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Abstract
The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning tech-

nologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback
controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-of-
squares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles.
Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop
stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which si-
multaneously trains a neural network policy and neural network Lyapunov function such that feedback-optimal control
is achieved, and Lyapunov stability is verified. Phase-space plots of the Lyapunov derivative show the improvement
in stability assessment provided by the neural network Lyapunov function, and Monte Carlo simulations demonstrate
the stable, feedback-optimal control provided by the policy.
Keywords: Optimal Control, Imitation Learning, Lyapunov Stability

1. Introduction

The development of feedback-optimal controllers has
been investigated for a variety of aerospace applications
including earth-based, lunar, and planetary pinpoint land-
ing systems, as well as orbital and deep-space trajectory
maneuvers [1, 2]. Over recent decades, increased com-
puting power and the use of Graphics Processing Units
(GPUs) has prompted significant advancements in the use
of Deep Neural Networks (DNNs) for tasks like image
recognition, speech recognition, and autonomous robotic
control [3–5].

Many recent efforts have leveraged deep learning tools
to develop feedback controllers (sometimes called Guid-
ance and Control Networks or G&CNets) for a variety
of autonomous tasks, including fuel-optimal and energy-
optimal feedback control for pinpoint-soft-landings [1, 6–
9]. Despite the progress provided by studies that address
and measure issues like distribution shift and loss of op-
timality during disturbances, the machine learning black-
box problem must still be addressed, possibly by the en-
forcement and assessment of stability certificates (e.g.
Lyapunov stability) in DNN policies trained via imitation
learning to perform a specific feedback-control task [10–
13].

One study assesses stability of a DNN controller ap-
plied to a 3DOF hovering problem by linearizing about
the hover point then applying classical linear control as-
sessments (e.g. root-locus plots) [9]. Some studies ad-
dress the stability issue in the context of an LQR cost
function applied to nonlinear dynamics by balancing a
DNN policy in nonlinear regions of the state-space with a
standard linear state-feedback law in linearizable regions
of the state-space near the equilibrium point [14]. Another
performs stability-constrained imitation learning, but for
linear time-invariant (LTI) systems [15]. One study makes
use of a Lyapunov falsifier to iteratively retrain a neural
network policy and parametric Lyapunov function, and it
maintains that stability is still acquired despite violations
of the Lyapunov condition due to the "Almost Lyapunov"
theorem [16, 17]. Another study enforces barrier func-
tion constraints to certify forward-invariance of specific
regions of the state-space, and it also leverages the almost-
Lyapunov condition [18]. Despite these achievements, the
enforcement of stability certificates for imitation learn-
ing applied to the fuel-optimal pinpoint-landing problems
with nonlinear dynamics still remains unaddressed.

In this investigation, it is first shown that the standard
sum-of-squares (SOS) Lyapunov function is too restric-
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tive to be a reasonable certificate on the control profiles
needed for fuel-optimal landing maneuvers. This restric-
tion is removed via the application of a neural network
Lyapunov function (NNLF) [19]. Then, a constrained
imitation learning approach is applied, allowing for var-
ious levels of stability certificate assessment on differ-
ent subdomains of the lander state-space. These topics
are investigated in the context of an earth-based, fuel-
optimal 3-degree-of-freedom (3DOF) point-mass lander
and a 3DOF rigid-body lander (equations of motion pro-
vided).

The paper is organized as follows. Background on the
utilized techniques are provided in Section 2. Then, the
problem formulation and proposed approach is presented
in Section 3. Results, including Lyapunov stability as-
sessment and Monte Carlo simulations, are included in
Section 4. Finally, the paper is concluded in Section 5.

2. Background

The methods presented in this paper make use of a
stability-constrained imitation learning method to achieve
feedback-optimal control of a pinpoint landers.

2.1 Imitation Learning
Imitation learning is a sub-field of machine learning

that trains a policy to replicate a desired behavior from
expert demonstrations. Previous investigations have made
use of imitation learning to replicate human behavior in
the context of self-driving cars, robotic arm movements,
and video games [5, 10, 20]. Non-human experts have
been used when optimal control is the desired behavior.
The core parts of the imitation learning methods used are
similar, and success has been seen with these techniques
in the aerospace domain for landing, hovering, and signal
tracking problems [7, 8].

Demonstrations in this study are provided in the form
of open loop trajectories. The trajectories together com-
pose a set of state-action pairs D = {{(xi, j,u∗i, j}

Ni
i=1}

N j
j=1,

where N j is the number of trajectories, and Ni is the
number of state-action pairs per trajectory, yielding a to-
tal of NiN j state-action pairs that characterize the open
loop state history x(t) ∈ Rnx and optimal control history
u∗(t) ∈ Rnu . In addition to these state-action pairs, an
environment that defines how states transition based on
previous states and control inputs must be defined. For
continuous-time systems, this environment is typically de-
fined by ordinary differential equations (ODEs).

Deep imitation learning uses a DNN u = πθ (x) as the
policy where θ ∈ Θ are the parameters of the network
π : Rnx → Rnu , and Θ represents the parameter space
of the policy. The optimal policy u∗ can be represented as
πθ∗ or π∗ since the optimal parameters θ ∗ /∈Θ. The states

in the set of demonstrations D can be described as being
sampled from the distribution of states given the expert
policy is used x∼ p(x|π∗(x)).

A loss function l : Rnu ×Rnu → R≥0 that measures the
error of policy predictions with respect to the expert pre-
diction must be defined. A common loss function, and the
one used in this study, is the squared error

l(u1,u2) = (u1−u2)
T (u1−u2)

The general imitation learning objective can then be
formulated as

argmin
θ

Ex∼p(x|πθ (x))[l(π
∗(x),πθ (x))] (1)

where E is the expected value given that states are sam-
pled from policy behavior [21].

Behavioral cloning is the simplest imitation learning
technique, which applies supervised learning on the pro-
vided example state-action pairs. Behavioral cloning does
not rollout the policy during training, and it does not re-
query the expert for more training data, making it an at-
tractive option when rollout or expert query is expensive.
For parametric policy classes, it is formulated as

argmin
θ

Ex∼p(x|π∗(x))[l(π
∗(x),πθ (x))] (2)

where E is the expected value given that states are sam-
pled from expert behavior [21]. Behavioral cloning is
simple to implement, however its reliance on the distri-
bution of states provided by expert demonstrations can
create distribution shift where Ptest(x) ̸= Ptrain(x) [22].
Some imitation learning techniques address this shift by
either re-querying the expert during rollout and retraining
for unfamiliar states like in Dataset Aggregation (DAg-
ger) [10] or by injecting noise into the training data such
as in DART [21]. Another study evaluated the distribution
shift experienced from behavioral cloning applied to vari-
ous formulations of the pinpoint landing problem [11].

Gradient based methods are common for paramet-
ric optimization, and they include simple methods like
Stochastic Gradient Descent (SGD), and Adam [23, 24].
These algorithms make use of some update law γ to up-
date the network parameters based on an evaluated gra-
dient of the loss function ∂ l/∂θ and some update law
hyper-parameters ηlearn (e.g. learning rate, beta-decay,
momentum, etc.).

θ ← γ

(
θ ,

∂ l
∂θ

,ηlearn

)
(3)

The gradient evaluations and parameter updates are typi-
cally done empirically over batches of the data for com-
putational effectiveness.
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2.2 Optimal Control
Optimal control problems (OCPs) seek find control

histories that minimize a defined cost functional subject to
various differential and algebraic equality and inequality
constraints that define the equations of motion, boundary
conditions, and constraints on the system state and con-
trol spaces. Typically the ODE constraints are expressed
in their first-order state-space form

ẋ(t) = f(x(t),u(t)) (4)

where f : Rnx ×Rnu → Rnx . The cost functional is defined
as

J(x(t),u(t), t f ) = Φ(x(t f ),u(t f ), t f )+
∫ t f

t0
L(x(t),u(t), t)dt

(5)
where L is a path cost and Φ is a terminal cost. The Single-
Phase OCP is then formulated as

min
u(t),t f

J(x(t),u(t), t f )

subject to
ẋ(t) = f(x(t),u(t), t)
g(x(t),u(t), t)≤ 0
e(x(t0), t0,x(t f ), t f ) = 0

(6)

where f defines the system equations of motion, g defines
algebraic equality and inequality constraints, and e defines
endpoint constraints [25].

Generally, OCPs do not have analytical solutions, and
numerical methods must be employed. Direct methods
transcript the OCP to a standard nonlinear programming
problem (NLP). Then, an NLP solver is called to obtain
the optimal control u∗(t) and the optimal trajectory of
states x∗(t). We use the MATLAB package OpenOCL,
which performs the transcription of the OCP to an NLP,
and then calls IPOPT (Interior Point OPTimizer) to solve
it [26–28].

2.3 Lyapunov Stability
The core topic that this study uses to enforce and eval-

uate safety of the closed-loop system is Lyapunov Stabil-
ity. A system ẋ = f(x,u(x)) with equilibrium point x̄ = 0
such that f(0,u(0)) = 0 is stable in the sense of Lyapunov
if for any ε > 0 there exists a δ > 0 such that for any ini-
tial ∥x0∥ < δ ⇒ ∥x(t)∥ < ε for all t > 0. Additionally, if
limt→∞ ∥x(t)∥ = 0, then the system is said to by asymp-
totically stable [29].

This notion of Lyapunov stability can be verified by
defining a positive function V : Rnx → R≥0 such that
V (x) > 0 ∀x ̸= 0 and V (0) = 0, and then showing that its
derivative V̇ = dV/dt is negative (i.e. V̇ (x) ≤ 0 for all

x ̸= 0 for stability and V̇ (x) < 0 for all x ̸= 0 for asymp-
totic stability).

The standard Lyapunov candidate is the SOS, which
has quadratic form

VSOS(x) =
1
2

xT x (7)

This candidate is foundational to nonlinear control the-
ory and has yielded many successes in adaptive nonlinear
control [29, 30]. However, its ellipsoidal level-sets have
been shown to be too restrictive to fully describe stable
regions of state-space for some systems.

The NNLF presented in [19] addresses this restric-
tion by using a parameterized Lyapunov candidate (i.e. a
DNN) Vφ where φ ∈Φ are the network parameters and Φ

is the network parameter space. The NNLF is defined as
the inner-product of a neural network vφ with itself

Vφ (x) = vT
φ (x)vφ (x) (8)

NNLFs have certain restrictions on the structure of the
network, the activation functions, and the parameters
space in order to maintain them as valid Lyapunov can-
didates. For example, each activation function must have
a trivial nullspace (e.g. tanh), and the weights of each
layer l must maintain the trivial nullspace by having the
form

Wl =

[
GT

l1Gl1 + εInl−1
Gl2

]
(9)

where nl is the number of neurons in layer l, Gl1 ∈
Rql×nl−1 for some ql ∈ N≥0, Gl2 ∈ R(nl−nl−1)×nl−1 , Inl−1 ∈
Rnl−1×nl−1 is the identity matrix and ε > 0 is a constant
to keep the top partition positive-definite. The parame-
ter is then defined as φ = {Gl1,Gl2}Nl

l=1, where Nl is the
number of layers in vφ . More requirements on the NNLF
parameters can be found in [19].

The time derivative (sometimes called a Lie derivative)
can be calculated via the chain-rule

V̇φ =
dVφ

dt
=
(

∂Vφ

∂x

)T dx
dt

=
(

∂Vφ

∂x

)T
ẋ (10)

Using the equations of motion, the final derivative is

V̇φ (x,u) =
(

∂Vφ

∂x

∣∣∣
x

)T
f(x,u) (11)

The gradient ∂Vφ/∂x can be evaluated at any x using
back-propagation/automatic differentiation. In this study,
TensorFlow is used to handle all neural network gradient
calculations and parameter updates [31].
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2.4 Certificate Levels
In this study, the time-derivative of the NNLF

V̇φ (x,πθ (x))is used as the safety/stability certificate for
the trained policy. The certificate is evaluated across spe-
cific distributions in the state-space using the trained pol-
icy πθ .

According to Brunke, certification c(x,u) ≤ 0 can be
applied in three levels [32]:

• Level III: Constraint satisfaction guaranteed where
c(x,u)≤ 0.

• Level II: Constraint satisfaction guaranteed with high
probability where P(c(x,u)≤ 0)≥ psatis f y for some
0 < psatis f y < 1.

• Level I: Constraint satisfaction encouraged where
c(x,u)≤ εsatis f y for some εsatis f y > 0.

It should be noted that if psatis f y = 1 or εsatis f y = 0,
the Level II and Level I certificates, respectively, become
Level III. This level framework is applied to the systems
developed in this paper, evaluating P(V̇φ (x,u)≤ 0)).

2.5 Applications to Pinpoint Landing
Imitation learning has been applied in several studies to

perform landing maneuvers in a variety of lander formula-
tions and scenarios. One study generated tens of millions
of state-action pairs for optimal landing of a low-fidelity
multicopter model using direct methods, and then trained
a neural network to perform the landings [7]. An extention
of the study used the same formulation, but generated the
trajectories using indirect methods to reduce chatter in the
optimal control profiles [33]. Another study combined the
optimal states with a lunar surface image generator to train
the feedback controller to map surface images to optimal
control, rather than the state directly [8]. Reinforcement
learning approaches have been applied to higher fidelity
formulations (i.e. 6DOF) of the fuel-optimal pinpoint
landing problem by using the Advantage-Actor-Critic al-
gorithm [2].

3. Approach

In this investigation, many optimal trajectories are gen-
erated for pinpoint landings of a 3DOF point-mass lan-
der and a 3DOF rigid-body lander. The OCP formula-
tions (including equations of motion) for the two prob-
lems are provided, as well as the ranges of initial con-
ditions used for the trajectory generation campaigns. A
feedback controller policy as well as an NNLF are pre-
trained on the optimal open-loop state-action pairs, and
then a constrained optimization that simultaneously re-
trains the policy and NNLF on a broader range of states is
performed.

As a note on terminology, the lander equations of mo-
tion do not represent fuel consumption and/or a changing
mass of the vehicle. It is common to model the lander
mass as one of the states of the vehicle, and to define an
ODE that describes how the lander mass decreases with
applied control effort. In this stability investigation, the
lander mass is considered to be constant. Despite there
being no fuel-consumption, the term "fuel-optimal" that
is maintained in this paper refers to the square-root in the
OCP cost functional integrands, and it serves to distin-
guish the OCPs solved in this study from those with an
"energy-optimal" integrand which does not have a square-
root.

3.1 Optimal Data Generation

The 3DOF point-mass lander is of constant mass with
number of states nx = 6 and number of controls nu = 3.
The state vector is x = [rT ,vT ]T where r = [x,y,z]T and
v = [vx,vy,vz]

T are the position vector and velocity vector,
respectively, expressed in the inertial frame with z point-
ing up. The control vector is u = [u1,u2,u3]

T . Each con-
trol represents a thrust on the point-mass lander applied in
the directions of the inertial frame axes. The OCP is then
formulated as

min
u(t),t f

∫ t f

t0

√
u2

1 +u2
2 +u2

3dt

subject to
ṙ = v

v̇ =
1
m

u−g

(12)

where the gravity vector g = [0,0,g]T is earth’s gravity
(i.e. g = 9.81 m/s2). The end point constraints contain
the initial conditions x(t0) = x0 and the final conditions
x(t f ) = x f . The constraints on lander control are given as

−20 N≤ui ≤ 20 N for i ∈ {1,2}
0≤u3 ≤ 20 N

The 3DOF rigid-body lander is of constant mass with
number of states nx = 6 and number of controls nu = 2.
The state vector is x = [rT ,φ ,vT ,ω]T where r = [x,y]T is
the position vector with y pointing up, φ is the tilt angle,
v = [vx,vy]

T is the velocity vector in the inertial frame,
and ω is the angular velocity. The control u1 represents
an axial thrust pointing up the body axis of the lander, and
the control u2 represents a lateral thrust applied at some
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moment arm r from the lander center of mass.

min
u(t),t f

∫ t f

t0

√
u2

1 +u2
2dt

subject to
ṙ = v
φ̇ = ω

v̇x =
1
m
(u2 cos(φ)−u1 sin(φ))

v̇y =
1
m
(u2 sin(φ)+u1 cos(φ))−g

ω̇ =
r
J

u2

(13)

where the gravity g is earth’s gravity (i.e. g = 9.81 m/s2)
and J is the lander moment of inertia. The end point con-
straints contain the initial conditions x(t0) = x0 and the
final conditions x(t f ) = x f . A single state constraint of

−50 deg≤ φ ≤ 50 deg

is enforced to represent vehicle "overtilting" require-
ments. The constraints on lander control are given as

0≤u1 ≤ 20 N
−20 N≤u2 ≤ 20 N

A diagram of the 3DOF rigid-body lander is shown in
Fig. 1. The point-mass formulation serves as a set of sim-
ple dynamics on which to test the developed algorithms.
The rigid-body formulation serves as an incremental ex-
tention to a more complicated system that has coupled
dynamics and fewer control inputs. Future studies can
extend the techniques presented to 6DOF formulations of
the landing problem, such as the ones presented in [2, 11,
13].

Fig. 1: Diagram of 3DOF rigid-body lander

For both formulations, a total of 90,000 trajectories
were generated, each containing 100 optimal time-steps
yielding a total of 9 million optimal state-action pairs D.
Of the 9 million pairs, 4 million were reserved as a testing
set Dtest (i.e. not used in any training). Of the remain-
ing 5 million pairs, 1 million were used as a validation set
Dval (i.e. evaluated during training, but not used to update
parameters), yielding a training dataset Dtrain of size of 4
million pairs for both formulations

3.2 Pretraining
Before implementing the full constrained optimization,

some pretraining of both the policy πθ and the NNLF Vφ

was done to prepare the neural networks.
The pretraining of the policy consisted of the standard

behavioral cloning problem formulated by Eqn. (2), us-
ing the training dataset Dtrain to represent the distribution
of states using optimal/expert behavior p(x|π∗(x)). The
result is a policy that approximates π∗ in open loop and
demonstrates near-optimal feedback control when simu-
lated.

Pretraining the NNLF Vφ is done in a two-step process.
The first step fits Vφ to verify stability of the expert π∗,
since this is control profile that our policy πθ ultimately
approximates. The second step expands, in an unsuper-
vised fashion, the region of the state-space for which Vφ

verifies policy behavior.
An alternate way of representing the Lyapunov stabil-

ity condition V̇ (x)≤ 0 is by using the max function eval-
uated on a given distribution of states. Verifying the con-
dition

max
x∈D

[V̇ (x)]< 0 (14)

also verifies that V̇ (x) < 0 for all x in some subdomain
D⊆ Rnx .

The first step of the NNLF pretraining is then formu-
lated as

argmin
φ

[
max

x∼p(x|π∗(x))
[V̇φ (x,π∗(x))]

]
(15)

In accordance with Eqn. (3), this formulation requires
calculation of the gradient

∂

∂φ

(
max

x∼p(x|π∗(x))
[V̇φ (x,π∗(x))]

)
(16)

for updates of the NNLF parameter φ . The dataset
Dtrain represents the states samples from distribution
p(x|π∗(x)). The result of this first step is verification that
P(V̇φ (x,u)≤ 0)|x∼ p(x|π∗(x)),u = π∗(x))> psatis f y.

The second step of the NNLF pretraining uses the pre-
trained policy πθ to evaluate and train Vφ on a broader
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range of states without re-querying the expert π∗, which
would require running a full OCP optimization routine
(using OpenOCL) for each queried state. The broader
range of states is sampled from a uniform distribution de-
fined by upper and lower values of each state in the state-
space to create dataset XMC. The second step of the NNLF
pretraining is then formulated as

argmin
φ

[
max

x∈XMC
[V̇φ (x,πθ (x))]

]
(17)

The result of this second step is verification that
P(V̇φ (x,u)≤ 0)|x ∈ XMC,u = πθ (x))> psatis f y.

3.3 Constrained Optimization
Ultimately, the objective of stability-constrained imi-

tation learning is to achieve verifiably stable feedback-
optimal controller that performs pinpoint landings. The
objective is not to achieve stability alone, or to simply per-
form stable landings, but to do both of those things with
a fuel-optimal control profile in a feedback loop. The be-
havioral cloning problem is therefore altered to reflect this
as a constrained optimization problem

argmin
θ∈Θ
φ∈Φ

Ex∼p(x|π∗(x))[l(π
∗(x),πθ (x))]

subject to
max

x∈XMC
[V̇φ (x,πθ (x))]≤ 0

(18)

From this formulation, a Lagrangian can be defined as

L(θ ,φ ;λ ) =Ex∼p(x|π∗(x))[l(π
∗(x),πθ (x))]

+λ max
x∈XMC

[V̇φ (x,πθ (x))]
(19)

where λ ≥ 0 is the Lagrange multiplier. The solution
to (18) is then given by the minimax problem

min
θ∈Θ
φ∈Φ

max
λ≥0

L(θ ,φ ;λ ) (20)

Gradient-based optimization methods require calcula-
tion of the gradients ∂L/∂θ and ∂L/∂φ which are calcu-
lated via back-propagation, and

∂L

∂λ
= max

x∈XMC
[V̇φ (x,πθ (x))] (21)

which is evaluated directly and is effectively a measure
of the constraint violation. In implementation the min-
imax problem is unstable when the initial parameters θ

and φ violate the constraint since the maximizing inner

loop would not converge, resulting in updates to λ that in-
crease L without bound. The maximin problem is solved
instead to address this

max
λ≥0

min
θ∈Θ
φ∈Φ

L(θ ,φ ;λ ) (22)

The optimization routine has an inner loop that simul-
taneously trains πθ and Vφ based on the gradient of L

over datasets Dtrain and XMC. Then, an outer optimiza-
tion maximizes L over λ by incrementing it based on con-
straint violation/satisfaction.

3.4 Networks and Training
The same neural network structure is used for the pol-

icy and NNLF in both formulations of the landing prob-
lem.

The policy πθ contains two fully-connected hidden
layers, each with 100 neurons using the tanh activation
function. The output layer has nu number of neurons with
a linear activation function. The Adam optimizer was
used to pretrain the policy, as well as update the policy
parameters during the inner loop of the constrained opti-
mization (i.e. Lagrangian minimization).

The NNLF Vφ is defined from an internal neural net-
work vφ , as shown in Eqn. (8). This network contained
two hidden layers with 100 and 200 neurons from first to
last. The output layer has 300 neurons, and each layer
used the tanh activation function. The Adam optimizer
was used to pretrain the NNLF for the point-mass for-
mulation, and SGD was used to pretrain the NNLF for
the rigid-body formulation. Finally, the Adam optimizer
was used to update the policy parameters during the in-
ner loop of the constrained optimization (i.e. Lagrangian
minimization) for both formulations.

4. Results

4.1 SOS Lyapunov
First, the SOS Lyapunov candidate is evaluated on

the dataset Dtest to show that it is too restrictive to be
a useful certificate, given the desired control profiles of
this investigation. This evaluation provides the value of
P(V̇SOS(x,u)≤ 0)|x∼ p(x|π∗(x)),u = π∗(x)).

To visualize, the positive and negative V̇SOS(x) loca-
tions are plotted on phase-spaces. The z phase-space of
the point-mass problem can be seen in Fig. 2, and the
φ phase-space of the rigid-body problem can be seen in
Fig. 3.

From these evaluations of VSOS,

• P(V̇SOS(x,u) ≤ 0)|x ∼ p(x|π∗(x)),u = π∗(x)) =
74.8% for the point-mass problem, and
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4.2 Pretrained Networks

Fig. 2: z phase-space of VSOS evaluated on optimal data

Fig. 3: φ phase-space of VSOS evaluated on optimal data

• P(V̇SOS(x,u) ≤ 0)|x ∼ p(x|π∗(x)),u = π∗(x)) =
72.7% for the rigid-body problem

which further prompt the need for parametric lyapunov
candidates (i.e. the NNLF).

4.2 Pretrained Networks
After applying the first step of the NNLF pretraining

process, Vφ was evaluated on the dataset Dtest to show the
capability of the NNLF to more accurately characterize
the expert behavior as stable. This evaluation provides the
value of P(V̇φ (x,u)≤ 0)|x∼ p(x|π∗(x)),u = π∗(x)).

Again, to visualize, the positive and negative V̇φ (x) lo-
cations are plotted on phase-spaces. The z phase-space
of the point-mass problem can be seen in Fig. 4, and the
φ phase-space of the rigid-body problem can be seen in
Fig. 5.

Fig. 4: z phase-space of Vφ evaluated on optimal data

Fig. 5: φ phase-space of Vφ evaluated on optimal data

From these evaluations of Vφ ,
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4.3 Constrained Optimization

• P(V̇φ (x,u)≤ 0)|x∼ p(x|π∗(x)),u = π∗(x)) = 100%
for both lander formulations.

which shows that the NNLF is able to certify the expert
policy as stable, which is not the case for the SOS Lya-
punov candidate.

This initial step is crucial to the certification problem
since the optimal state action pairs are what the policy ul-
timately imitates. Any test of stability that fails to certify
the expert would not work well as a constraint on the imi-
tation learning problem.

Behavioral cloning was used to pretrain the policy πθ

on dataset Dtrain. This step alone results in a policy that
very closely approximates the optimal control profiles.
An open-loop evaluation of πθ (x) on states in Dtest was
performed, and the open-loop test plot for 300 evaluations
can be seen in Fig. 6 for the point-mass formulation.

Fig. 6: Open loop test of the pretrained πθ for point-mass formulation

4.3 Constrained Optimization
After pretraining both the policy and the NNLF, the

full constrained optimization was performed. The policy
and NNLF were trained simultaneously to achieve a pol-
icy that closely matches the fuel-optimal trajectories in D,
while also satisfying the Lyapunov stability requirement
across a broader range of states XMC.

The trained NNLF Vφ was evaluated on a new, ran-
domly sampled dataset XMC,test to show the capability of
the NNLF to more accurately characterize the trained pol-
icy behavior as stable. This evaluation provides the value
of P(V̇φ (x,u)≤ 0)|x ∈ XMC,test ,u = πθ (x)).

Again, to visualize, the positive and negative V̇φ (x) lo-
cations are plotted on phase-spaces. The z phase-space
of the point-mass problem can be seen in Fig. 7, and the
φ phase-space of the rigid-body problem can be seen in
Fig. 8.

From these evaluations of Vφ ,

Fig. 7: z phase-space of Vφ evaluated on broader range of states

Fig. 8: φ phase-space of Vφ evaluated on broader range of states
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4.4 Simulation Results

• P(V̇φ (x,u)≤ 0)|x∈XMC,test ,u = πθ (x)) = 100% for
the point-mass problem, and

• P(V̇φ (x,u) ≤ 0)|x ∈ XMC,test ,u = πθ (x)) =
99.9999% for the rigid-body problem

When evaluated over a larger region of the state-space
characterized by XMC, the trained policy and NNLF yield
a Level III certification of Lyapunov stability for the point-
mass, and a Level II certification of stability for the rigid-
body.

4.4 Simulation Results
To more fully demonstrate the stability of the trained

system, a Monte Carlo simulation of 1,000 trajectories
from random initial states was performed. The position
and velocity histories for the point-mass Monte Carlo sim-
ulation are shown in Figs. 9 and 10.

Fig. 9: z phase-space of Vφ evaluated on optimal data

Fig. 10: φ phase-space of Vφ evaluated on optimal data

Each of the simulated trajectories demonstrated a
successful near-optimal pinpoint landing at the landing
site. To further evaluate the assessment capability of the
trained NNLF, Vφ was evaluated on each of the states in
the Monte Carlo simulation. This evaluation provides the
value of P(V̇φ (x,u) ≤ 0)|x ∼ p(x|πθ (x)),u = πθ (x)). To
visualize, the positive and negative V̇φ (x) locations are
plotted on phase-spaces. The z phase-space of the point-
mass problem can be seen in Fig. 11, and the φ phase-
space of the rigid-body problem can be seen in Fig. 12.

Fig. 11: z phase-space of Vφ evaluated on simulated data

Fig. 12: φ phase-space of Vφ evaluated on simulated data

From these evaluations of Vφ ,

• P(V̇φ (x,u) ≤ 0)|x ∼ p(x|πθ (x)),u = πθ (x)) =
99.9935% for the point-mass problem, and

• P(V̇φ (x,u) ≤ 0)|x ∼ p(x|πθ (x)),u = πθ (x)) =
99.9999% for the rigid-body problem
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When evaluated over the simulated data, the trained
policy and NNLF yield a Level II certification of Lya-
punov stability for both landing problem formulations.

5. Conclusion

The study presented shows a full constrained opti-
mization technique that trains the parameters of a neu-
ral network policy and a neural network Lyapunov func-
tion to perform stable, fuel-optimal feedback control of
a pinpoint landing system. It was shown how the imi-
tation learning problem can be constrained by the time-
derivative of the NNLF, which allows for certifiable con-
trol profiles not possible with the standard sum of squares
Lyapunov candidate.

This paper showed how open-loop optimal trajectories
can be used to train deep neural networks to perform op-
timal feedback control of two 3DOF pinpoint landing for-
mulations. By simultaneously updating the parameters of
the policy and the NNLF, Level II and Level III certifica-
tions of the system stability were achieved.

Future work may involve extending the Lyapunov-
based training to systems with model-parameter uncer-
tainties, prompting the training of adaptive controllers
with adaptive update laws. Similar techniques that make
use of sampling states from a broader range of the state-
space to be used in an unsupervised fashion in training can
be investigated.

Ultimately, this investigation has advanced the stability
enforcement and assessment capabilities for neural net-
work systems used for optimal control. Since closed loop
controllers cannot be analytically derived, the use of im-
itation learning to replicate numerically generated open-
loop trajectories was combined with notions of closed-
loop stability assessment. These topics can be extended
to other aerospace applications from robotic control to or-
bit transfers and deep-space trajectory maneuvers.
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