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Abstract 

The future of spaceflight is threatened by the increasing amount of space debris, especially in the near-Earth 
environment. To continue operations, accurate characterization of hypervelocity fragment propagation following 
collisions and explosions is imperative. While large debris particles can be tracked by current methods, small particles 
are often missed. This paper presents a method to estimate fragment fly-out properties, such as fragment, velocity, and 
mass distributions, using machine learning. Previous work was performed on terrestrial data and associated simulations 
representing space debris collisions. The fragmentation of high-velocity fragmentation can be modeled by terrestrial 
fragmentation tests, such as static detonations. Recently, stereoscopic imaging techniques have become an addition to 
static arena testing. Collecting data with this method provides position vector and mass information faster and more 
accurately than previous manual-collection methods. Additionally, there is limited space debris data of similar 
accuracy on individual fragments. Therefore, this imaging technique was used as the primary collection method for 
the previous research data. Now, two-line element (TLE) sets for Iridium 33 are also used. Machine learning 
methodologies are leveraged to predict fragmentation fly-out from the collision event with Cosmos 2251. First, 
gaussian mixture models (GMMs) are used to model the probability distribution of the particles for a given desired 
characteristic at Julian dates following the event. Once this training data is generated, regression techniques can be 
used to predict these characteristics. K-nearest neighbor (K-NN) regressors are used to estimate the spatial distribution 
of the satellite fragments. Monte Carlo simulations are then used to validate the results, finding that this technique 
accurately estimates the total number of fragments expected to intersect a region of interest at a given time. Following 
this work, the same technique can be used to estimate the velocity and mass distributions of the debris. This information 
can then be used to estimate the kinetic energy of the particle and classify it to avoid future debris collisions. 
Keywords: fragmentation, space debris, machine learning 
 
 
1. Introduction 

For the future of space operations, accurate 
characterization of hypervelocity fragment propagation 
following satellite break-up, including collisions and 
explosions, is imperative. Debris fragments are often 
tracked by organizations, such as the United States Space 
Surveillance Network, using ground-based radars. 
However, the data is often sparsely collected as 
collection is limited to location, maximum altitude, and 
debris size. Therefore, proper characterization of debris 
particles through modeling is still necessary to avoid 
collisions and debris creation in the future. 

One of the most prominent existing models, widely 
used as a reference for others, is NASA’s Standard 
Satellite Breakup Model (SSBM), or Standard Breakup 
Model (SBM), based on both ground-based impact 
experiments and data from one on-orbit collision [1]. 
Models following, such as NASA’s EVOLVE 4.0, a one-
dimensional, low earth orbit (LEO) model, implement 
this model [2]. NASA’s LEO to GEO (geostationary 

orbit) Environmental Debris model (LEGEND) 
improves upon these previous EVOLVE models by 
expanding information into three-dimensional GEO 
orbits [1,3,4].  

All current models must be updated regularly to 
consider new debris and environmental information. For 
example, DebriSat, a ground-based experiment used to 
model catastrophic breakup of payloads in the LEO 
environment, has been used to update the NASA’s SBM 
with more current satellite qualities such as structure, 
material, and technology [5,6].  

Currently, general perturbation element sets, 
distributed by the North American Aerospace Defense 
Command (NORAD), for artificial satellite and debris 
data can be accessed from open-source satellite catalogs 
as two-line element (TLE) sets. Common resources 
include Space-Track.org and CelesTrak [7,8]. TLE sets 
are one of the current methods used to maintain satellite 
and debris data. As they are collected as general 
perturbation elements, the proper model must be selected 
to propagate the orbital elements as position and velocity 
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[9,10]. The accuracy for propagated TLE sets should be 
evaluated thoroughly as it varies, partially due to the 
sparse updates. However, different methods can be used 
to appropriately propagate TLE sets over a longer time 
range. 
 
1.1 Previous Work 

Formed in the 1980’s, the Department of Defense’s 
(DoD) Orbital Debris Program has also conducted 
terrestrial tests, including warhead static arena testing, to 
model and characterize satellite fragmentation [11]. 
Similarly, a previous paper [12] has been presented using 
terrestrial data produced from a static arena method but 
including more modern camera systems to produce 
stereoscopic imaging.  

Using this static arena test data from the U.S. Naval 
Air Warfare Center’s Weapons Division (NAWCWD) at 
China Lake, and associated simulation data used to 
expand the training dataset, also provided by 
NAWCWD, multivariate gaussian mixture models 
(GMMs) and expectation maximization (EM) were fit to 
intersection points on a polar-azimuth plane at various 
radii of intersection. Each GMM represented the 
distribution for a given characteristic and made up the 
training dataset. Then, K-nearest neighbors regression 
(K-NN) was used to estimate the spatial, velocity, and 
mass distributions of the fragments.  

This presented paper aims to expand these proposed 
ideas, performed on terrestrial structures, by applying 
them to more realistic satellite debris data.  
 
1.2 Objectives  

Previously, the higher accuracy in terrestrial 
fragmentation data, in addition to the uniform shape and 
mass of each object used in the static arena test, made it 
desirable to test the proposed method.  

Now, this paper presents a similar technique on a 
system with more realistic orbital object behavior. Real 
debris data, in this case Iridium 33 debris information, 
following the 2009 collision with Cosmos 2251, is used 
to test this method and produce spatial distributions from 
the collision over time, rather than over various 
intersection radii from an initial distance. 
 
2. Material and methods  

The first TLE set data recorded after the collision for 
the Iridium 33 satellite debris was retrieved from 
CelesTrak [8]. Only data first recorded within a year after 
the event was considered to maintain accuracy. Before 
using this as training data, periodic variations, i.e., 
oblateness perturbation, drag, and gravitational effects, 
are reconstructed using the SGP4 propagator [8,9,10]. 
The data was propagated from the time of impact, 
estimated to be approximately February 10, 2009, 16:56 
UTC, for 5 minutes at 1 second timesteps. 

Then, the propagated data is transformed from the 
Earth-Centered, Earth-Fixed (ECEF) reference frame to 
a coordinate system centered around Iridium 33’s 
expected ECEF coordinate at each timestep if the event 
had not occurred. This provides the user with the distance 
the debris data has travelled from its expected orbit. 
These cartesian coordinates are then transformed into 
longitude and latitude coordinates before fitting a GMM 
with 8 components to represent the debris distribution or 
spread at each timestep. The successful GMM fits are 
used as the training data. 

The general machine learning procedure used to 
estimate the number of fragments within a certain 
latitude-longitude section follows the previous work 
referenced in the introduction, which can be referenced 
in the schematic (see Fig. 1) [12]. However, the inputs 
are no longer the terminal state and radius, but instead the 
Julian date. 

 

 
Fig. 1. Schematic of the methodology used to predict the 
number of debris objects within a given area. 

MATLAB was used for the training data preparation, 
while python and the Scikit-learn toolbox were used for 
the regression model [13].  
 
3. Theory and calculation 

The following subsections discuss the theory behind 
the methodology used in this work. 
 
3.1 Gaussian Mixture Models 

After collecting longitude-latitude information at 
each timestep, probability distributions could be used to 
create training data, representing the spatial distribution 
of the debris fragments. Gaussian mixture models 
(GMMs) are the distribution method of choice as they 
can model more complex information than single 
gaussian distributions alone, as they are weighted linear 



74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023.  
Copyright ©2023 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-23-A6.2.3                           Page 3 of 6 

combinations of individual gaussian distributions. 
GMMs have three defining parameters, which can be 
adjusted to tune the model: the mean, 𝜇𝜇, represents the 
location of each mode of the distribution, or center, the 
covariance, Σ , represents the spread of the data 
distribution, and mixing coefficients, 𝜋𝜋𝑖𝑖 . In the 
multivariate case the GMM is the probability distribution 
defined as: 

𝑝𝑝�𝑋⃗𝑋� = �𝜋𝜋𝑖𝑖𝒩𝒩�𝑋⃗𝑋�𝜇𝜇𝑖𝑖 ,𝛴𝛴𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

(1) 

where 𝑁𝑁  is the number of components, ∑ 𝜋𝜋𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 1 

where 𝜋𝜋𝑖𝑖 are the mixing coefficients, and 𝒩𝒩(𝑥⃗𝑥|𝜇𝜇𝑖𝑖, Σ𝑖𝑖) is 
multivariate distribution defined as: 

𝒩𝒩�𝑋⃗𝑋�𝜇𝜇,𝛴𝛴� =
1

�(2𝜋𝜋)𝑑𝑑𝑑𝑑𝑑𝑑|𝛴𝛴|
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2 �𝑋⃗𝑋 − 𝜇𝜇�

𝑇𝑇
𝛴𝛴−1�𝑋⃗𝑋 − 𝜇𝜇��  (2) 

where 𝑋⃗𝑋 is the random variable vector, Σ is a symmetric 
covariance matrix, 𝜇𝜇  is a vector containing the means, 
and 𝑑𝑑𝑑𝑑𝑑𝑑 is the dimension of the dataset [14,15]. In this 
work a full covariance with 8 components is utilized. 
 
3.2 K-Nearest Neighbors Regression 

Regression methods are used to create a function to 
describe an input-output relationship. K-nearest 
neighbors regression (K-NN) uses an average of the 
closest observations in a local neighborhood with a 
specified number of neighbors to produce a model. K-NN 
computes the mean as: 

𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘�𝑥𝑥𝑞𝑞� = �
∑ 𝑤𝑤𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖))𝑘𝑘
𝑖𝑖=1

 ∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑖𝑖=1

, 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� ≠ 0

𝑓𝑓(𝑥𝑥1), 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� = 0
(3) 

where 𝑥𝑥𝑞𝑞  is the query point, 𝑘𝑘  is the size of the 
neighborhood, 𝑥𝑥𝑖𝑖 is a close point, or a neighbor, and 𝑤𝑤 is 
the weight defined as: 

𝑤𝑤𝑖𝑖 =
1

𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖�
(4) 

[16]. In the case that the minimum distance between the 
pair of objects is zero, 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� = 0 , the weight is 
undefined. Hence, the corresponding output training data 
of the single closest point is used, instead of taking an 
average. The distance metric used for this method is 
Euclidean distance, measured as the physical length of a 
segment between points, and the size of the 
neighborhood, 𝑘𝑘 , is a chosen integer, and must be 
adjusted to avoid overfitting and underfitting. 
 
3.3 Boundaries of Interest  

After estimating the spatial distribution, the number 
of debris fragments at each timestep within a certain area 
of the plane can be calculated using double integrals 
defined: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 � 𝑝𝑝𝑁𝑁(𝑥𝑥)
𝑆𝑆

𝑑𝑑𝑑𝑑 (5) 

where 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is total estimated number of debris at the 
timestep and 𝑑𝑑𝑑𝑑 is described as 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (6) 
where 𝜙𝜙 is the latitude angle and 𝜃𝜃 is the longitude angle 
[12]. 
 
4. Results and Discussion  

To visually assess how well the GMM fit, the 
probability density function was plotted over the data 
points. The resulting GMM parameters were then used to 
produce 493 randomized points, representing the number 
of debris fragments considered. This was compared to the 
actual debris locations (Fig. 2). The qualitative result 
shows that, for this timestep, the GMM fits well to the 
data, even though the contours do not visually include all 
the points. 

When selecting the regression model, K-nearest 
neighbors regression with 𝑘𝑘 = 2 yields the best results. 
Other values of 𝑘𝑘 , 2 to 10, were considered before 
coming to this conclusion, with 𝑘𝑘 = 2 yielding the only 
silhouette score above 0, indicating that all other values 
of 𝑘𝑘, or number of clusters, poorly fit the data. This is 
most likely a result of the limited amount of data points. 
Trials with random forest regression were also 
performed. 

To validate the model, as done in [12], Monte Carlo 
simulations were used. For 15 timesteps outside of the 
training dataset, 20 different randomized regions of the 
plane were generated. The resulting mean squared error 
(MSE) and standard deviation (SD) of the model 
estimated number of debris compared to the actual model 
values are shown in Table 1.  

 
Table 1. Mean squared error and standard deviation of 
the fragment count estimations. 

MSE, Debris Fragments SD, Debris Fragments 
1.651 2.537 

 
For 4 different timesteps, of the 15 tested, the 

resulting GMM fit and predicted GMM fit for one of the 
randomized areas of interest, shown as the black 
rectangle, are displayed in Fig. 3-Fig. 5.  
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Fig. 2. The GMM fit to the first timestep (left) and the resulting random sampling produced by the GMM parameters. 

 

 
Fig. 3. Example of the Monte Carlo simulation for a testing timestep. 

 

 
Fig. 4. Example of the Monte Carlo simulation for a testing timestep. 
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Fig. 5. Example of the Monte Carlo simulation for a testing timestep. 

 
Visually, the predicted GMM seems to fit close to the 

directly fit GMM. However, if more debris objects can 
be considered for the GMM in the future, it may fit better 
to the data. Additionally, though the mean squared error 
is small, when sections with smaller counts are 
considered, slight differences in the GMM parameters are 
more significant. 
 
5. Conclusions  

These results prove that this method can be applicable 
to space debris estimations. After propagating TLE sets 
for the Iridium 33 debris, training data was generated 
using GMMs. Training K-NN with 𝑘𝑘 = 2 was found to 
produce the most accurate spatial distribution results. 
Using these distributions, the total values within a chosen 
boundary of interest were calculated. The resulting 
distributions were reviewed using Monte Carlo 
simulations.  

While the model still requires improvements in data 
accuracy and amount, it proves to make successful 
predictions, displaying the potential in using this 
methodology to predict debris characteristics. In the 
future, this work should be applied to predict the velocity 
and mass distributions of satellite debris. 

However, data accuracy will need to be assessed and 
further work should be performed with TLE’s to make 
the data more reliable. Additionally, to continue work 
with space debris, more data will need to be considered 
for proper predictions. With limited information 
collected at the time of the event, as well as a limited 
number of debris systems, other sources, such as 
simulations, should be considered to expand the training 
dataset. 

This data is also only useful for this collision event 
specifically. Break-up characteristics, such as 
orientation, size, material, and method of break-up, will 
need to be considered before this method can be 
generalized. With future work, this method will become 

more generalizable and particles currently too small to 
track may be characterized.  
 
Acknowledgements  

Previous data was provided by the U.S. Naval Air 
Warfare Center Weapons Division at China Lake and 
high-fidelity simulations were also performed by the U.S. 
Naval Air Warfare Center Weapons Division. Current 
data is retrieved from Celestrak [8]. Investigations are 
supported by the U.S. Air Force Office of Scientific 
Research (award number FA9550-20-1-0200). K. E. 
Larsen also thanks the SMART Scholarship Program and 
the Intuitive Machine and Columbia Sportswear 
Advancing Women in Technology Fellowship for 
financial support in the pursuit of her degree.  
 
References 
 
[1] J.C. Liou, Orbital Debris Modeling, NASA Orbital 

Debris Program Office, (2012).  
[2] N.L. Johnson, P.H. Krisko, J.-C. Liou, P.D. Anz-

Meador, NASA's New Breakup Model of Evolve 4.0, 
Advances in Space Research, (2001) 1377–1384.  

[3] P.H. Krisko, J.-C. Liou, NASA Long-Term Orbital 
Debris Modeling Comparison: Legend and Evolve, 
IAC-03-IAA.5.2.03, 54th International Astronautical 
Congress, Bremen, Germany, 2003, 29 September to 
3 October. 

[4] J.-C. Liou, N.L. Johnson, Instability of the Present 
LEO Satellite Populations. Advances in Space 
Research. 7, (2008) 1046–1053. 

[5] DebriSat. Astromaterials Research & Exploration 
Science: NASA Orbital Debris Program Office, 
NASA, 
https://www.orbitaldebris.jsc.nasa.gov/measurements
/debrisat.html.  

[6] M. Rivero, B. Shiotani, M. Carrasquilla, N. Fitz-Coy, 
J.-C. Liou, M. Sorge, T. Huynh, J. Opiela, P. Krisko, 
H. Cowardin, DebriSat Fragment Characterization 
System and Processing Status, IAC-16-A6.2.8, 67th 
International Astronautical Congress, Guadalajara, 
Mexico, 2016, 26-30 September. 

[7] Space-Track. https://www.space-track.org.  

https://www.orbitaldebris.jsc.nasa.gov/measurements/debrisat.html
https://www.orbitaldebris.jsc.nasa.gov/measurements/debrisat.html
https://www.space-track.org/


74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023.  
Copyright ©2023 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-23-A6.2.3                           Page 6 of 6 

[8] T.S. Kelso, CelesTrak, https://celestrak.org.  
[9] F.R. Hoots, R.L. Roehrich, SPACETRACK 

REPORT NO. 3 Models for Propagation of NORAD 
Element Sets, 1988. 

[10] D.A. Vallado, P. Crawford, R. Hujsak, T.S. Kelso, 
Revisiting Spacetrack Report #3, AIAA/AAS 
Astrodynamics Specialist Conference, Keystone, 
Colorado, 2006, 21-24 August. 

[11] J.C. Connell, W. Tedeschi, D. Jones, Examples of 
Technology Transfer from the SDIO Kinetic Energy 
Weapon Lethality Program to Orbital Debris 
Modeling, (1991).  

[12] K.E. Larsen, R. Bevilacqua, O.S. Mulekar, E.L. 
Jerome, T.J. Hatch-Aguilar, Predicting Dynamic 
Fragmentation Characteristics from High-Impact 
Energy Events Utilizing Terrestrial Static Arena Test 
Data and Machine Learning, Acta Astronautica, 
(2023) 67-81. 

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. 
Michel, B. Thirion, O. Grisel, et al., Scikit-learn: 
Machine Learning in Python, Journal of Machine 
Learning Research. 12 (2011) 2825–2830. 

[14] P. Eslambolchilar, A. Komninos, M. Dunlop, 
Machine Learning Basics, in: Intelligent Computing 
for Interactive System Design: Statistics, Digital 
Signal Processing, and Machine Learning in Practice, 
Association for computing machinery, New York, 
2021, pp. 143–193. 

[15] J. McGonagle, G. Pilling, A. Dobre, V. Tembo, A. 
Kurmukov, A. Chumbley, et al., Gaussian Mixture 
Model, Brilliant Math & Science Wiki, 
https://brilliant.org/wiki/gaussian-mixture-model/.  

[16] O. Kramer, Unsupervised K-Nearest Neighbor 
Regression, (2011). 

 
 
 
 
 
 

 

 

https://celestrak.org/
https://brilliant.org/wiki/gaussian-mixture-model/

	Using Machine Learning to Predict Hypervelocity Fragment Propagation of Space Debris Collisions
	tmp.1699372283.pdf.Y1GjE

