to hash each hard disk block and insert the 

fingerprints into a Bloom filter. Hard disks are similar if their Bloom filters are similar.  

3. A NEW FUZZY HASHING SCHEME BASED ON BUILDING BLOCKS  

In this section, we explain our fuzzy hashing approach bbHash. First, in Sec. 3.1 we describe the 

generation of the building blocks followed by the algorithm details in Sec. 3.2. Finally, Sec. 3.3 

describes how to compare two bbHash similarity digests.  

bbHash aims at the following paradigm:  

1. Full coverage: Every byte of the input file is expected to be within at least one offset 

of the input file, for which a building block is triggered to contribute to the bbHash. 

This behavior is very common for hash functions: each byte influences the hash value.  

2. Variable-sized length: The length of a file’s bbHash is proportional to the length of the 

original file. This is in contrast to classical hash functions. However, it ensures to be 

able to store sufficiently information about the input to have good similarity 

preserving properties of bbHash.  

3.1 Building Blocks  

We first turn to the set of building blocks. Their number is denoted by N . In our current 

implementation we decided to set the default value to N = 16 . Then we can index each building 

block by a unique hex digit 0,1 ,2... f  (half a byte), therefore we have the building blocks 
bb0 ,bb1 ,... bb16− 1 . This index is later used within the bbHash to uniquely reference a certain 

building block.  

The length of a building block in bytes is referred to by l  and influences the following two aspects:  

1. A growing l  decreases the speed performance as the Hamming distance is computed 

at each offset i  for l  bytes.  

2. An increased l  shortens the length of the hash value as there should be a trigger 

sequence every l  bytes approximately (depending on the threshold t ).  

Due to run time efficiency reasons we decided to use a ‘short’ building block size compared to the file 

size. Currently we make use of l= 128 .  

The generation of the building blocks is given in Fig. 1. We use the rand() function to fill an array of 

unsigned integers. Hence, all building blocks are stored in one array whereby the boundaries can be 

determined by using their size. As rand() uses the same seed each time, it is a deterministic generation 

process. Using a fixed set of building blocks is comparable to the use of a fixed initialization vector 

(IV) of well-known hash functions like SHA-1. A sample building block is given in Fig. 2.  
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3.2 Our Algorithm bbHash 

In this section we give a detailed description of our fuzzy hash function bbHash. It works as follows: 

To find the optimal representation of a given file by the set of building blocks, we slide through the 

input file byte-by-byte, read out the current input byte sequence of length l , and compute the 

Hamming distances of all building blocks against the current input byte sequence. If the building block 

with the smallest Hamming distance is smaller than a certain threshold, too, its index contributes to the 

file’s bbHash.  

We write L f  for the length of the input file in bytes. The pseudocode of our algorithm bbHash is 

given in Algorithm 1. It proceeds as follows for each offset i  within the input file, 0≤ i≤ L f − 1− l : 

If BS i denotes the byte sequence of length l  starting at the i -th byte of the input, then the algorithm 

computes the N  Hamming distances of BS i  to all N  building blocks: hd k ,i= HD(bbk , BS i)  is 

the Hamming distance of the two parameters bbk  and BS i , 0≤ k< N . As the Hamming distance is 

the number of different bits, we have 0≤ hd k , i≤ 8⋅ l . In Sec. 3.1 we defined the default length of a 

building block in bytes to be 128, i.e. we assume l= 128 . As an example HD (bb2, BS100)  returns 

the Hamming distance of the building block bb
2  and the bytes B

100  to B
227  of the input. In other 

words the algorithm slides through the input, byte-by-byte, and computes the Hamming distance at 

each offset for all N  building blocks like it is given in Fig. 3.  

The bbHash value is formed by the ordered indicies of triggered building blocks. In order to 

trigger a building block to contribute to the bbHash, it has to fulfill two further conditions:  

1. For a given i  (fixed offset), we only make use of the closest building block, i.e. we 

are looking for the index k  with the smallest Hamming distance hd k , i .  

 

Fig. 2: Building block with index 0 

 

Fig. 1. Generation of the building blocks 
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2. This smallest hd k , i  also needs to be smaller than a certain threshold t .  

Each 
BS i  that fulfills both conditions will be called a trigger sequence. To create the final bbHash 

hash value, we concatenate all indicies k  of all triggered building blocks (in case we have two 

triggered building blocks for 
BS i , only the smallest index k  is chosen).  
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In Sec. 3.1 we’ve already motivated why the choices l= 128  and N = 16  are appropriate for our 

approach. In what follows we explain how to choose a fitting threshold t . Our first paradigm in the 

introduction to Sec. 3 states full coverage, i.e. every byte of the input file is expected to be within at 

least one offset of the input file, for which a building block is triggered to contribute to the bbHash. 

Thus we expect to trigger every l -th byte, i.e. every 128-th byte. In order to have some overlap, we 

decrease the statistical expectation to trigger at every 100-th byte.  

For our theoretic considerations we assume a uniform probability distribution on the input file blocks 

of byte length l . Let d be a non-negative integer (the distance) and P (hd k ,i= d )  denote the 

probability, that the Hamming distance of our building block k at offset i of the input file is equal to 
d .  

1. We first consider the case d= 0 , i.e. the building block and the input block coincide. 

Then we simply have P (hd k ,i= 0)= 0.5lbit= 0.51024

.  

2. For d≥ 0  we have (
l

bit

d ) possibilities to find an input file block of Hamming distance 

d  to bbk . Thus P (hd k ,i= d )=(lbit

d )⋅0.5
lbit=(1024

d )⋅ 0.5
1024

. 

3. Finally, the probability to receive a Hamming distance smaller than t  for bbk  is  

The binomial coefficients in Eq. (1) are large integers and we make use of the computer 

algebra system LiDIA
2
 to evaluate Eq. (1) (LiDIA is a C++-library maintained by the 

Technical University of Darmstadt).  

                                                 
2. http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/ ; visited 05.09.2011  

 

 

Fig. 3: Workflow of the Algorithm 

http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
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Let p
t  denote the probability that at least one of the N  buildings blocks satisfies Eq. (1), i.e. we 

trigger our input file and find a contribution to our bbHash. This may easily computed by the opposite 

probability that none of the building blocks triggers, that is pt= 1− (1− p1)
N

. As explained above 

we aim at pt= 0.01 . Thus we have to find a threshold t  with  

Now we use our LiDIA-computations of Eq. (1) to identify a threshold of t= 461 . An example hash 

value of a 68,650 byte (≈ 70 kbyte) JPG image is given in Fig. 4. Overall the hash value consists of 

693 digits which is 346.5 bytes and therefore approximately 0.5% of the input.  

3.3 Hash Value Comparison  

This paper focuses on the hash value generation and not on its comparison. Currently there are two 

approaches from existing fuzzy hash functions which could be also usable for bbHash:  

 Roussev uses Bloom filters where the similarity can be identified by generating the 

Hamming distance.  

 Kornblum uses the weighted edit distance to compare the similarity of two hash 

values.  

Both approaches may easily be adopted to be used for bbHash.  

4. ANALYSIS OF BBHASH  

In this section we analyze different aspects of our approach. The length of the hash values and how 

can it be influenced by different parameters is presented in Sec. 4.1. Our current choices yield a 

bbHash of length 0.5% of the input size. This is an improvement by a factor 6.5 compared to sdhash, 

where for practical data the similarity digest comprises 3.3% of the input size. Next, in Sec. 4.2 we 

discuss the applicability of bbHash depending on the file size of the input. An important topic in 

Fig. 4: bbHash of a 68,650 byte JPG-Image 
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computer forensics is the identification of segments of files, which is addressed in Sec. 4.3. The run 

time performance is shown in Sec. 4.4. At least we have a look at attacks and compare our approach 

against existing ones. We show that bbHash is more robust against an active adversary compared to 

ssdeep.  

4.1 Hash Value Length  

The hash value length depends on three different properties: the file size L f , the threshold t  and the 

building block length l . If we expect that both other parameters are fixed, then  

 a larger L f  will increase the hash value length as the input is supposed to have more 

trigger sequences.  

 a higher t  will increase the hash value length as more BS i  will have a Hamming 

distance lower than the threshold t .  

 a large l  will decrease the performance and the hash value length
3
.  

In order to have full coverage our aim is to have a final hash value where every input byte influences 

the final hash value. Due to performance reasons we’ve decided for a building block length of 
l= 128  byte. As we set the threshold to t= 461 , the final hash value length nearly results in 
L f /100  digits whereby every 100 digit has half a byte length. Thus the final hash value is 

approximately 0.5% of the original file size.  

Compared to the existing approach sdhash where “the space requirements for the generated similarity 

digests do not exceed 2.6% of the source data” [Roussev, 2010], it is quite short. However, for real 

data sdhash generates similarity digests of 3.3% of the input size.  

Besides these two main aspects the file type may also influence the hash value length. We expect that 

random byte strings will have more trigger sequences. Therefore we think that compressed file formats 

like ZIP, JPG or PDF have very random byte strings and thus yield a bbHash of 0.5% of the input size. 

This relation may differ significantly when processing TXT, BMP or DOC formats as they are less 

random.  

4.2 Applicability of bbHash Depending on the File Size  

Our first prototype is very restricted in terms of the input file size and will not work reliable for small 

files. Files smaller than the building blocks’ length l  cannot have a trigger sequence and cannot be 

hashed. To receive some trigger sequences the input file should be at least 5000 bytes, which results in 
5000− l− 1  possible trigger sequences. On the other side large files result in very long hashes 

wherefore we recommend to process files smaller than a couple of megabytes.  

By changing the threshold t , it is possible to influence the hash value length. We envisage to 

customize this parameter depending on the input size which will be a future topic.  

4.3 Detection of Segments of Files  

A file segment is a part of a file, which could be the result of fragmentation and deletion. For instance, 

if a fragmented file is deleted but not overwritten, then we can find a byte sequence, but do not know 

anything about the original file. Our approach allows to compare hashes of those pieces against hash 

values of complete files. Depending on the fragment size, ssdeep is not able to detect fragments 

(roughly ssdeep may only fragments being at least about half the size of the original file size).  

Fig. 5 simulates the aforementioned scenario. We first copy a middle segment of 20000 byte from the 

                                                 
3. Remember, we would like to have a triggering in approximately every l-th byte and therefore we have to adjust t. 



ADFSL Conference on Digital Forensics, Security and Law, 2012 

 

98 

JPG image from Fig. 4 using dd. We then compute the hash value of this segment. If we compare this 

hash value against Fig. 4
4
 (starting line 4), we recognize that they are completely identical. Thus we 

can identify short segments as a part of its origin.  

4.4 Run Time Performance  

The run time performance is the main drawback of bbHash which is quite slow compared to other 

approaches. ssdeep needs about 0.15 seconds for processing a 10MiB file where bbHash needs about 

117 seconds for the same file. This is due to the use of building blocks as external comparison data 

structures and the computation of their Hamming distance to the currently processed input byte 

sequence. Recall that at each position i  we have to build the Hamming distance of 16 building blocks 

each with a length of 1024 bits. To receive the Hamming distance we XOR both sequences and count 

the amount of remaining ones (bitcount( bbk ⊕ BS i )). To speed up the counting process, we 

precomputed the amount of ones for all sequences from 0 to 2
16
− 1 Bits. Thus we can lookup each 

16-Bit-sequence with a complexity of O (1) . But since we have N⋅
lbit

16
= 16⋅

1024

16
= 1024  lookups 

at each processed byte of the input it is quite slow.   

Although the processing in its first implementation is quite slow which results from a straight forward 

programming, this problem is often discussed in literature and there are several issues for 

improvements. For instance [Amir et al., 2000] states that their algorithm finds all locations where the 

pattern has at most t  errors in time O ( L f√t log t) . Compared against our algorithm which needs 

time O (L f⋅ l)  that’s a great improvement. As we make use of N  building blocks, we have to 

multiply both run time estimations by N . For a next version we will focus on improving the run time 

performance.  

4.5 Attacks 

This section is focusing on attacks with respect to both forensic issues blacklisting and whitelisting. 

From an attacker’s point of view anti-blacklisting/anti-whitelisting can be used to hide information 

and increase the amount of work for investigators.  

Anti-blacklisting means that an active adversary manipulates a file in a way that fuzzy hashing will not 

identify the files as similar – the hash values are too different. We rate an attack as successful if a 

human observer cannot see a change between the original and manipulated version (the files 

                                                 
4. We rearranged the output by hand to make an identification easier.  

Fig. 5: Hash value of a segment. The bbHash of the whole file is listed in Fig. 4. 
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look/work as expected). If a file was manipulated successfully then it would not be identified as a 

known- to-be-bad file and will be categorized as unknown file.  

The most obvious idea is to change the triggering whereby the scope of each change depends on the 

Hamming distance. For instance, at position i  the Hamming distance is 450, then an active adversary 

has two possibilities:  

1.  He needs to change at least 11 bits in this segment to overcome the threshold t  and kick out 

this trigger sequence from the final hash.  

2.  He needs to manipulate it in a way that another bb  has a closer Hamming distance.  

In a worst case each building block has a Hamming distance of 460 and a ‘one-bit- change’ is enough 

to manipulate the triggering. In this case an active adversary approximately needs to change L f /100  

bits, one bit for each position i . Actually a lot of 100 more changes needs to be done as there are also 

positions where the Hamming distance is much lower than 460. This is an improvement compared to 

sdHash where it is enough to change exactly one bit in every identified feature. Compared to 

Kornblum’s ssdeep this is also a great improvement as [Baier and Breitinger, 2011] states that in most 

of the cases 10 changes are enough to receive a non-match.  

Our improvement is mainly due to the fact that in contrast to ssdeep and sdhash we do not rely on 

internal triggering, but on external. However, the use of building blocks results in the bad run time 

performance as discussed in Sec. 4.4.  

Anti-whitelisting means that an active adversary uses a hash value from a whitelist (hashes of known-

to-be-good files) and manipulates a file (normally a known-to-be-bad file) that its hash value will be 

similar to one on the whitelist. Again we rate an attack as successful if a human observer couldn’t see 

a change between the original and manipulated version (the files look/work as expected).  

In general this approach is not preimage-resistance as it is possible to create files for a given signature: 

generate valid trigger sequences for each building block and add some zero-strings in between. The 

manipulation of a specific file to a given hash value should also be possible but will result in an 

useless file. In a first step an active adversary has to remove all existing trigger sequences (result in 

approximately  L f /100 ). Second, he needs to 100 imitate the triggering behavior of the white-listed 

file which will cause a lot of more changes.  

5. CONCLUSION & FUTURE WORK  

We have discussed in the paper at hand a new approach for fuzzy hashing. Our main contribution is a 

tool called bbHash that is more robust against anti- blacklisting than ssdeep and sdHash due to the use 

of external building blocks. The final signature has about 0.5% of the original file size, is not fixed and 

can be adjusted by several parameters. This allows us to compare very small parts of a file against its 

origin which could arise due to file fragmentation and deletion.  

In general there are two next steps. On the one side the run time performance needs to be improved 

wherefore we will use existing approaches (e.g. given in [Amir et al., 2000]). On the other side we 

have to do a security analysis for our approach to give more details about possible attacks. Knowing 

attacks also allows further improvements of bbHash.  
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