CARDIOVASCULAR ENGINEERING RESEARCH: DEVELOPMENT OF A MAGNETICALLY-DRIVEN VENTRICULAR ASSIST DEVICE

Christopher Adams, Jansyn Johnston
Department of Mechanical Engineering, Embry-Riddle Aeronautical University
adamsc17@my.erau.edu
johnj145@my.erau.edu

ABSTRACT
The current state of the art device used to aid patients with end stage heart failure, Left Ventricular Assist Device (LVAD), still exhibits risks that cause thromboembolisms to enter the bloodstream, which can lead to strokes and death. These risks occur due to the rotary function and small moving parts of the LVAD which cause particulate matter in the blood to form thrombi.

The proposed Magnetically-Driven Ventricular Assist Device (MVAD) will remove the existence of moving parts while still increasing momentum in blood flow. The development of the MVAD consists of an electromagnet and a ferro-fluid that will be tested on the mock circulatory loop. The mock circulatory loop has been calibrated to account for the addition of the ferro-fluid solution instead of water. The electromagnet prototypes will be wrapped in multiple layers of about 45 wraps in each layer.

METHODS
The design of the magnetically-driven ventricular assist device (MVAD) consists of two parts: an electromagnet and ferro-fluid. The MVAD will be tested within the mock circulatory loop which simulates the circulatory system of a 10-year-old male who received the Fontan surgery for Hypoplastic Left Heart Syndrome as an infant.

The electromagnet will be made to produce a magnetic field in order to increase the velocity of the flow. The velocity field \(\mathbf{u} \) of the fluid domain is governed by the Navier-Stokes equations such that,

\[
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) + \mathbf{F} \tag{1}
\]

Where \(\mathbf{F} \) is the Volumetric Body Force exerted on the fluid. In the case of this experiment, the MVAD produces this body force as a result of the magnetic field acting on the ferrous nanoparticles. The magnetic force can be calculated such that,

\[
\mathbf{F} = m \mathbf{B} \tag{2}
\]

Where \(m \) is the magnetic dipole moment and \(\mathbf{B} \) is the magnetic flux density provided by the inductance of the electromagnetic coil. The magnetic flux density is directly proportional to magnetic intensity with permeability constant, for a particular medium, where,

\[
\mathbf{B} = \mu \mathbf{H} \tag{3}
\]

Using these concepts, the magnetic flux density provided by the electromagnet as,

\[
\mathbf{B} = \mu \mathbf{H} + \mathbf{B}_{\text{rem}} \tag{4}
\]

Where \(\mathbf{B}_{\text{rem}} \) is the remnant flux density.

A ferro-fluid is produced using an appropriate ratio of Ferrous Chloride (FeCl₂) and Ferric Chloride (FeCl₃) solutions mixed together in a base solution of ammonia (NH₃). The solution is kept at a steady temperature of around 50 degrees Celsius by resting on a hot plate under constant homogenization. Oleic Acid is used as a surfactant to inhibit clumping. The solution is centrifuged to eliminate ammonium hydroxide and to segregate the magnetic particles. The excess liquid is then replaced with Polyethylene Glycol (PEG).

RESULTS
The diameter of the ferro-fluid particles was determined by placing a sample of the solution onto asilicon wafer for an examination in a Scanning Electron Microscope (SEM), which on average was 147 nm. The ferro-fluid sample was sputter coated with gold particles. For further investigation, the sample was put under a localized Energy-dispersive X-ray spectroscopy (EDX).

It was determined that by wrapping several layers of coils, each layer wrapped around the previous layer with wires in parallel circuits to another, one could achieve high Gauss ratings within the fluid domain at lower power requirements.

REFERENCES

ACKNOWLEDGMENTS
Dr. Eduardo Divo, Associate Chair of Department of Mechanical Engineering, ERAU
Dr. Anthony Nunez, Thoracic and Cardiac Surgeon
Dr. William M De.Campli, Department of Medicine, UCF
Dr. Alan J Kassab, Department of Mechanical Engineering, UCF
Dr. Foran R Maldar, Department of Physical Sciences, ERAU
Arka Das, Ph.D. Student of Department of Mechanical Engineering, ERAU