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A slidingmode control- (SMC-) based limit cycle oscillation (LCO) regulationmethod is presented,which achieves asymptotic LCO
suppression for UAVs using synthetic jet actuators (SJAs). With a focus on applications involving small UAVs with limited onboard
computational resources, the controller is designed with a simplistic structure, requiring no adaptive laws, function approximators,
or complex calculations in the control loop. The control law is rigorously proven to achieve asymptotic regulation of both pitching
and plunging displacements for a class of systems in a dual-parallel underactuated form, where a single scalar control signal
simultaneously affects two states. Since dual-parallel underactuated systems cannot be expressed in a strict feedback or cascade
form, standard backstepping-based control techniques cannot be applied. This difficulty is mitigated through careful algebraic
manipulation in the regulation error system development, along with innovative design of the sliding surface. A detailed model of
the UAV LCO dynamics is utilized, and a rigorous analysis is provided to prove asymptotic regulation of the pitching and plunging
displacements. Numerical simulation results are provided to demonstrate the performance of the control law.

1. Introduction

Limit cycle oscillation (LCO) (flutter) is a self-excited aeroe-
lastic phenomenon that can create difficulties in aircraft
tracking control and could potentially result in structural
damage and even catastrophic failures. Even in the low
Reynolds number (low-Re) regimes, characteristic of small
unmanned aerial vehicle (UAV) systems, LCO can be adver-
sarial in flight control systems and can lead to unsafe UAV
operating conditions [1]. Motivated by these challenges,
automatic control methods for LCO regulation systems have
been widely investigated in recent controls literature [2–
5]. LCO suppression control systems are usually designed
usingmoving deflection surfaces (e.g., elevators, rudders, and
ailerons) to deliver the required control force or moment.
However, for applications involving smaller, lighter weight
UAVs, the use of heavy mechanical actuators might not
be practical. As these practical considerations motivate the
need for smaller, low power-consumptive control actuators,
synthetic jet actuators (SJAs) have emerged as a popular

alternative to mechanical deflection surfaces for UAV control
applications [1, 6–14].

SJAs are practical tools for UAV LCO suppression control
systems due to their low cost, small size, and low power
consumption properties. SJAs utilize a vibrating diaphragm
to create trains of vortices (or jets) of air through the periodic
ejection and suction of air through a small orifice (see
Figure 1). The resulting trains of air vortices impart linear
momentum to a flow system, and this momentum transfer
enables SJAs to deliver an equivalent control force ormoment
when implemented in UAV wings. Since SJAs only use the
surrounding air of the flow system to generate the vortices,
they can deliver a control force ormoment with zero netmass
injection across the flow boundary. This is a key benefit in
small UAV applications: SJAs do not require space for a fuel
supply. The boundary layer flow field near the surface of a
UAV wing can be altered by using the trains of air vortices
generated by the SJAs. By utilizing this SJA-commanded
modification of the boundary layer flow field, SJAs can be
employed to achieve automatic regulation control of LCO

Hindawi Publishing Corporation
International Journal of Aerospace Engineering
Volume 2015, Article ID 795348, 7 pages
http://dx.doi.org/10.1155/2015/795348



2 International Journal of Aerospace Engineering

Vortex rings

Orifice

Vibrating diaphragm

D

d

Figure 1: Schematic layout of a synthetic jet actuator.

in UAV wings. SJA-based control design is complicated,
however, due to the inherent nonlinearity in the equations
governing the SJA dynamics. Specifically, the virtual surface
deflection delivered by the SJAs is a nonlinear (nonaffine)
function of the voltage signal commanded to the SJAs. An
additional challenge in control design using SJAs is that
the nonlinear actuator dynamic model includes parametric
uncertainty. This SJA nonlinear SJA dynamic model was
determined empirically through repeated experiments, and
it is well-accepted in SJA-based control literature (e.g., see
[10, 12, 14]).

In addition to the control design challenges involved
in compensating for actuator uncertainties, significant chal-
lenges arise in situationswheremultiple actuators lose control
effectiveness. When the number of control actuators is less
than the number of degrees of freedom to be controlled,
the system becomes underactuated, and control design
for underactuated systems presents a nontrivial challenge.
The integrator backstepping technique is often utilized to
address the challenge of control design for underactuated sys-
tems [15]. However, the backstepping-based control design
approach can only be applied to systems in strict feedback
or cascade form. Backstepping techniques cannot be utilized
for systems in a dual-parallel underactuated form, where a
single scalar control input simultaneously affects two states.
Several open problems remain in control design for dual-
parallel underactuated systems.

To compensate for the nonlinearity and parametric
uncertainty inherent in the SJA dynamic model, recent
approaches typically employ adaptive parameter estimation,
neural networks (NN), fuzzy logic rule sets, or complex fluid
dynamics computations in the feedback loop (e.g., see [10,
14, 16]). These types of SJA-based control design approaches
have been shown to achieve good closed-loop performance;
however, control designs involving complex calculations or
function approximation methods can incur an increased

computational requirement, which might not be practical
for applications involving small UAVs. An adaptive inverse
control method is presented in [10, 14], which achieves
asymptotic trajectory tracking for an aircraft dynamic model
equipped with SJAs. To achieve the results in [10, 14], a series
of adaptive parameter estimation laws are utilized along with
rigorous Lyapunov-based stability analyses. Inspired by these
results and motivated by the desire to investigate a more
computationallyminimal control strategy, our previous result
in [17] was the first SJA-based tracking control approach to
achieve asymptotic trajectory tracking for an aircraft using
a simple (single-loop) feedback control law without the use
of parameter adaptation or function approximators in the
control law. A question that remains to be answered is as
follows: Can a computationallyminimal nonlinear SJA-based
control law achieve asymptotic regulation of LCO for UAV
systems in a dual-parallel underactuated form?

The contribution of this paper is the development and
rigorous analysis of a sliding mode control law, which
achieves asymptotic regulation of both pitching and plunging
LCO in UAV wings using a single, scalar SJA as the control
input (i.e., a dual-parallel underactuated system). To the
best of the authors’ knowledge, this is the first SJA-based
nonlinear control result to rigorously prove asymptotic reg-
ulation of both pitching and plunging LCO states in a dual-
parallel underactuated UAV system. Moreover, to address
a practical UAV scenario where onboard computational
resources are limited, the result presented here compensates
for the inherent SJA actuator nonlinearity and parametric
uncertainty without the use of adaptive laws or function
approximators. To achieve the result, a sliding mode control
strategy is utilized, which employs a periodic switching law.
A detailed mathematical model of the UAV dynamics is
utilized to develop the regulation error dynamics, and a
rigorous Lyapunov-based stability analysis is presented to
prove asymptotic regulation of the pitching and plunging dis-
placements.Numerical simulation results are also provided to
complement the theoretical development.

2. Dynamic Model and Properties

The equation describing dynamics of LCO in an airfoil can be
expressed as [18]

𝑀
𝑠
𝑝̈ + 𝐶

𝑠
𝑝̇ + 𝐹 (𝑝) 𝑝 = [

−𝐿

𝑀
] , (1)

where the coefficients 𝑀
𝑠
, 𝐶
𝑠

∈ R2×2 denote the structural
mass and damping matrices and 𝐹(𝑝) ∈ R2×2 is a nonlinear
stiffness matrix. In (1), 𝑝(𝑡) ≜ [ℎ(𝑡) 𝛼(𝑡)]

𝑇

∈ R2, where
ℎ(𝑡), 𝛼(𝑡) ∈ R denote the plunging and pitching displace-
ments, respectively. Figure 2 illustrates the pitching and
plunging displacements in a standard airfoil.

Also in (1), the structural linearmassmatrix𝑀
𝑠
is defined

as [18]

𝑀
𝑠
= [

𝑚 𝑚𝑥
𝛼
𝑏

𝑚𝑥
𝛼
𝑏 𝐼
𝛼

] , (2)
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Figure 2: Illustration of pitch (𝛼) and plunge (ℎ) in an airfoil, including lift (𝐿) and moment (𝑀) definitions and the nonlinear stiffness
coefficient (𝐾
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Figure 3: Diagram of the wing section, showing geometric param-
eters and the deflection angle 𝛽 [18].

where the parameter 𝑥
𝛼

∈ R denotes the nondimensional
distance measured from the elastic axis to the center of mass,
𝑏 ∈ R is the semichord of the wing [m],𝑚 ∈ R is the mass of
the wing section, and 𝐼

𝛼
∈ R is the mass moment of inertia

of the wing about the elastic axis (see Figures 2 and 3).
The structural linear damping matrix is described as

𝐶
𝑠
= [

𝐶
ℎ

0

0 𝐶
𝛼

] , (3)

where the parameters 𝐶
ℎ
, 𝐶
𝛼

∈ R are the structural damp-
ing coefficient in plunge due to viscous damping [kg/s]
and structural damping coefficient in pitch due to viscous
damping [(kg⋅m2

)/s], respectively. The nonlinear stiffness
matrix utilized in this study is

𝐹 (𝑝) = [

𝐾
ℎ

0

0 𝐾
𝛼

] , (4)

where 𝐾
ℎ

∈ R is the structural spring constant in plunge
[N/m] and 𝐾

𝛼
∈ R in [(N⋅m)/rad] is the torsion stiffness

coefficient described in terms of a polynomial as

𝐾
𝛼
= 2.82 (1 − 22.1𝛼 + 1315.5𝛼

2

− 8580𝛼
3

+ 17289.7𝛼
4

) .

(5)

The right hand side of (1) is explicitly given by [18]

𝐿 = 𝜌𝑈
2

𝑠
𝑝
𝑏𝑐
𝑙
𝛼

[𝛼 +
ℎ̇

𝑏
+ (

1

2
− 𝑎) 𝑏

𝛼̇

𝑈
] + 𝜌𝑈

2

𝑠
𝑝
𝑏𝑐
𝑙
𝛽

𝛽,

𝑀 = 𝜌𝑈
2

𝑠
𝑝
𝑏
2

𝑐
𝑚
𝛼

[𝛼 +
ℎ̇

𝑏
+ (

1

2
− 𝑎) 𝑏

𝛼̇

𝑈
]

+ 𝜌𝑈
2

𝑠
𝑝
𝑏
2

𝑐
𝑚
𝛽

𝛽,

(6)

where 𝑈 ∈ R is the velocity [m/s], 𝜌 is the density of air
[kg/m3

], 𝑠
𝑝
is the wing span [m], 𝑐

𝑙
𝛼

is the lift coefficient
per angle of attack, 𝑐

𝑚
𝛼

is the moment coefficient per control
surface deflection, 𝑐

𝑙
𝛽

is the lift coefficient per control surface
deflection, 𝑐

𝑚
𝛽

is the moment coefficient per control surface
deflection, and 𝑎 is the nondimensional distance from the
midchord to elastic axis. The term 𝛽 denotes the surface
deflection angle of the wing (see Figure 3). By rearranging (1),
the dynamics equations can be expressed as

𝑥̇ = 𝐴 (𝑥) 𝑥 + 𝐵𝛽, (7)

where 𝑥(𝑡) ≜ [𝑥
1
(𝑡) 𝑥
2
(𝑡) 𝑥
3
(𝑡) 𝑥
4
(𝑡)]
𝑇

∈ R4 is the state
vector with 𝑥

1
(𝑡) ≜ ℎ(𝑡), 𝑥

2
(𝑡) ≜ 𝛼(𝑡), 𝑥

3
(𝑡) ≜ ℎ̇(𝑡), and

𝑥
4
(𝑡) ≜ 𝛼̇(𝑡). In (7), 𝐴(𝑥) ∈ R4×4 is a nonlinear state

matrix (containing nonlinearities due to the torsion stiffness
coefficient introduced in (5)), and 𝐵 ∈ R4×1 is the control
input gain matrix. By separating the constant elements from
the state-dependent elements of thematrix𝐴(𝑥), the dynamic
model (7) can be rewritten as

𝑥̇ =

[
[
[
[
[

[

0 0 1 0

0 0 0 1

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑐
1

𝑐
2

𝑐
3

𝑐
4

]
]
]
]
]

]

𝑥 + 𝐹 (𝑥
2
) +

[
[
[
[
[

[

0

0

𝑏
1

𝑏
2

]
]
]
]
]

]

𝑢, (8)

where 𝑎
1
, . . . , 𝑎

4
∈ R and 𝑐

1
, . . . , 𝑐

4
∈ R denote known con-

stant parameters, which are dependent on the physical
parameters of the wing section. The explicit definitions of
the constant parameters are unwieldy and are omitted here
for brevity. In (8), 𝑢(𝑡) ∈ R represents the virtual surface
deflection delivered by the SJA (or SJA array) (i.e., the term 𝛽
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introduced in (7)). Also in (8), the nonlinear vector function
𝐹(𝑥
2
) is defined in terms of the stiffness coefficient 𝐾

𝛼
as

𝐹 (𝑥
2
) =

[
[
[
[
[
[
[
[
[
[

[

0

0

−𝐾
𝛼

𝑚(𝑥
𝑎
𝑏 − 𝐼
𝛼
/ (𝑚𝑥

𝑎
𝑏))

(1/ (𝑥
𝑎
𝑏))𝐾
𝛼

𝑚(𝑥
𝑎
𝑏 − 𝐼
𝛼
/ (𝑚𝑥

𝑎
𝑏))

]
]
]
]
]
]
]
]
]
]

]

𝛼. (9)

The constant control input gain terms 𝑏
1
, 𝑏
2
∈ R introduced

in (8) are explicitly defined as

𝑏
1
=

𝜌V2𝑏2𝑐
𝑚𝛽

𝑠
𝑝
+ (𝐼
𝛼
/ (𝑚𝑥

𝑎
𝑏)) 𝜌V2𝑏𝑐

𝑙𝛽
𝑠
𝑝

𝑚(𝑥
𝑎
𝑏 − 𝐼
𝛼
/ (𝑚𝑥

𝑎
𝑏))

,

𝑏
2
=

−𝜌V2𝑏𝑐
𝑙𝛽
𝑠
𝑝
− (1/ (𝑥

𝑎
𝑏)) 𝜌V2𝑏2𝑐

𝑚𝛽
𝑠
𝑝

𝑚(𝑥
𝑎
𝑏 − 𝐼
𝛼
/ (𝑚𝑥

𝑎
𝑏))

.

(10)

3. SJA Dynamics

Thedynamics of the SJA are nonlinear and they contain para-
metric uncertainty. Figure 1 represents the basic structure of a
SJA [10, 14].This SJA has a piezoelectrically driven diaphragm
in its cavity that generates time varying pressure gradients
across a small orifice. The periodic ingestion and expulsion
of the air through the small orifice results in the formation of
vortex rings which formulates a steady turbulent jet of air.

Based on empirical data, the dynamics of a SJA can be
expressed as [10, 14]

𝑢 = 𝜃
∗

2
−

𝜃
∗

1

V
, (11)

where 𝑢(𝑡) ∈ R denotes the virtual airfoil surface deflection
(i.e., the control input), V(𝑡) = 𝐴

2

𝑝𝑝𝑖
(𝑡) ∈ R denotes the peak-

to-peak SJA voltage, and 𝜃
∗

1
, 𝜃
∗

2
∈ R are uncertain physical

parameters.
To compensate for the SJA nonlinearity and parametric

uncertainty in (11), a robust inverse control design structure
will be utilized for the voltage input signal V(𝑡) [17].The robust
inverse controller can be expressed as

V (𝑡) =
𝜃
1

𝜃
2
− 𝑢
𝑑

, (12)

where 𝜃
1
, 𝜃
2

∈ R denote constant feedforward estimates of
the uncertain parameters 𝜃

∗

1
and 𝜃

∗

2
; and 𝑢

𝑑
(𝑡) ∈ R is a

subsequently defined auxiliary control signal.

4. Control Development

The objective is to design the scalar control signal 𝑢
𝑑
(𝑡) to

asymptotically regulate the plunging and pitching dynamics
(i.e., ℎ(𝑡) and 𝛼(𝑡)) to zero. By leveraging the result in [19],

𝑢
𝑑
(𝑡) will be designed using a sliding mode control law with

a periodic switching function as

𝑢
𝑑

= 𝑀
0
tanh{sin [

𝜋

𝜖
(𝑠 (𝑡) + 𝜆∫

𝑡

0

tanh (𝑠 (𝜏)) 𝑑𝜏)]} .

(13)

Based on the dynamic equations in (8) and the subsequent
stability analysis, the sliding surface 𝑠(𝑡) ∈ R in (13) is
designed as

𝑠 (𝑥) = −
𝐾
𝛼

𝑑
𝑥
2
+ 𝑘
1
𝑥
1
+ 𝑘
3
𝑥
3
+

4

∑

𝑖=1

𝑎
𝑖
𝑥
𝑖
, 𝑖 = 1, . . . , 4, (14)

where 𝑘
1
, 𝑘
3

∈ R are positive constant control gains and
𝑎
1
, . . . , 𝑎

4
are introduced in (8).

4.1. Stability Analysis

Theorem 1. The robust control law in (13) ensures asymptotic
convergence to the sliding manifold 𝑠(𝑥) = 0.

Proof. Proof ofTheorem 1 can be found in [19] and is omitted
here to avoid distraction from the main contribution of the
current result.

Theorem 2 (main result). Convergence to the sliding manifold
𝑠(𝑥) = 0 results in asymptotic regulation of both pitching and
plunging displacements in the sense that

𝑠 (𝑥) 󳨀→ 0 󳨐⇒ ℎ (𝑡) ,

𝛼 (𝑡) 󳨀→ 0

(15)

as 𝑡 → ∞.

Proof (plunging regulation). It follows directly from the defi-
nition of the sliding surface 𝑠(𝑥) in (14) and the LCOdynamic
equations in (8) that

𝑠 (𝑥) 󳨀→ 0 󳨐⇒

𝑥̇
3
󳨀→ −𝑘

1
𝑥
1
− 𝑘
3
𝑥
3
.

(16)

By using the state definition 𝑥
3
(𝑡) ≜ 𝑥̇

1
(𝑡), the expression in

(16) can be used to show that, on the sliding manifold 𝑠(𝑥) =

0, the 𝑥
1
(𝑡) dynamics are governed by

𝑥̈
1
+ 𝑘
3
𝑥̇
1
+ 𝑘
1
𝑥
1
= 0, (17)

where 𝑘
1
, 𝑘
3
are introduced in (14). Since 𝑘

1
, 𝑘
3

> 0, the
ODE in (17) is Hurwitz, and (17) can be used to prove that
𝑥
1
(𝑡) ≜ ℎ(𝑡) → 0 and 𝑥

3
(𝑡) ≜ ℎ̇(𝑡) → 0. Thus, convergence

to the sliding manifold 𝑠(𝑥) = 0 directly results in asymptotic
(exponential) regulation of the plunging displacement ℎ(𝑡) to
zero.

Proof (pitching regulation). By substituting (14) into (8) and
using the fact that 𝑥

1
(𝑡), 𝑥
3
(𝑡) → 0, it can be shown that
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convergence to the sliding manifold 𝑠(𝑥) = 0 results in the
pitching dynamics

𝑥̇
4
− 𝑐
2
𝑥
2
− 𝑐
4
𝑥
4
−

𝑑
2

𝑑
𝐾
𝛼
𝑥
2
= 0, (18)

where 𝑐
2
and 𝑐
4
are known constant parameters introduced

in (8); 𝑑
2

≜ 1/(𝑥
𝑎
𝑏), 𝑑 ≜ 𝑚(𝑥

𝑎
𝑏 − I
𝛼
/(𝑚𝑥
𝑎
𝑏)); and 𝐾

𝛼
is

defined in (5). By using the state definition 𝑥
4
(𝑡) ≜ 𝑥̇

2
(𝑡),

the expression in (18) can be rewritten as the second-order
nonlinear ODE

𝑥̈
2
− 𝑐
4
𝑥̇
2
− 𝑐
2
𝑥
2
−

𝑑
2

𝑑
𝐾
𝛼
𝑥
2
= 0. (19)

After utilizing the definition of 𝐾
𝛼
given in (5), the ODE

in (19) can be expressed in the form [20]

𝑥̈
2
+ 𝑏 (𝑥̇

2
) + 𝑐 (𝑥

2
) = 0. (20)

Noting that 𝑐
4
< 0, the auxiliary functions 𝑏(𝑥̇

2
), 𝑐(𝑥
2
) ∈ R in

(20) are explicitly defined as

𝑏 (𝑥̇
2
) ≜

󵄨󵄨󵄨󵄨𝑐4
󵄨󵄨󵄨󵄨 𝑥̇2, (21)

𝑐 (𝑥
2
) ≜ −

𝑑
2

𝑑
17289.7𝑥

5

2
+

𝑑
2

𝑑
8580𝑥

4

2
−

𝑑
2

𝑑
1315.5𝑥

3

2

+
𝑑
2

𝑑
22.1𝑥
2

2
− (

𝑑
2

𝑑
2.82 + 𝑐

2
)𝑥
2
.

(22)

Note. It can be shown that 𝑐(𝑥
2
) = 0 ⇒ 𝑥

2
(𝑡) = 0. The

expressions in (21) and (22) satisfy the following properties:

𝑥̇
2
𝑏 (𝑥̇
2
) > 0 for 𝑥̇

2
∈ R − {0} , (23)

𝑥
2
𝑐 (𝑥
2
) > 0 for 𝑥

2
∈ R − {0} . (24)

To prove asymptotic regulation of the pitching displacement
𝑥
2
(𝑡) to zero, consider the positive definition function (i.e.,

Lyapunov function candidate) [20]

𝑉 =
1

2
𝑥̇
2

2
+ ∫

𝑥
2

0

𝑐 (𝜉) 𝑑𝜉. (25)

After taking the time derivative of (25) and utilizing (20), 𝑉̇(𝑡)

can be expressed as

𝑉̇ = 𝑥̇
2
(−𝑏 (𝑥̇

2
) − 𝑐 (𝑥

2
)) + 𝑐 (𝑥

2
) 𝑥̇
2

= −𝑥̇
2
𝑏 (𝑥̇
2
) .

(26)

The Lyapunov derivative in (26) is negative semidefinite
based on inequality (23). We now use LaSalle’s invariance
principle to state that 𝑉̇(𝑡) → 0 as 𝑡 → ∞ ⇒ 𝑥̇

2
(𝑡) → 0 as

𝑡 → ∞, and thus, 𝑥̈
2
(𝑡) → 0 as 𝑡 → ∞. It further follows

that 𝑏(𝑥̇
2
) → 0 as 𝑡 → ∞ from (21). Since 𝑏(𝑥̇

2
), 𝑥̈
2
(𝑡) → 0

as 𝑡 → ∞, (20) can be used alongwith property (24) to prove
that 𝑥

2
(𝑡) → 0 as 𝑡 → ∞.
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Figure 4: Case 1: 𝑥(0) = [0.02, 0.2, 0, 0]
𝑇; time evolution of the

control input, 𝑢(𝑡), regulation error for plunging, ℎ(𝑡) in [m], and
regulation error for pitching, 𝛼(𝑡) in [rad].

Table 1: Manually selected gains for robust control.

𝑘
𝑠
= 9.0 𝜖 = 100

𝑀
0
= 1.0 𝜆 = 17.0

Table 2: Constant parameters.

𝜌 = 1.225 kg/m3 𝑎 = −0.6 𝑐
𝑚
𝛼

= −0.635

𝑚 = 12.387 kg 𝑏 = 0.125m V = 13m/s
𝐶
𝛼
= 0.036 (kg⋅m2)/s 𝑐

𝑙
𝛽

= 3.358 𝑠
𝑝
= 0.6m

𝐼
𝛼
= 0.065 kg⋅m 𝐶

ℎ
= 27.43 kg/s 𝑐

𝑙
𝛼

= 6.28

𝐾
ℎ
= 2844.4N/m 𝑐

𝑚
𝛽

= −0.635 𝑥
𝑎
= 0.2847

4.2. Results. In this section, a numerical simulation was
created to demonstrate the performance of the control law
developed in (13) and (14). The simulation is based on
the dynamic model given in (1). The dynamic parameters
utilized in the simulation are summarized in Table 2 andwere
obtained from [18].

The control gains 𝑘
𝑠
, 𝜖,𝑀
0
, and 𝜆 were manually selected

as described in Table 1. The actual SJA parameters 𝜃
∗

2
and

𝜃
∗

1
and estimates 𝜃

2
and 𝜃

1
were selected as 32.9 and 14.7,

respectively.
The control law was simulated for three different cases of

initial conditions: Case 1: 𝑥(0) = [0.02 0.2 0 0]
𝑇 (Figures

4 and 5), Case 2: 𝑥(0) = [0 0 0.05 0.5]
𝑇 (Figures 6 and 7),

and Case 3: 𝑥(0) = [0.02 0.2 0.03 0.3]
𝑇 (Figures 8 and 9).

Figures 4, 6, and 8 show the time evolution of the pitching
and plunging displacements 𝛼(𝑡) and ℎ(𝑡) during closed-loop
controller operation for Cases 1, 2, and 3, demonstrating the
rapid convergence of the pitching and plunging displace-
ments to zero. In addition, Figures 5, 7, and 9 show that the
pitching and plunging velocities 𝛼̇(𝑡) and ℎ̇(𝑡) converge to
zero rapidly during closed-loop operation. Further, the top
plots in Figures 4, 6, and 8 show the control effort 𝑢(𝑡) used
during closed-loop controller for Cases 1, 2, and 3.
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𝑇; time evolution of the

control input, 𝑢(𝑡), regulation error for plunging, ℎ(𝑡) in [m], and
regulation error for pitching, 𝛼(𝑡) in [rad].
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𝑇; convergence of the reg-

ulation error rate for plunging, ℎ̇(𝑡), and pitching, 𝛼̇(𝑡).
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𝑇; time evolution of the

control input, 𝑢(𝑡), regulation error for plunging, ℎ(𝑡) in [m], and
regulation error for pitching, 𝛼(𝑡) in [rad].
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Figure 9: Case 3: 𝑥(0) = [0.02, 0.2, 0.03, 0.3]
𝑇; convergence of the

regulation error rate for plunging, ℎ̇(𝑡), and pitching, 𝛼̇(𝑡).

5. Conclusion

In this paper, a sliding mode control law is presented,
which achieves asymptotic LCO regulation in UAV wings
using SJAs. Moreover, the control law achieves asymptotic
regulation of both the pitching and plunging displacements
for UAV LCO dynamics in a dual-parallel underactuated
form, where a single scalar control signal simultaneously
affects both displacements. To achieve the result, a sliding
mode control strategy is utilized, which employs a periodic
switching function and a novel sliding surface, which is
derived based on the nonlinear dynamics of the UAV LCO
system. The inherent nonlinearity and parametric uncer-
tainty in the SJA dynamic model is addressed by means of
a robust inverse control structure, which utilizes constant
feedforward estimates of the uncertain SJA parameters. The
use of constant estimates as opposed to time varying adaptive
parameter estimates is motivated by the desire to develop a
practical LCO regulationmethod that can be implemented on
small UAVswith limited onboard computational resources. A
rigorous analysis is presented to prove the theoretical result,



International Journal of Aerospace Engineering 7

andnumerical simulation results are provided to complement
the theoretical development.
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