

SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2018 - The Changing Role of the Pilot

Aug 14th, 2:45 PM - 3:45 PM

Enhancing Aviation Maintenance Training Using Scenario-based Education

Raymond Thompson Western Michigan University, raymond.thompson@wmich.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Maintenance Technology Commons

Thompson, Raymond, "Enhancing Aviation Maintenance Training Using Scenario-based Education" (2018). National Training Aircraft Symposium (NTAS). 28. https://commons.erau.edu/ntas/2018/presentations/28

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Enhancing Aviation Maintenance Training Using Scenario-based Education

Dr. Raymond Thompson – Western Michigan University

Why Develop an MRO Simulation?

- Medium to large aircraft maintenance is structured differently than small general aviation aircraft maintenance
- Most Part 147 training is done on GA aircraft

Goals of the MRO Simulation

- Expose students to large aircraft inspection and maintenance methodology
- Develop the communication and team skills required
- Develop the documents to train, perform, and document large aircraft maintenance

AVS 4630 Professional Maintenance Operations

- Capstone course for the Aviation Technical Operations program
- Students have completed a traditional inspection course
- Primary course focus is on the maintenance process with hands-on skill building a secondary function

AVS 4630 Learning Outcomes

 Apply industry standards and practices for enabling airworthy medium to large transport category aircraft maintenance, including inspection and operation of large aircraft components and powered systems. (AABI 3.3.1-h, AABI 3.3.2-2)

AVS 4630 Learning Outcomes

 Create, validate and deploy a functional aircraft maintenance program an assigned section of WMU's corporate or transport category aircraft, using process problem solving and risk assessment techniques (including Process Mapping and Risk Hazard Analysis diagramming techniques and manufacturer technical manual data). (AABI 3.3.1-c, 3.3.1-h, AABI 3.3.2-2)

AVS 4630 Learning Outcomes

 Plan and develop checklists for safe operation of aircraft systems relevant to medium or large transport aircraft, using technical writing principles, job hazard assessment and process mapping techniques covered in lectures and labs. Demonstrate safe operation of same. (AABI 3.3.1-h, AABI 3.3.2-3).

Project-based Learning

- Students are assigned a system and an inspection task
 - Create a GenFam module on that system for all to use
 - Process map the task
 - Perform a hazard analysis
 - Create a task card for the task
 - Perform the maintenance with role play

Selected Course Resources

- B727-200F
- Aircraft Maintenance Manuals
- Aircraft Illustrated Parts Catalog
- Aircraft Wiring Manuals
- FAA Dirty Dozen
- NASA Foundations of Mission Control
- ASQ Flowchart Tool

Avoid the Dirty Dozen

12 Common Causes
of Human Factors Errors

About 80 Percent of Maintenance Mistakes

Involve Human Factors

... and if Not Detected. . . Would Lead to Accidents.

Put Safety First and Minimize the 12 Common Causes of Mistakes in the Aviation Workplace

Lack of Communication

Failure to transmit, receive, or provide enough information to complete a task. Never assume anything.

Only 30% of verbal communication is received and understood by either side in a conversation. Others usually remember the first and last part of what you say.

Improve your communication—

- Say the most important things in the beginning and repeat them at the end.
- Use checklists.

Complacency

Overconfidence from repeated experience performing a task.

Avoid the tendency to see what you expect to see-

- Expect to find errors.
- . Don't sign it if you didn't do it.
- Use checklists.
- · Learn from the mistakes of others.

Lack of Knowledge

Shortage of the training, information, and/or ability to successfully perform.

Don't guess, know-

- Use current manuals.
- · Ask when you don't know.
- · Participate in training.

www.FAASafety.gov

YOUR SOURCE FOR AVIATION SAFETY

Avoid These Common Causes of Mistakes in the Aviation Workplace

Distractions

Anything that draws your attention away from the task at hand.

Distractions are the #1 cause of forgetting things, including what has or has not been done in a maintenance task.

Get back in the groove after a distraction-

- Use checklists.
- Go back 3 steps when restarting the work.

Lack of Teamwork

Failure to work together to complete a shared goal.

Build solid teamwork-

- Discuss how a task should be done.
- · Make sure everyone understands and agrees.
- Trust your teammates.

Fatigue

Physical or mental exhaustion threatening work performance.

Eliminate fatigue-related performance issues—

- · Watch for symptoms of fatigue in yourself and others.
- · Have others check your work.

Lack of Resources

Not having enough people, equipment, documentation, time, parts, etc., to complete a task.

Improve supply and support—

- · Order parts before they are required.
- Have a plan for pooling or loaning parts.

Pressure

Real or perceived forces demanding high-level job performance.

Reduce the burden of physical or mental distress-

- Communicate concerns.
- Ask for extra help.
- · Put safety first.

Lack of Assertiveness

Failure to speak up or document concerns about instructions, orders, or the actions of others.

Express your feelings, opinions, beliefs, and needs in a positive, productive manner—

- · Express concerns but offer positive solutions.
- · Resolve one issue before addressing another.

Stress

A physical, chemical, or emotional factor that causes physical or mental tension.

Manage stress before it affects your work-

- · Take a rational approach to problem solving.
- Take a short break when needed.
- · Discuss the problem with someone who can help.

Lack of Awareness

Failure to recognize a situation, understand what it is, and predict the possible results.

See the whole picture—

- Make sure there are no conflicts with an existing repair or modifications.
- Fully understand the procedures needed to complete a task.

Norms

Expected, yet unwritten, rules of behavior.

Help maintain a positive environment with your good attitude and work habits—

- · Existing norms don't make procedures right.
- · Follow good safety procedures.
- · Identify and eliminate negative norms.

Visit us at:
WWW.FAASafety.gov
Your Aviation Safety Web Site

FOUNDATIONS OF MISSION CONTROL

To instill within ourselves these qualities essential for professional excellence:

Discipline Being able to follow as well as lead, knowing that we must

master ourselves before we can master our task.

Competence There being no substitute for total preparation and complete

dedication, for space will not tolerate the careless or

indifferent.

Confidence Believing in ourselves as well as others, knowing that we

must master fear and hesitation before we can succeed.

Responsibility Realizing that is cannot be shifted to others, for it belongs to

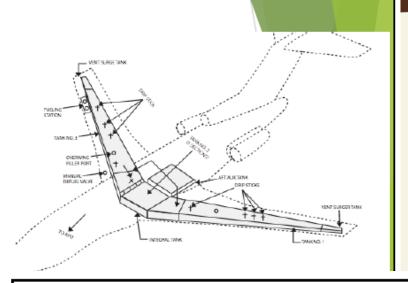
each of us; we must answer for what we do, or fail to do.

Toughness Taking a stand when we must; to try again, and again, even

if it means following a more difficult path.

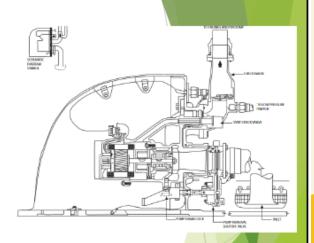
Teamwork Respecting and utilizing the ability of others, realizing that

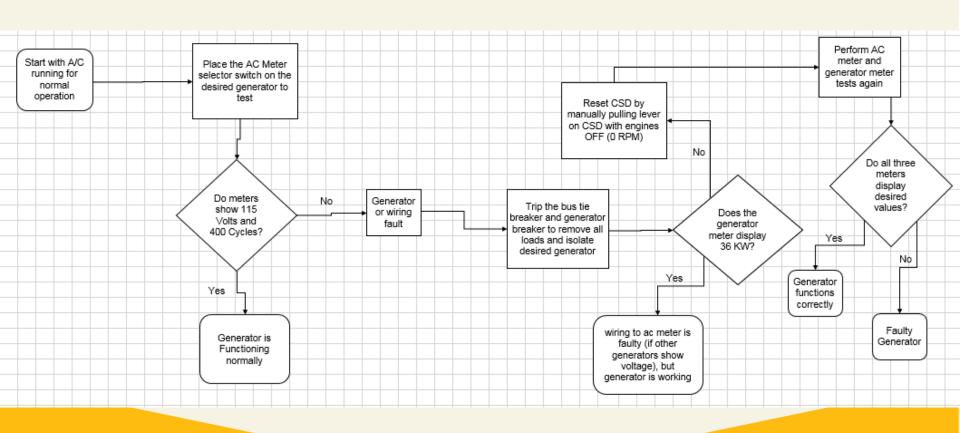
we work toward a common goal, for success depends on the


efforts of all.

To always be aware that suddenly and unexpectedly we may find ourselves in a role where our performance has ultimate consequences.

To recognize that the greatest error is not to have tried and failed, but that in trying, we did not give it our best effort.


Tanks


- > 3 main tanks
- ▶ 1 in each wing
- ▶ 1 in center of wing under fuselage
- ▶ Tank type: integral
- 8000 lb total fuel capacity
- Capacitance type quantity measurement
- Drip sticks for manual measurement

Delivery

- > Any tank to any engine
- Normal operation
 - ► Tank 1= engine 1
 - ► Tank 2 = engine 2
 - ► Tank 3 = engine 3
- Tank to tank transfer on ground only
- Electric boost bumps
- Higher pressure boost pump in center tank to override wing tanks
- ▶ Centrifugal type using 115 volt, 3-phase AC power
- Pumps have small housings which isolate them from the fuel tanks
- Crossfeed system
- All tanks sumped to one location, then directly to a specific engine

Category: Choose an item.

N258FE (ship -258)

B727-200F Series Job Card

Issued: 9/20/2017 Revision Date: 9/20/2017

Revision #: 1

Job Card Title: Inspect flap control travel

Zones: 2-22, 2-23, 5-82, 5-84, 6-85, 6-87

Access Panels: Not applicable

ATA Sections: 27

Consumables:	Specialized Tooling and Equipment:			
None	Ladder			
	Safety glasses			
Digital protractor				

Work Instructions:	Tech.	Insp.
Prepare aircraft for maintenance		
Using a power cart, apply 28 VDC and 115 VAC to the		
aircraft		
Turn on battery switch on flight engineers panel		
 Ensure all three bus ties are in the open position on flight 		
engineers panel		
Close all three electrical bus ties		
Check current flap position and verify it matches current		
flap handle position		
Engage system B hydraulic pumps 1 and 2. Switches located		
on flight engineers panel		
Open hydraulic ground interconnect valve on flight		
engineers panel.		
9. Move flap handle to 0° (see figure 1)		
 Establish 0° starting point on flap using digital protractor 		
11. Move flap handle to 2°		
12. Measure flap angle with protractor		
a. Record measured angle		
i. RH inboard		
ii. RH Outboard		
iii. LH inboard		
iv. LH outboard		
 b. If recorded angle differs from flap handle, 		
investigate rigging of flaps, check proper operation		
of flap transmission and other flap hydraulic		
components		
13. Move flap handle to 5° (see figure 1)		
14. Measure flap angle with protractor		
a. Record measured angle		
i. RH inboard		
ii. RH Outboard		
iii. LH inboard		

Page 1 of 4

Category: Choose an item.

B727-200F Series Job Card Issued: 9/20/2017

N258FE (ship -258) Revision Date: 9/20/2017 Revision # 1.1					
Job Card Number: 27-50-00-Flap	Control Travel	Revision #: 1			
Job Card Title: Inspect flap contro	ol travel				
iv. LH outbo					
b. If recorded angle					
investigate riggin					
	on and other flap hyd				
components	on and other hap nye	a danc			
components					
15. Move flap handle to 20° (see figure 1)				
16. Measure flap angle with	orotractor				
a. Record measured					
i. RH inboa					
ii. RH Outbo					
iv. LH outbo	ru				
b. If recorded angle		dla			
-	g of flaps, check prop				
	on and other flap hyd				
components					
components					
17. Move flap handle to 25° (see figure 1)				
18. Measure flap angle with	orotractor				
a. Record measured					
i. RH inboa					
ii. RH Outbo	nard				
iii. LH inboa					
iv. LH outbo					
b. If recorded angle		dle			
-	g of flaps, check prop				
	on and other flap hyd				
components					
19. Move flap handle to 30° (see figure 1)				
20. Measure flap angle with	protractor				
a. Record measured					
i. RH inboa	rd				
ii. RH Outbo					
iii. LH inboa	rd				
iv. LH outbo					
b. If recorded angle	differs from flap han	dle,			
investigate riggin	g of flaps, check prop	er operation			
of flap transmissi	on and other flap hyd	fraulic			
components					

Category: Choose an item.		B727-200F Se	ries Job Card	
	-	Issued: 9/20/2	2017	
N258FE (ship -258)	Western Marriers (houseast)	Revision Date:	9/20/2017	
	College of Autation	Revision #: 1		
Job Card Number: 27-50-00-Flap	Control Travel			
Job Card Title: Inspect flap contro	l travel			
 Move flap handle to 40° (see figure 1)			
Measure flap angle with p				
 a. Record measured 	_			
i. RH inboa				
ii. RH Outbo	ard			
iii. LH inboar	rd			
iv. LH outbo	ard			
 b. If recorded angle 	differs from flap han	ıdle,		
investigate rigging	g of flaps, check prop	per operation		
of flap transmission	on and other flap hy	draulic		
components				
23. Move flap handle to 0°				
24. Disengage system B pump	os 1 and 2			
25. Open 3 busses and turn o	ff battery switch	•		
26. Power down power cart a	and remove AC and [C power		

from aircraft

Supplemental Information

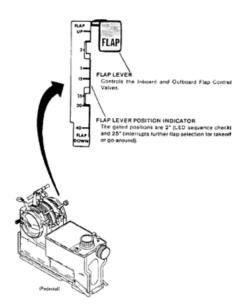


Figure 1

Page 3 of 4

Maintenance Process - Process

- 1 Shift manager
 - 2 -3 Lead technicians
 - 2 3 individuals / teams per lead
- Students receive team building and communication training

29-Sep	6-Oct	13-Oct	20-Oct	27-Oct	27-Oct	3-Nov	10-Nov	17-Nov
Lab 4	Lab 5	Lab 6	Lab 7	Lab 8A	Lab 8B	Lab 9	Lab 10	Lab 11
SM	TECH	TECH	LEAD	TECH	TECH	LEAD	TECH	TECH
TECH	SM	TECH	TECH	LEAD	TECH	TECH	LEAD	TECH
TECH	TECH	SM	TECH	TECH	LEAD	TECH	TECH	LEAD
TECH	LEAD	TECH	TECH	TECH	SM	TECH	LEAD	TECH
Interview 1	TECH	LEAD	TECH	SM	TECH	TECH	TECH	LEAD
LEAD	TECH	TECH	LEAD	TECH	TECH	SM	TECH	TECH
TECH	LEAD	TECH	TECH	LEAD	TECH	TECH	SM	TECH
LEAD	TECH	TECH	SM	TECH	TECH	LEAD	TECH	TECH
TECH	TECH	LEAD	TECH	TECH	LEAD	TECH	TECH	SM
TECH	LEAD	TECH	TECH	LEAD	TECH	TECH	SM	TECH
LEAD	TECH	TECH	LEAD	TECH	TECH	SM	TECH	TECH
TECH	TECH	LEAD	TECH	SM	TECH	TECH	LEAD	TECH
TECH	LEAD	TECH	TECH	TECH	SM	TECH	LEAD	TECH
LEAD	TECH	TECH	SM	TECH	TECH	LEAD	TECH	TECH
TECH	TECH	SM	TECH	TECH	LEAD	TECH	TECH	LEAD
TECH	SM	TECH	TECH	LEAD	TECH	TECH	TECH	LEAD
SM	TECH	TECH	LEAD	TECH	TECH	LEAD	TECH	TECH

Maintenance Process - Personnel

Shift manager

- Review the status of all tasks
 - Complete / in-progress / not started
 - Determine work assignments for leads
- Brief leads at beginning of lab on work and other items of note (visitors, etc.)
- Supervise shift

Maintenance Process - Personnel

Lead Technicians

- Receive briefing form shift manager on work and other items of note (visitors, etc.)
- Coordinate resources and operations with other leads to avoid conflicts
- Brief technicians
- Supervise work

Maintenance Process - Personnel

Technicians

- Receive briefing form lead on work and other items of note (visitors, etc.)
- Perform task card items with inspection from QA as required
- Document work on task card

Maintenance Process – End of Shift

- Techs and leads interface to determine the status of the work
- Leads summarize information and meet with shift manager and update the turnover communication tool
- The next shift manager and lead group participate in out shift briefing

Landing Gear & Wheel Wells

Wings

Fuselage

Empennage

Control & Passenger Cabins

Auxilary Power Plant

Power Plant and Nacelles

AVS 4630 Shift Turnover Log

Safety Briefing Items

Tooling-Parts

Ramp Manager

Base Manager

Card Tracking

Projects and Non-Routines Issues & Follow Up

MCC - ACARS

Ordering

Avoid the Dirty Dozen

12 Common Causes
of Human Factors Errors

About 80 Percent of Maintenance Mistakes

Involve Human Factors

... and if Not Detected. . . Would Lead to Accidents.

Put Safety First and Minimize the 12 Common Causes of Mistakes in the Aviation Workplace

Lack of Communication

Failure to transmit, receive, or provide enough information to complete a task. Never assume anything.

Only 30% of verbal communication is received and understood by either side in a conversation. Others usually remember the first and last part of what you say.

Improve your communication—

- Say the most important things in the beginning and repeat them at the end.
- Use checklists.

Complacency

Overconfidence from repeated experience performing a task.

Avoid the tendency to see what you expect to see-

- · Expect to find errors.
- . Don't sign it if you didn't do it.
- Use checklists.
- · Learn from the mistakes of others.

Lack of Knowledge

Shortage of the training, information, and/or ability to successfully perform.

Don't guess, know-

- Use current manuals.
- · Ask when you don't know.
- · Participate in training.

www.FAASafety.gov

YOUR SOURCE FOR AVIATION SAFETY

Avoid These Common Causes of Mistakes in the Aviation Workplace

Distractions

Anything that draws your attention away from the task at hand.

Distractions are the #1 cause of forgetting things, including what has or has not been done in a maintenance task.

Get back in the groove after a distraction-

- Use checklists.
- Go back 3 steps when restarting the work.

Lack of Teamwork

Failure to work together to complete a shared goal.

Build solid teamwork-

- Discuss how a task should be done.
- · Make sure everyone understands and agrees.
- Trust your teammates.

Fatigue

Physical or mental exhaustion threatening work performance.

Eliminate fatigue-related performance issues—

- Watch for symptoms of fatigue in yourself and others.
- · Have others check your work.

Lack of Resources

Not having enough people, equipment, documentation, time, parts, etc., to complete a task.

Improve supply and support—

- · Order parts before they are required.
- Have a plan for pooling or loaning parts.

Pressure

Real or perceived forces demanding high-level job performance.

Reduce the burden of physical or mental distress-

- · Communicate concerns.
- Ask for extra help.
- · Put safety first.

Lack of Assertiveness

Failure to speak up or document concerns about instructions, orders, or the actions of others.

Express your feelings, opinions, beliefs, and needs in a positive, productive manner—

- · Express concerns but offer positive solutions.
- · Resolve one issue before addressing another.

Stress

A physical, chemical, or emotional factor that causes physical or mental tension.

Manage stress before it affects your work—

- · Take a rational approach to problem solving.
- Take a short break when needed.
- · Discuss the problem with someone who can help.

Lack of Awareness

Failure to recognize a situation, understand what it is, and predict the possible results.

See the whole picture—

- Make sure there are no conflicts with an existing repair or modifications.
- · Fully understand the procedures needed to complete a task.

Norms

Expected, yet unwritten, rules of behavior.

Help maintain a positive environment with your good attitude and work habits—

- · Existing norms don't make procedures right.
- · Follow good safety procedures.
- · Identify and eliminate negative norms.

Visit us at:
WWW.FAASafety.gov
Your Aviation Safety Web Site

Summation

- Does this process create experts? No
- Exposure to the development and implementation of large aircraft maintenance lays a foundation of understanding that prepares them for the air carrier and MRO workplace

There Is More.....

- Research maintenance related NTSB reports
- Learn airline maintenance management
- Maintenance economics
- Quality assurance
- They stay busy!

For More Information

Raymond Thompson Associate Dean, College of Aviation Western Michigan University

raymond.thompson@wmich.edu